Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1996 Mar 19;93(6):2328–2332. doi: 10.1073/pnas.93.6.2328

Genes encoding the same three subunits of respiratory complex II are present in the mitochondrial DNA of two phylogenetically distant eukaryotes.

G Burger 1, B F Lang 1, M Reith 1, M W Gray 1
PMCID: PMC39795  PMID: 8637872

Abstract

Although mitochondrial DNA is known to encode a limited number (<20) of the polypeptide components of respiratory complexes I, III, IV, and V, genes for components of complex II [succinate dehydrogenase (ubiquinone); succinate:ubiquinone oxidoreductase, EC 1.3.5.1] are conspicuously lacking in mitochondrial genomes so far characterized. Here we show that the same three subunits of complex II are encoded in the mitochondrial DNA of two phylogenetically distant eukaryotes, Porphyra purpurea (a photosynthetic red alga) and Reclinomonas americana (a heterotrophic zooflagellate). These complex II genes, sdh2, sdh3, and sdh4, are homologs, respectively, of Escherichia coli sdhB, sdhC, and sdhD. In E. coli, sdhB encodes the iron-sulfur subunit of succinate dehydrogenase (SDH), whereas sdhC and sdhD specify, respectively, apocytochrome b558 and a hydrophobic 13-kDa polypeptide, which together anchor SDH to the inner mitochondrial membrane. Amino acid sequence similarities indicate that sdh2, sdh3, and sdh4 were originally encoded in the protomitochondrial genome and have subsequently been transferred to the nuclear genome in most eukaryotes. The data presented here are consistent with the view that mitochondria constitute a monophyletic lineage.

Full text

PDF
2328

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abraham P. R., Mulder A., van 't Riet J., Raué H. A. Characterization of the Saccharomyces cerevisiae nuclear gene CYB3 encoding a cytochrome b polypeptide of respiratory complex II. Mol Gen Genet. 1994 Mar;242(6):708–716. doi: 10.1007/BF00283426. [DOI] [PubMed] [Google Scholar]
  2. Aliabadi Z., Winkler H. H., Wood D. O. Isolation and characterization of the Rickettsia prowazekii gene encoding the flavoprotein subunit of succinate dehydrogenase. Gene. 1993 Oct 29;133(1):135–140. doi: 10.1016/0378-1119(93)90238-x. [DOI] [PubMed] [Google Scholar]
  3. Attardi G., Schatz G. Biogenesis of mitochondria. Annu Rev Cell Biol. 1988;4:289–333. doi: 10.1146/annurev.cb.04.110188.001445. [DOI] [PubMed] [Google Scholar]
  4. Bach M., Reiländer H., Gärtner P., Lottspeich F., Michel H. Nucleotide sequence of a putative succinate dehydrogenase operon in Thermoplasma acidophilum. Biochim Biophys Acta. 1993 Jul 18;1174(1):103–107. doi: 10.1016/0167-4781(93)90101-i. [DOI] [PubMed] [Google Scholar]
  5. Birch-Machin M. A., Farnsworth L., Ackrell B. A., Cochran B., Jackson S., Bindoff L. A., Aitken A., Diamond A. G., Turnbull D. M. The sequence of the flavoprotein subunit of bovine heart succinate dehydrogenase. J Biol Chem. 1992 Jun 5;267(16):11553–11558. [PubMed] [Google Scholar]
  6. Boyen C., Leblanc C., Bonnard G., Grienenberger J. M., Kloareg B. Nucleotide sequence of the cox3 gene from Chondrus crispus: evidence that UGA encodes tryptophan and evolutionary implications. Nucleic Acids Res. 1994 Apr 25;22(8):1400–1403. doi: 10.1093/nar/22.8.1400. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Broomfield P. L., Hargreaves J. A. A single amino-acid change in the iron-sulphur protein subunit of succinate dehydrogenase confers resistance to carboxin in Ustilago maydis. Curr Genet. 1992 Aug;22(2):117–121. doi: 10.1007/BF00351470. [DOI] [PubMed] [Google Scholar]
  8. Bullis B. L., Lemire B. D. Isolation and characterization of the Saccharomyces cerevisiae SDH4 gene encoding a membrane anchor subunit of succinate dehydrogenase. J Biol Chem. 1994 Mar 4;269(9):6543–6549. [PubMed] [Google Scholar]
  9. Burger G., Plante I., Lonergan K. M., Gray M. W. The mitochondrial DNA of the amoeboid protozoon, Acanthamoeba castellanii: complete sequence, gene content and genome organization. J Mol Biol. 1995 Feb 3;245(5):522–537. doi: 10.1006/jmbi.1994.0043. [DOI] [PubMed] [Google Scholar]
  10. Chapman K. B., Solomon S. D., Boeke J. D. SDH1, the gene encoding the succinate dehydrogenase flavoprotein subunit from Saccharomyces cerevisiae. Gene. 1992 Sep 1;118(1):131–136. doi: 10.1016/0378-1119(92)90260-v. [DOI] [PubMed] [Google Scholar]
  11. Cole R. A., Williams K. L. The Dictyostelium discoideum mitochondrial genome: a primordial system using the universal code and encoding hydrophilic proteins atypical of metazoan mitochondrial DNA. J Mol Evol. 1994 Dec;39(6):579–588. doi: 10.1007/BF00160403. [DOI] [PubMed] [Google Scholar]
  12. Covello P. S., Gray M. W. Silent mitochondrial and active nuclear genes for subunit 2 of cytochrome c oxidase (cox2) in soybean: evidence for RNA-mediated gene transfer. EMBO J. 1992 Nov;11(11):3815–3820. doi: 10.1002/j.1460-2075.1992.tb05473.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Daignan-Fornier B., Valens M., Lemire B. D., Bolotin-Fukuhara M. Structure and regulation of SDH3, the yeast gene encoding the cytochrome b560 subunit of respiratory complex II. J Biol Chem. 1994 Jun 3;269(22):15469–15472. [PubMed] [Google Scholar]
  14. Darlison M. G., Guest J. R. Nucleotide sequence encoding the iron-sulphur protein subunit of the succinate dehydrogenase of Escherichia coli. Biochem J. 1984 Oct 15;223(2):507–517. doi: 10.1042/bj2230507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Fitch W. M., Margoliash E. Construction of phylogenetic trees. Science. 1967 Jan 20;155(3760):279–284. doi: 10.1126/science.155.3760.279. [DOI] [PubMed] [Google Scholar]
  16. Golding G. B., Gupta R. S. Protein-based phylogenies support a chimeric origin for the eukaryotic genome. Mol Biol Evol. 1995 Jan;12(1):1–6. doi: 10.1093/oxfordjournals.molbev.a040178. [DOI] [PubMed] [Google Scholar]
  17. Gray M. W., Doolittle W. F. Has the endosymbiont hypothesis been proven? Microbiol Rev. 1982 Mar;46(1):1–42. doi: 10.1128/mr.46.1.1-42.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Gray M. W. Origin and evolution of organelle genomes. Curr Opin Genet Dev. 1993 Dec;3(6):884–890. doi: 10.1016/0959-437x(93)90009-e. [DOI] [PubMed] [Google Scholar]
  19. Gray M. W. The endosymbiont hypothesis revisited. Int Rev Cytol. 1992;141:233–357. doi: 10.1016/s0074-7696(08)62068-9. [DOI] [PubMed] [Google Scholar]
  20. Gray M. W. The evolutionary origins of organelles. Trends Genet. 1989 Sep;5(9):294–299. doi: 10.1016/0168-9525(89)90111-x. [DOI] [PubMed] [Google Scholar]
  21. Hatefi Y., Galante Y. M., Stiggall D. L., Ragan C. I. Proteins, polypeptides, prosthetic groups, and enzymic properties of complexes I, II, III, IV, and V of the mitochondrial oxidative phosphorylation system. Methods Enzymol. 1979;56:577–602. doi: 10.1016/0076-6879(79)56056-x. [DOI] [PubMed] [Google Scholar]
  22. Hatefi Y. The mitochondrial electron transport and oxidative phosphorylation system. Annu Rev Biochem. 1985;54:1015–1069. doi: 10.1146/annurev.bi.54.070185.005055. [DOI] [PubMed] [Google Scholar]
  23. Heinzen R. A., Mo Y. Y., Robertson S. J., Mallavia L. P. Characterization of the succinate dehydrogenase-encoding gene cluster (sdh) from the rickettsia Coxiella burnetii. Gene. 1995 Mar 21;155(1):27–34. doi: 10.1016/0378-1119(94)00888-y. [DOI] [PubMed] [Google Scholar]
  24. Higgins D. G., Bleasby A. J., Fuchs R. CLUSTAL V: improved software for multiple sequence alignment. Comput Appl Biosci. 1992 Apr;8(2):189–191. doi: 10.1093/bioinformatics/8.2.189. [DOI] [PubMed] [Google Scholar]
  25. Hirawake H., Wang H., Kuramochi T., Kojima S., Kita K. Human complex II (succinate-ubiquinone oxidoreductase): cDNA cloning of the flavoprotein (Fp) subunit of liver mitochondria. J Biochem. 1994 Jul;116(1):221–227. doi: 10.1093/oxfordjournals.jbchem.a124497. [DOI] [PubMed] [Google Scholar]
  26. Karlin S., Campbell A. M. Which bacterium is the ancestor of the animal mitochondrial genome? Proc Natl Acad Sci U S A. 1994 Dec 20;91(26):12842–12846. doi: 10.1073/pnas.91.26.12842. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Keon J. P., White G. A., Hargreaves J. A. Isolation, characterization and sequence of a gene conferring resistance to the systemic fungicide carboxin from the maize smut pathogen, Ustilago maydis. Curr Genet. 1991 Jun;19(6):475–481. doi: 10.1007/BF00312739. [DOI] [PubMed] [Google Scholar]
  28. Kita K., Mizuchi D., Wang H., Takamiya S., Aoki T., Kojima S. cDNA sequence of three cysteine-rich clusters in the iron-sulfur subunit of complex II (succinate-ubiquinone oxidoreductase) from Caenorhabditis elegans determined by automated DNA sequencer. Electrophoresis. 1992 Aug;13(8):506–511. doi: 10.1002/elps.11501301106. [DOI] [PubMed] [Google Scholar]
  29. Kita K., Oya H., Gennis R. B., Ackrell B. A., Kasahara M. Human complex II (succinate-ubiquinone oxidoreductase): cDNA cloning of iron sulfur (Ip) subunit of liver mitochondria. Biochem Biophys Res Commun. 1990 Jan 15;166(1):101–108. doi: 10.1016/0006-291x(90)91916-g. [DOI] [PubMed] [Google Scholar]
  30. Leblanc C., Boyen C., Richard O., Bonnard G., Grienenberger J. M., Kloareg B. Complete sequence of the mitochondrial DNA of the rhodophyte Chondrus crispus (Gigartinales). Gene content and genome organization. J Mol Biol. 1995 Jul 21;250(4):484–495. doi: 10.1006/jmbi.1995.0392. [DOI] [PubMed] [Google Scholar]
  31. Lee G. Y., He D. Y., Yu L., Yu C. A. Identification of the ubiquinone-binding domain in QPs1 of succinate-ubiquinone reductase. J Biol Chem. 1995 Mar 17;270(11):6193–6198. doi: 10.1074/jbc.270.11.6193. [DOI] [PubMed] [Google Scholar]
  32. Lombardo A., Carine K., Scheffler I. E. Cloning and characterization of the iron-sulfur subunit gene of succinate dehydrogenase from Saccharomyces cerevisiae. J Biol Chem. 1990 Jun 25;265(18):10419–10423. [PubMed] [Google Scholar]
  33. Magnusson K., Philips M. K., Guest J. R., Rutberg L. Nucleotide sequence of the gene for cytochrome b558 of the Bacillus subtilis succinate dehydrogenase complex. J Bacteriol. 1986 Jun;166(3):1067–1071. doi: 10.1128/jb.166.3.1067-1071.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Morris A. A., Farnsworth L., Ackrell B. A., Turnbull D. M., Birch-Machin M. A. The cDNA sequence of the flavoprotein subunit of human heart succinate dehydrogenase. Biochim Biophys Acta. 1994 Mar 29;1185(1):125–128. doi: 10.1016/0005-2728(94)90203-8. [DOI] [PubMed] [Google Scholar]
  35. Nugent J. M., Palmer J. D. RNA-mediated transfer of the gene coxII from the mitochondrion to the nucleus during flowering plant evolution. Cell. 1991 Aug 9;66(3):473–481. doi: 10.1016/0092-8674(81)90011-8. [DOI] [PubMed] [Google Scholar]
  36. Oda K., Yamato K., Ohta E., Nakamura Y., Takemura M., Nozato N., Akashi K., Kanegae T., Ogura Y., Kohchi T. Gene organization deduced from the complete sequence of liverwort Marchantia polymorpha mitochondrial DNA. A primitive form of plant mitochondrial genome. J Mol Biol. 1992 Jan 5;223(1):1–7. doi: 10.1016/0022-2836(92)90708-r. [DOI] [PubMed] [Google Scholar]
  37. Paudel H. K., Yu L., Yu C. A. Involvement of a histidine residue in the interaction between membrane-anchoring protein (QPs) and succinate dehydrogenase in mitochondrial succinate-ubiquinone reductase. Biochim Biophys Acta. 1991 Jan 22;1056(2):159–165. doi: 10.1016/s0005-2728(05)80282-8. [DOI] [PubMed] [Google Scholar]
  38. Phillips M. K., Hederstedt L., Hasnain S., Rutberg L., Guest J. R. Nucleotide sequence encoding the flavoprotein and iron-sulfur protein subunits of the Bacillus subtilis PY79 succinate dehydrogenase complex. J Bacteriol. 1987 Feb;169(2):864–873. doi: 10.1128/jb.169.2.864-873.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Robinson K. M., Lemire B. D. Isolation and nucleotide sequence of the Saccharomyces cerevisiae gene for the succinate dehydrogenase flavoprotein subunit. J Biol Chem. 1992 May 15;267(14):10101–10107. [PubMed] [Google Scholar]
  40. Schülke N., Blobel G., Pain D. Primary structure, import, and assembly of the yeast homolog of succinate dehydrogenase flavoprotein. Proc Natl Acad Sci U S A. 1992 Sep 1;89(17):8011–8015. doi: 10.1073/pnas.89.17.8011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Singer T. P., Johnson M. K. The prosthetic groups of succinate dehydrogenase: 30 years from discovery to identification. FEBS Lett. 1985 Oct 14;190(2):189–198. doi: 10.1016/0014-5793(85)81282-5. [DOI] [PubMed] [Google Scholar]
  42. Sulston J., Du Z., Thomas K., Wilson R., Hillier L., Staden R., Halloran N., Green P., Thierry-Mieg J., Qiu L. The C. elegans genome sequencing project: a beginning. Nature. 1992 Mar 5;356(6364):37–41. doi: 10.1038/356037a0. [DOI] [PubMed] [Google Scholar]
  43. Tzagoloff A., Myers A. M. Genetics of mitochondrial biogenesis. Annu Rev Biochem. 1986;55:249–285. doi: 10.1146/annurev.bi.55.070186.001341. [DOI] [PubMed] [Google Scholar]
  44. Walker R. T. Mycoplasma evolution: a review of the use of ribosomal and transfer RNA nucleotide sequences in the determination of phylogenetic relationships. Yale J Biol Med. 1983 Sep-Dec;56(5-6):367–372. [PMC free article] [PubMed] [Google Scholar]
  45. Wood D., Darlison M. G., Wilde R. J., Guest J. R. Nucleotide sequence encoding the flavoprotein and hydrophobic subunits of the succinate dehydrogenase of Escherichia coli. Biochem J. 1984 Sep 1;222(2):519–534. doi: 10.1042/bj2220519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Yu L., Wei Y. Y., Usui S., Yu C. A. Cytochrome b560 (QPs1) of mitochondrial succinate-ubiquinone reductase. Immunochemistry, cloning, and nucleotide sequencing. J Biol Chem. 1992 Dec 5;267(34):24508–24515. [PubMed] [Google Scholar]
  47. Zhou Y. H., Ragan M. A. The nuclear gene and cDNAs encoding cytosolic glyceraldehyde-3-phosphate dehydrogenase from the marine red alga Gracilaria verrucosa: cloning, characterization and phylogenetic analysis. Curr Genet. 1995 Sep;28(4):324–332. doi: 10.1007/BF00326430. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES