Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1985 Jun;82(11):3658–3661. doi: 10.1073/pnas.82.11.3658

Application of the principle of linked functions to ATP-driven ion pumps: kinetics of activation by ATP.

J A Reynolds, E A Johnson, C Tanford
PMCID: PMC397845  PMID: 2987939

Abstract

If a ligand binds with unequal affinity to two distinct states of a protein, then the equilibrium between the two states becomes a function of the concentration of the ligand. A necessary consequence is that the ligand must also affect the forward and/or reverse rate constants for transition between the two states. For an enzyme or transport protein with such a transition as a slow step in the catalytic cycle, the overall rate also becomes a function of ligand concentration. These conclusions are independent of whether or not the ligand is a direct participant in the reaction. If it is a direct participant, then the kinetic effect arising from the principle of linked functions is distinct from the direct catalytic effect. These principles suffice to account for the biphasic response of the hydrolytic activity of ATP-driven ion pumps to the concentration of ATP, without the need to invoke more than one ATP binding site per catalytic center.

Full text

PDF
3658

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chapman J. B., Johnson E. A., Kootsey J. M. Electrical and biochemical properties of an enzyme model of the sodium pump. J Membr Biol. 1983;74(2):139–153. doi: 10.1007/BF01870503. [DOI] [PubMed] [Google Scholar]
  2. Garrahan P. J., Rossi R. C., Rega A. F. The interaction of K+, Na+, Mg2+, and ATP with the (Na,K)-ATPase. Ann N Y Acad Sci. 1982;402:239–252. doi: 10.1111/j.1749-6632.1982.tb25745.x. [DOI] [PubMed] [Google Scholar]
  3. Hasselbach W. The sarcoplasmic calcium pump. A model of energy transduction in biological membranes. Top Curr Chem. 1979;78:1–56. [PubMed] [Google Scholar]
  4. Jensen J., Ottolenghi P. ATP binding to solubilized (Na+ + K+)-ATPase. The abolition of subunit-subunit interaction and the maximum weight of the nucleotide-binding unit. Biochim Biophys Acta. 1983 Jun 10;731(2):282–289. doi: 10.1016/0005-2736(83)90020-2. [DOI] [PubMed] [Google Scholar]
  5. MONOD J., WYMAN J., CHANGEUX J. P. ON THE NATURE OF ALLOSTERIC TRANSITIONS: A PLAUSIBLE MODEL. J Mol Biol. 1965 May;12:88–118. doi: 10.1016/s0022-2836(65)80285-6. [DOI] [PubMed] [Google Scholar]
  6. Martin D. W., Tanford C. Phosphorylation of calcium adenosinetriphosphatase by inorganic phosphate: van't Hoff analysis of enthalpy changes. Biochemistry. 1981 Aug 4;20(16):4597–4602. doi: 10.1021/bi00519a013. [DOI] [PubMed] [Google Scholar]
  7. Moczydlowski E. G., Fortes P. A. Inhibition of sodium and potassium adenosine triphosphatase by 2',3'-O-(2,4,6-trinitrocyclohexadienylidene) adenine nucleotides. Implications for the structure and mechanism of the Na:K pump. J Biol Chem. 1981 Mar 10;256(5):2357–2366. [PubMed] [Google Scholar]
  8. Møller J. V., Lind K. E., Andersen J. P. Enzyme kinetics and substrate stabilization of detergent-solubilized and membraneous (Ca2+ + Mg2+)-activated ATPase from sarcoplasmic reticulum. Effect of protein-protein interactions. J Biol Chem. 1980 Mar 10;255(5):1912–1920. [PubMed] [Google Scholar]
  9. Neet K. E., Green N. M. Kinetics of the cooperativity of the Ca2+-transporting adenosine triphosphatase of sarcoplasmic reticulum and the mechanism of the ATP interaction. Arch Biochem Biophys. 1977 Jan 30;178(2):588–597. doi: 10.1016/0003-9861(77)90230-2. [DOI] [PubMed] [Google Scholar]
  10. Robinson J. D., Flashner M. S. The (Na+ + K+)-activated ATPase. Enzymatic and transport properties. Biochim Biophys Acta. 1979 Aug 17;549(2):145–176. doi: 10.1016/0304-4173(79)90013-2. [DOI] [PubMed] [Google Scholar]
  11. Siegel G. J., Albers R. W. Sodium-potassium-activated adenosine triphosphatase of Electrophorus electric organ. IV. Modification of responses to sodium and potassium by arsenite plus 2,3-dimercaptopropanol. J Biol Chem. 1967 Nov 10;242(21):4972–4979. [PubMed] [Google Scholar]
  12. Skou J. C. Effect of ATP on the intermediary steps of the reaction of the (Na+ plusK+)-dependent enzyme system. II. Effect of a variation in the ATP-Mg2+ ratio. Biochim Biophys Acta. 1974 Mar 15;339(2):246–257. doi: 10.1016/0005-2736(74)90322-8. [DOI] [PubMed] [Google Scholar]
  13. Tanford C. Mechanism of free energy coupling in active transport. Annu Rev Biochem. 1983;52:379–409. doi: 10.1146/annurev.bi.52.070183.002115. [DOI] [PubMed] [Google Scholar]
  14. Tanford C. Translocation pathway in the catalysis of active transport. Proc Natl Acad Sci U S A. 1983 Jun;80(12):3701–3705. doi: 10.1073/pnas.80.12.3701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. WYMAN J., Jr LINKED FUNCTIONS AND RECIPROCAL EFFECTS IN HEMOGLOBIN: A SECOND LOOK. Adv Protein Chem. 1964;19:223–286. doi: 10.1016/s0065-3233(08)60190-4. [DOI] [PubMed] [Google Scholar]
  16. de Meis L., Vianna A. L. Energy interconversion by the Ca2+-dependent ATPase of the sarcoplasmic reticulum. Annu Rev Biochem. 1979;48:275–292. doi: 10.1146/annurev.bi.48.070179.001423. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES