Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1985 Jun;82(12):3954–3958. doi: 10.1073/pnas.82.12.3954

Initiation of enzymatic replication at the origin of the Escherichia coli chromosome: primase as the sole priming enzyme.

A van der Ende, T A Baker, T Ogawa, A Kornberg
PMCID: PMC397912  PMID: 2408271

Abstract

The enzymatic replication of plasmids containing the unique (245 base pair) origin of the Escherichia coli chromosome (oriC) can be initiated with any of three enzyme priming systems: primase alone, RNA polymerase alone, or both combined (Ogawa, T., Baker, T. A., van der Ende, A. & Kornberg, A. (1985) Proc. Natl. Acad. Sci. USA 82, 3562-3566). At certain levels of auxiliary proteins (topoisomerase I, protein HU, and RNase H), the solo primase system is efficient and responsible for priming synthesis of all DNA strands. Replication of oriC plasmids is here separated into four stages: (i) formation of an isolable, prepriming complex requiring oriC, dnaA protein, dnaB protein, dnaC protein, gyrase, single-strand binding protein, and ATP; (ii) formation of a primed template by primase; (iii) rapid, semiconservative replication by DNA polymerase III holoenzyme; and (iv) conversion of nearly completed daughter molecules to larger DNA forms. Optimal initiation of the leading strand of DNA synthesis, over a range of levels of auxiliary proteins, appears to depend on transcriptional activation of the oriC region by RNA polymerase prior to priming by primase.

Full text

PDF
3954

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arai K., Arai N., Shlomai J., Kobori J., Polder L., Low R., Hübscher U., Bertsch L., Kornberg A. Enzyme studies of phi X174 DNA replication. Prog Nucleic Acid Res Mol Biol. 1981;26:9–32. [PubMed] [Google Scholar]
  2. Atlung T. Allele-specific suppression of dnaA(Ts) mutations by rpoB mutations in Escherichia coli. Mol Gen Genet. 1984;197(1):125–128. doi: 10.1007/BF00327932. [DOI] [PubMed] [Google Scholar]
  3. Bouché J. P., Rowen L., Kornberg A. The RNA primer synthesized by primase to initiate phage G4 DNA replication. J Biol Chem. 1978 Feb 10;253(3):765–769. [PubMed] [Google Scholar]
  4. Chandler M., Bird R. E., Caro L. The replication time of the Escherichia coli K12 chromosome as a function of cell doubling time. J Mol Biol. 1975 May 5;94(1):127–132. doi: 10.1016/0022-2836(75)90410-6. [DOI] [PubMed] [Google Scholar]
  5. Diaz R., Ortega S. Initiation of plasmid R1 replication in vitro is independent of transcription by host RNA polymerase. Nucleic Acids Res. 1984 Jul 11;12(13):5175–5191. doi: 10.1093/nar/12.13.5175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dixon N. E., Kornberg A. Protein HU in the enzymatic replication of the chromosomal origin of Escherichia coli. Proc Natl Acad Sci U S A. 1984 Jan;81(2):424–428. doi: 10.1073/pnas.81.2.424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fuller R. S., Funnell B. E., Kornberg A. The dnaA protein complex with the E. coli chromosomal replication origin (oriC) and other DNA sites. Cell. 1984 Oct;38(3):889–900. doi: 10.1016/0092-8674(84)90284-8. [DOI] [PubMed] [Google Scholar]
  8. Fuller R. S., Kaguni J. M., Kornberg A. Enzymatic replication of the origin of the Escherichia coli chromosome. Proc Natl Acad Sci U S A. 1981 Dec;78(12):7370–7374. doi: 10.1073/pnas.78.12.7370. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Helmstetter C. E., Pierucci O. DNA synthesis during the division cycle of three substrains of Escherichia coli B/r. J Mol Biol. 1976 Apr 15;102(3):477–486. doi: 10.1016/0022-2836(76)90329-6. [DOI] [PubMed] [Google Scholar]
  10. Itoh T., Tomizawa J. Formation of an RNA primer for initiation of replication of ColE1 DNA by ribonuclease H. Proc Natl Acad Sci U S A. 1980 May;77(5):2450–2454. doi: 10.1073/pnas.77.5.2450. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kaguni J. M., Fuller R. S., Kornberg A. Enzymatic replication of E. coli chromosomal origin is bidirectional. Nature. 1982 Apr 15;296(5858):623–627. doi: 10.1038/296623a0. [DOI] [PubMed] [Google Scholar]
  12. Kaguni J. M., Kornberg A. Replication initiated at the origin (oriC) of the E. coli chromosome reconstituted with purified enzymes. Cell. 1984 Aug;38(1):183–190. doi: 10.1016/0092-8674(84)90539-7. [DOI] [PubMed] [Google Scholar]
  13. Kaguni J. M., Kornberg A. Topoisomerase I confers specificity in enzymatic replication of the Escherichia coli chromosomal origin. J Biol Chem. 1984 Jul 10;259(13):8578–8583. [PubMed] [Google Scholar]
  14. Mangel W. F., Chamberlin M. J. Studies of ribonucleic acid chain initiation by Escherichia coli ribonucleic acid polymerase bound to T7 deoxyribonucleic acid. 3. The effect of temperature on ribonucleic acid chain initiation and on the conformation of binary complexes. J Biol Chem. 1974 May 25;249(10):3007–3013. [PubMed] [Google Scholar]
  15. Meijer M., Beck E., Hansen F. G., Bergmans H. E., Messer W., von Meyenburg K., Schaller H. Nucleotide sequence of the origin of replication of the Escherichia coli K-12 chromosome. Proc Natl Acad Sci U S A. 1979 Feb;76(2):580–584. doi: 10.1073/pnas.76.2.580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ogawa T., Pickett G. G., Kogoma T., Kornberg A. RNase H confers specificity in the dnaA-dependent initiation of replication at the unique origin of the Escherichia coli chromosome in vivo and in vitro. Proc Natl Acad Sci U S A. 1984 Feb;81(4):1040–1044. doi: 10.1073/pnas.81.4.1040. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Oka A., Sugimoto K., Takanami M., Hirota Y. Replication origin of the Escherichia coli K-12 chromosome: the size and structure of the minimum DNA segment carrying the information for autonomous replication. Mol Gen Genet. 1980 Apr;178(1):9–20. doi: 10.1007/BF00267207. [DOI] [PubMed] [Google Scholar]
  18. Stayton M. M., Kornberg A. Complexes of Escherichia coli primase with the replication origin of G4 phage DNA. J Biol Chem. 1983 Nov 10;258(21):13205–13212. [PubMed] [Google Scholar]
  19. Tanaka M., Ohmori H., Hiraga S. A novel type of E. coli mutants with increased chromosomal copy number. Mol Gen Genet. 1983;192(1-2):51–60. doi: 10.1007/BF00327646. [DOI] [PubMed] [Google Scholar]
  20. Yasuda S., Hirota Y. Cloning and mapping of the replication origin of Escherichia coli. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5458–5462. doi: 10.1073/pnas.74.12.5458. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Zyskind J. W., Deen L. T., Smith D. W. Temporal sequence of events during the initiation process in Escherichia coli deoxyribonucleic acid replication: roles of the dnaA and dnaC gene products and ribonucleic acid polymerase. J Bacteriol. 1977 Mar;129(3):1466–1475. doi: 10.1128/jb.129.3.1466-1475.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES