Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1985 Jun;82(11):3586–3590. doi: 10.1073/pnas.82.11.3586

An RNA-DNA copolymer whose synthesis is correlated with the transcriptional requirement for chromosomal initiation in Bacillus subtilis contains ribosomal RNA sequences

SJ Séror-Laurent 1, G Henckes 1
PMCID: PMC397830  PMID: 16593563

Abstract

During synchronous replication induced in a temperature-sensitive initiation mutant of Bacillus subtilis, we previously isolated an RNA covalently linked to DNA. This molecule was synthesized at specific times, correlated with the period of transcription that is required to initiate a new round of replication. In this paper, we show that both RNA and DNA components of the RNA-DNA molecule hybridized with the coding strand for ribosomal RNA. Competition hybridization experiments also demonstrated that ribosomal RNA sequences represent the great majority of the RNA that is linked to DNA. Both RNA and DNA components of the RNA-DNA molecule also hybridized with a region close to the origin of replication, in particular with E19 and E22, two restriction fragments that are replicated early. These fragments in fact form part of the ribosomal operon rrnO. The role of the RNA-linked DNA molecule in initiation in B. subtilis and the possibility that this molecule emanates directly from rrnO rather than from other ribosomal RNA genes are discussed.

Keywords: origin of replication, rrnO, cell cycle control

Full text

PDF
3586

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bagdasarian M. M., Izakowska M., Bagdasarian M. Suppression of the DnaA phenotype by mutations in the rpoB cistron of ribonucleic acid polymerase in Salmonella typhimurium and Escherichia coli. J Bacteriol. 1977 May;130(2):577–582. doi: 10.1128/jb.130.2.577-582.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Filutowicz M., Jonczyk P. Essential role of the gyrB gene product in the transcriptional event coupled to dnaA-dependent initiation of Escherichia coli chromosome replication. Mol Gen Genet. 1981;183(1):134–138. doi: 10.1007/BF00270151. [DOI] [PubMed] [Google Scholar]
  3. Henckes G., Vannier F., Buu A., Seror-Laurent S. J. Possible involvement of DNA-linked RNA in the initiation of Bacillus subtilis chromosome replication. J Bacteriol. 1982 Jan;149(1):79–91. doi: 10.1128/jb.149.1.79-91.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Henckes G., Vannier F., Seiki M., Ogasawara N., Yoshikawa H., Seror-Laurent S. J. Ribosomal RNA genes in the replication origin region of Bacillus subtilis chromosome. Nature. 1982 Sep 16;299(5880):268–271. doi: 10.1038/299268a0. [DOI] [PubMed] [Google Scholar]
  5. Lark K. G. Evidence for the direct involvement of RNA in the initiation of DNA replication in Escherichia coli 15T. J Mol Biol. 1972 Feb 28;64(1):47–60. doi: 10.1016/0022-2836(72)90320-8. [DOI] [PubMed] [Google Scholar]
  6. Laurent S. J. Control of deoxyribonucleic acid synthesis in a Bacillus subtilis mutant temperature sensitive for initiation of chromosome replication. J Bacteriol. 1974 Feb;117(2):329–336. doi: 10.1128/jb.117.2.329-336.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Laurent S. J. Initiation of deoxyribonucleic acid replication in a temperature-sensitive mutant of B. subtilis: evidence for a transcriptional step. J Bacteriol. 1973 Oct;116(1):141–145. doi: 10.1128/jb.116.1.141-145.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Laurent S. J., Vannier F. S. Temperature-sensitive initiation of chromosome replication in a mutant of Bacillus subtilis. J Bacteriol. 1973 May;114(2):474–484. doi: 10.1128/jb.114.2.474-484.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lother H., Messer W. Promoters in the E. coli replication origin. Nature. 1981 Nov 26;294(5839):376–378. doi: 10.1038/294376a0. [DOI] [PubMed] [Google Scholar]
  10. Maxam A. M., Gilbert W. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 1980;65(1):499–560. doi: 10.1016/s0076-6879(80)65059-9. [DOI] [PubMed] [Google Scholar]
  11. Messer W. Initiation of deoxyribonucleic acid replication in Escherichia coli B-r: chronology of events and transcriptional control of initiation. J Bacteriol. 1972 Oct;112(1):7–12. doi: 10.1128/jb.112.1.7-12.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Moran C. P., Jr, Bott K. F. Restriction enzyme analysis of Bacillus subtilis ribosomal ribonucleic acid genes. J Bacteriol. 1979 Oct;140(1):99–105. doi: 10.1128/jb.140.1.99-105.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Murakami S., Inuzuka N., Yamaguchi M., Yamaguchi K., Yoshikawa H. Initiation of DNA replication in Bacillus subtilis. III. Analysis of molecular events involved in the initiation using a temperature-sensitive dna mutant. J Mol Biol. 1976 Dec 25;108(4):683–704. doi: 10.1016/s0022-2836(76)80112-x. [DOI] [PubMed] [Google Scholar]
  14. Ogasawara N., Mizumoto S., Yoshikawa H. Replication origin of the Bacillus subtilis chromosome determined by hybridization of the first-replicating DNA with cloned fragments from the replication origin region of the chromosome. Gene. 1984 Oct;30(1-3):173–182. doi: 10.1016/0378-1119(84)90118-5. [DOI] [PubMed] [Google Scholar]
  15. Ogasawara N., Moriya S., Yoshikawa H. Structure and organization of rRNA operons in the region of the replication origin of the Bacillus subtilis chromosome. Nucleic Acids Res. 1983 Sep 24;11(18):6301–6318. doi: 10.1093/nar/11.18.6301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ogasawara N., Seiki M., Yoshikawa H. Effect of novobiocin on initiation of DNA replication in Bacillus subtilis. Nature. 1979 Oct 25;281(5733):702–704. doi: 10.1038/281702a0. [DOI] [PubMed] [Google Scholar]
  17. Ogasawara N., Seiki M., Yoshikawa H. Replication origin region of Bacillus subtilis chromosome contains two rRNA operons. J Bacteriol. 1983 Apr;154(1):50–57. doi: 10.1128/jb.154.1.50-57.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Orr E., Fairweather N. F., Holland I. B., Pritchard R. H. Isolation and characterisation of a strain carrying a conditional lethal mutation in the cou gene of Escherichia coli K12. Mol Gen Genet. 1979;177(1):103–112. doi: 10.1007/BF00267259. [DOI] [PubMed] [Google Scholar]
  19. Pettijohn D. E., Clarkson K., Kossman C. R., Stonington O. G. Synthesis of ribosomal RNA on a protein-DNA complex isolated from bacteria: a comparison of ribosomal RNA synthesis in vitro and in vivo. J Mol Biol. 1970 Sep 14;52(2):281–300. doi: 10.1016/0022-2836(70)90031-8. [DOI] [PubMed] [Google Scholar]
  20. Price V. L., Gallant J. A. A new relaxed mutant of Bacillus subtilis. J Bacteriol. 1982 Feb;149(2):635–641. doi: 10.1128/jb.149.2.635-641.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Seiki M., Ogasawara N., Yoshikawa H. Identification of a suppressor sequence for DNA replication in the replication origin region of the Bacillus subtilis chromosome. Proc Natl Acad Sci U S A. 1982 Jul;79(14):4285–4289. doi: 10.1073/pnas.79.14.4285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Seiki M., Ogasawara N., Yoshikawa H. Structure and function of the region of the replication origin of the Bacillus subtilis chromosome. II. Identification of the essential regions for inhibitory functions shown by the DNA segment containing the replication origin. Mol Gen Genet. 1981;183(2):227–233. doi: 10.1007/BF00270622. [DOI] [PubMed] [Google Scholar]
  23. Seiki M., Ogasawara N., Yoshikawa H. Structure of the region of the replication origin of the Bacillus subtilis chromosome. Nature. 1979 Oct 25;281(5733):699–701. doi: 10.1038/281699a0. [DOI] [PubMed] [Google Scholar]
  24. Stewart G. C., Wilson F. E., Bott K. F. Detailed physical mapping of the ribosomal RNA genes of Bacillus subtilis. Gene. 1982 Sep;19(2):153–162. doi: 10.1016/0378-1119(82)90001-4. [DOI] [PubMed] [Google Scholar]
  25. Zyskind J. W., Deen L. T., Smith D. W. Temporal sequence of events during the initiation process in Escherichia coli deoxyribonucleic acid replication: roles of the dnaA and dnaC gene products and ribonucleic acid polymerase. J Bacteriol. 1977 Mar;129(3):1466–1475. doi: 10.1128/jb.129.3.1466-1475.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. de Massy B., Fayet O., Kogoma T. Multiple origin usage for DNA replication in sdrA(rnh) mutants of Escherichia coli K-12. Initiation in the absence of oriC. J Mol Biol. 1984 Sep 15;178(2):227–236. doi: 10.1016/0022-2836(84)90141-4. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES