Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1985 Jun;82(12):4003–4007. doi: 10.1073/pnas.82.12.4003

Protein kinase activity associated with the purified rat hepatic glucocorticoid receptor.

A Miller-Diener, T J Schmidt, G Litwack
PMCID: PMC397922  PMID: 3858857

Abstract

The Mr 94,000 steroid binding component of rat hepatic glucocorticoid receptor purified 5000-fold under-goes calcium-stimulated phosphorylation in vitro by [gamma-32P]ATP. Exogenous histones can be phosphorylated by this preparation without calcium. Calmodulin did not stimulate phosphorylation of the glucocorticoid receptor beyond that obtained with calcium alone. Although the specific calmodulin inhibitor calmidazolium had no effect, trifluoperazine and chlorpromazine, nonspecific calmodulin inhibitors, abolished the calcium-dependent phosphorylation of receptor. EGTA blocks the effect of calcium; magnesium cannot substitute for calcium. Cyclic nucleotides (cAMP or cGMP) do not stimulate phosphorylation of the receptor in the absence of calcium. Phosphorylation of the glucocorticoid receptor is steroid dependent. Triamcinolone acetonide elicited activation and phosphorylation of receptor in the presence of calcium, whereas the antagonists progesterone, cortexolone, and beta-lapachone did not. Sodium molybdate, which blocks the thermal activation step, inhibits phosphorylation of the receptor. The activated form of the glucocorticoid receptor is required for phosphorylation to occur. The ATP analogues 8-azido-ATP or fluorosulfonylbenzoyl adenosine, inhibit phosphorylation of the Mr 94,000 component, implying the presence of an ATP binding site inherent to the receptor.

Full text

PDF
4003

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barnett C. A., Schmidt T. J., Litwack G. Effects of calf intestinal alkaline phosphatase, phosphatase inhibitors, and phosphorylated compounds on the rate of activation of glucocorticoid-receptor complexes. Biochemistry. 1980 Nov 11;19(23):5446–5455. doi: 10.1021/bi00564a046. [DOI] [PubMed] [Google Scholar]
  2. Beato M., Kalimi M., Konstam M., Feigelson P. Interaction of glucocorticoids with rat liver nuclei. II. Studies on the nature of the cytosol transfer factor and the nuclear acceptor site. Biochemistry. 1973 Aug 28;12(18):3372–3379. doi: 10.1021/bi00742a002. [DOI] [PubMed] [Google Scholar]
  3. Buhrow S. A., Cohen S., Staros J. V. Affinity labeling of the protein kinase associated with the epidermal growth factor receptor in membrane vesicles from A431 cells. J Biol Chem. 1982 Apr 25;257(8):4019–4022. [PubMed] [Google Scholar]
  4. Cohen S., Ushiro H., Stoscheck C., Chinkers M. A native 170,000 epidermal growth factor receptor-kinase complex from shed plasma membrane vesicles. J Biol Chem. 1982 Feb 10;257(3):1523–1531. [PubMed] [Google Scholar]
  5. Dougherty J. J., Puri R. K., Toft D. O. Phosphorylation in vivo of chicken oviduct progesterone receptor. J Biol Chem. 1982 Dec 10;257(23):14226–14230. [PubMed] [Google Scholar]
  6. Erdos T., Best-Belpomme M., Bessada R. A rapid assay for binding estradiol to uterine receptor(s). Anal Biochem. 1970 Oct;37(2):244–252. doi: 10.1016/0003-2697(70)90044-8. [DOI] [PubMed] [Google Scholar]
  7. Garcia T., Tuohimaa P., Mester J., Buchou T., Renoir J. M., Baulieu E. E. Protein kinase activity of purified components of the chicken oviduct progesterone receptor. Biochem Biophys Res Commun. 1983 Jun 29;113(3):960–966. doi: 10.1016/0006-291x(83)91092-6. [DOI] [PubMed] [Google Scholar]
  8. Goueli S. A., Holtzman J. L., Ahmed K. Phosphorylation of the androgen receptor by a nuclear cAMP-independent protein kinase. Biochem Biophys Res Commun. 1984 Sep 17;123(2):778–784. doi: 10.1016/0006-291x(84)90297-3. [DOI] [PubMed] [Google Scholar]
  9. Grandics P., Miller A., Schmidt T. J., Litwack G. Phosphorylation in vivo of rat hepatic glucocorticoid receptor. Biochem Biophys Res Commun. 1984 Apr 16;120(1):59–65. doi: 10.1016/0006-291x(84)91413-x. [DOI] [PubMed] [Google Scholar]
  10. Grandics P., Miller A., Schmidt T. J., Mittman D., Litwack G. Purification of the unactivated glucocorticoid receptor and its subsequent in vitro activation. J Biol Chem. 1984 Mar 10;259(5):3173–3180. [PubMed] [Google Scholar]
  11. Grody W. W., Compton J. G., Schrader W. T., O'Malley B. W. Inactivation of chick oviduct progesterone receptors. J Steroid Biochem. 1980 Jan;12:115–120. doi: 10.1016/0022-4731(80)90260-5. [DOI] [PubMed] [Google Scholar]
  12. Housley P. R., Pratt W. B. Direct demonstration of glucocorticoid receptor phosphorylation by intact L-cells. J Biol Chem. 1983 Apr 10;258(7):4630–4635. [PubMed] [Google Scholar]
  13. Ishii D. N., Pratt W. B., Aronow L. Steady-state level of the specific glucocorticoid binding component in mouse fibroblasts. Biochemistry. 1972 Oct 10;11(21):3896–3904. doi: 10.1021/bi00771a010. [DOI] [PubMed] [Google Scholar]
  14. Kasuga M., Karlsson F. A., Kahn C. R. Insulin stimulates the phosphorylation of the 95,000-dalton subunit of its own receptor. Science. 1982 Jan 8;215(4529):185–187. doi: 10.1126/science.7031900. [DOI] [PubMed] [Google Scholar]
  15. Kasuga M., Zick Y., Blithe D. L., Crettaz M., Kahn C. R. Insulin stimulates tyrosine phosphorylation of the insulin receptor in a cell-free system. Nature. 1982 Aug 12;298(5875):667–669. doi: 10.1038/298667a0. [DOI] [PubMed] [Google Scholar]
  16. Kurl R. N., Jacob S. T. Phosphorylation of purified glucocorticoid receptor from rat liver by an endogenous protein kinase. Biochem Biophys Res Commun. 1984 Mar 15;119(2):700–705. doi: 10.1016/s0006-291x(84)80307-1. [DOI] [PubMed] [Google Scholar]
  17. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  18. Le Fevre B., Bailly A., Sallas N., Milgrom E. Activated steroid-receptor complex. Comparison of assays using DNA-cellulose or homologous nuclei. Biochim Biophys Acta. 1979 Jun 12;585(2):266–272. doi: 10.1016/0304-4165(79)90026-6. [DOI] [PubMed] [Google Scholar]
  19. Leach K. L., Dahmer M. K., Hammond N. D., Sando J. J., Pratt W. B. Molybdate inhibition of glucocorticoid receptor inactivation and transformation. J Biol Chem. 1979 Dec 10;254(23):11884–11890. [PubMed] [Google Scholar]
  20. Migliaccio A., Lastoria S., Moncharmont B., Rotondi A., Auricchio F. Phosphorylation of calf uterus 17 beta-estradiol receptor by endogenous Ca2+-stimulated kinase activating the hormone binding of the receptor. Biochem Biophys Res Commun. 1982 Dec 15;109(3):1002–1010. doi: 10.1016/0006-291x(82)92039-3. [DOI] [PubMed] [Google Scholar]
  21. Migliaccio A., Rotondi A., Auricchio F. Calmodulin-stimulated phosphorylation of 17 beta-estradiol receptor on tyrosine. Proc Natl Acad Sci U S A. 1984 Oct;81(19):5921–5925. doi: 10.1073/pnas.81.19.5921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Morrissey J. H. Silver stain for proteins in polyacrylamide gels: a modified procedure with enhanced uniform sensitivity. Anal Biochem. 1981 Nov 1;117(2):307–310. doi: 10.1016/0003-2697(81)90783-1. [DOI] [PubMed] [Google Scholar]
  23. Mosher K. M., Young D. A., Munck A. Evidence for irreversible, actinomycin D-sensitive, and temperature-sensitive steps following binding of cortisol to glucocorticoid receptors and preceding effects on glucose metabolism in rat thymus cells. J Biol Chem. 1971 Feb 10;246(3):654–659. [PubMed] [Google Scholar]
  24. Munck A., Brinck-Johnsen T. Specific and nonspecific physicochemical interactions of glucocorticoids and related steroids with rat thymus cells in vitro. J Biol Chem. 1968 Nov 10;243(21):5556–5565. [PubMed] [Google Scholar]
  25. Nielsen C. J., Sando J. J., Pratt W. B. Evidence that dephosphorylation inactivates glucocorticoid receptors. Proc Natl Acad Sci U S A. 1977 Apr;74(4):1398–1402. doi: 10.1073/pnas.74.4.1398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
  27. Roth R. A., Cassell D. J. Insulin receptor: evidence that it is a protein kinase. Science. 1983 Jan 21;219(4582):299–301. doi: 10.1126/science.6849137. [DOI] [PubMed] [Google Scholar]
  28. Sando J. J., La Forest A. C., Pratt W. B. ATP-dependent activation of L cell glucocorticoid receptors to the steroid binding form. J Biol Chem. 1979 Jun 10;254(11):4772–4778. [PubMed] [Google Scholar]
  29. Schmidt T. J., Miller-Diener A., Litwack G. Beta-lapachone, a specific competitive inhibitor of ligand binding to the glucocorticoid receptor. J Biol Chem. 1984 Aug 10;259(15):9536–9543. [PubMed] [Google Scholar]
  30. Shia M. A., Pilch P. F. The beta subunit of the insulin receptor is an insulin-activated protein kinase. Biochemistry. 1983 Feb 15;22(4):717–721. doi: 10.1021/bi00273a001. [DOI] [PubMed] [Google Scholar]
  31. Sloman J. C., Bell P. A. The dependence of specific nuclear binding of glucocorticoids by rat thymus cells on cellular ATP levels. Biochim Biophys Acta. 1976 Apr 23;428(2):403–413. doi: 10.1016/0304-4165(76)90048-9. [DOI] [PubMed] [Google Scholar]
  32. Van Bohemen C. G., Rousseau G. G. Calmodulin antagonists competitively inhibit dexamethasone binding to the glucocorticoid receptor. FEBS Lett. 1982 Jun 21;143(1):21–25. doi: 10.1016/0014-5793(82)80264-0. [DOI] [PubMed] [Google Scholar]
  33. Van Obberghen E., Kowalski A. Phosphorylation of the hepatic insulin receptor: stimulating effect of insulin on intact cells and in a cell-free system. FEBS Lett. 1982 Jul 5;143(2):179–182. doi: 10.1016/0014-5793(82)80094-x. [DOI] [PubMed] [Google Scholar]
  34. Van Obberghen E., Rossi B., Kowalski A., Gazzano H., Ponzio G. Receptor-mediated phosphorylation of the hepatic insulin receptor: evidence that the Mr 95,000 receptor subunit is its own kinase. Proc Natl Acad Sci U S A. 1983 Feb;80(4):945–949. doi: 10.1073/pnas.80.4.945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Weigel N. L., Tash J. S., Means A. R., Schrader W. T., O'Malley B. W. Phosphorylation of hen progesterone receptor by cAMP dependent protein kinase. Biochem Biophys Res Commun. 1981 Sep 16;102(1):513–519. doi: 10.1016/0006-291x(81)91549-7. [DOI] [PubMed] [Google Scholar]
  36. Yang J. C., Fujitaki J. M., Smith R. A. Separation of phosphohydroxyamino acids by high-performance liquid chromatography. Anal Biochem. 1982 May 15;122(2):360–363. doi: 10.1016/0003-2697(82)90295-0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES