Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1985 Jun;82(12):4250–4253. doi: 10.1073/pnas.82.12.4250

Biosynthetic 20-kilodalton methionyl-human growth hormone has diabetogenic and insulin-like activities.

J L Kostyo, C M Cameron, K C Olson, A J Jones, R C Pai
PMCID: PMC397974  PMID: 3889926

Abstract

The anterior pituitary gland produces a 20-kilodalton (kDa) variant of human growth hormone (hGH) that differs from the predominant 22-kDa form of hGH in that amino acid residues 32-46 are deleted. Previous work has suggested that the 20-kDa variant possesses the full growth-promoting and lactogenic activities of 22-kDa hGH but lacks its intrinsic diabetogenic and insulin-like activities. In the present study, recombinant DNA techniques were used to prepare biosynthetic 20-kDa hGH, and some of the biological properties of the purified hGH variant were examined. The biosynthetic 20-kDa hGH variant was found to share the propensity for aggregation exhibited by its native counterpart. Moreover, like the native variant, biosynthetic 20-kDa hGH possessed full growth-promoting activity in the weight gain test in hypophysectomized rats. However, contrary to previous work suggesting that native 20-kDa hGH lacks diabetogenic and insulin-like activities, biosynthetic 20-kDa hGH was found to have substantial diabetogenic activity when administered chronically to ob/ob mice and to possess approximately 20% the in vitro insulin-like activity of biosynthetic 22-kDa hGH on isolated epididymal adipose tissue of hypophysectomized rats. The diabetogenic and insulin-like activities of biosynthetic 20-kDa hGH cannot be ascribed to contamination of the hormone preparation with the 22-kDa form of hGH or with other diabetogenic or insulin-like pituitary peptides. Therefore, the results strongly suggest that diabetogenic and insulin-like activities are also intrinsic properties of the 20-kDa variant of hGH.

Full text

PDF
4250

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adelman J. P., Hayflick J. S., Vasser M., Seeburg P. H. In vitro deletional mutagenesis for bacterial production of the 20,000-dalton form of human pituitary growth hormone. DNA. 1983;2(3):183–193. doi: 10.1089/dna.1983.2.183. [DOI] [PubMed] [Google Scholar]
  2. Altszuler N., Rathgeb I., Winkler B., De Bodo R. C., Steele R. The effects of growth hormone on carbohydrate and lipid metabolism in the dog. Ann N Y Acad Sci. 1968 Feb 5;148(2):441–458. doi: 10.1111/j.1749-6632.1968.tb20368.x. [DOI] [PubMed] [Google Scholar]
  3. Cameron C. M., Kostyo J. L., Rillema J. A., Gennick S. E. Reduced and S-carboxymethylated human growth hormone: a probe for diabetogenic action. Am J Physiol. 1984 Nov;247(5 Pt 1):E639–E644. doi: 10.1152/ajpendo.1984.247.5.E639. [DOI] [PubMed] [Google Scholar]
  4. Chapman G. E., Rogers K. M., Brittain T., Bradshaw R. A., Bates O. J., Turner C., Cary P. D., Crane-Robinson C. The 20,000 molecular weight variant of human growth hormone. Preparation and some physical and chemical properties. J Biol Chem. 1981 Mar 10;256(5):2395–2401. [PubMed] [Google Scholar]
  5. Cheever E. V., Lewis U. J. Estimation of the molecular weights of the multiple components of growth hormone and prolactin. Endocrinology. 1969 Sep;85(3):465–473. doi: 10.1210/endo-85-3-465. [DOI] [PubMed] [Google Scholar]
  6. DeNoto F. M., Moore D. D., Goodman H. M. Human growth hormone DNA sequence and mRNA structure: possible alternative splicing. Nucleic Acids Res. 1981 Aug 11;9(15):3719–3730. doi: 10.1093/nar/9.15.3719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Frigeri L. G., Peterson S. M., Lewis U. J. The 20,000-dalton structural variant of human growth hormone: lack of some early insulin-like effects. Biochem Biophys Res Commun. 1979 Dec 14;91(3):778–782. doi: 10.1016/0006-291x(79)91947-8. [DOI] [PubMed] [Google Scholar]
  8. Goeddel D. V., Heyneker H. L., Hozumi T., Arentzen R., Itakura K., Yansura D. G., Ross M. J., Miozzari G., Crea R., Seeburg P. H. Direct expression in Escherichia coli of a DNA sequence coding for human growth hormone. Nature. 1979 Oct 18;281(5732):544–548. doi: 10.1038/281544a0. [DOI] [PubMed] [Google Scholar]
  9. Goodman H. M. Biological activity of bacterial derived human growth hormone in adipose tissue of hypophysectomized rats. Endocrinology. 1984 Jan;114(1):131–135. doi: 10.1210/endo-114-1-131. [DOI] [PubMed] [Google Scholar]
  10. Jónsdóttir I., Ekre H. P., Skoog B., Perlmann P. Immunochemical characterization of charge isomers of bacteria-derived human growth hormone with monoclonal antibodies. FEBS Lett. 1984 Feb 13;167(1):15–18. doi: 10.1016/0014-5793(84)80823-6. [DOI] [PubMed] [Google Scholar]
  11. Kostyo J. L., Gennick S. E., Sauder S. E. Diabetogenic activity of native and biosynthetic human growth hormone in obese (ob/ob) mouse. Am J Physiol. 1984 Apr;246(4 Pt 1):E356–E360. doi: 10.1152/ajpendo.1984.246.4.E356. [DOI] [PubMed] [Google Scholar]
  12. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  13. Lewis U. J., Bonewald L. F., Lewis L. J. The 20,000-dalton variant of human growth hormone: location of the amino acid deletions. Biochem Biophys Res Commun. 1980 Jan 29;92(2):511–516. doi: 10.1016/0006-291x(80)90363-0. [DOI] [PubMed] [Google Scholar]
  14. Lewis U. J., Dunn J. T., Bonewald L. F., Seavey B. K., Vanderlaan W. P. A naturally occurring structural variant of human growth hormone. J Biol Chem. 1978 Apr 25;253(8):2679–2687. [PubMed] [Google Scholar]
  15. Lewis U. J., Singh R. N., Tutwiler G. F. Hyperglycemic activity of the 20,000-dalton variant of human growth hormone. Endocr Res Commun. 1981;8(3):155–164. doi: 10.3109/07435808109045736. [DOI] [PubMed] [Google Scholar]
  16. Louis L. H., Conn J. W. Diabetogenic polypeptide from human pituitaries similar to that excreted by proteinuric diabetic patients. Metabolism. 1972 Jan;21(1):1–9. doi: 10.1016/0026-0495(72)90014-5. [DOI] [PubMed] [Google Scholar]
  17. Merril C. R., Goldman D., Sedman S. A., Ebert M. H. Ultrasensitive stain for proteins in polyacrylamide gels shows regional variation in cerebrospinal fluid proteins. Science. 1981 Mar 27;211(4489):1437–1438. doi: 10.1126/science.6162199. [DOI] [PubMed] [Google Scholar]
  18. Miller W. L., Eberhardt N. L. Structure and evolution of the growth hormone gene family. Endocr Rev. 1983 Spring;4(2):97–130. doi: 10.1210/edrv-4-2-97. [DOI] [PubMed] [Google Scholar]
  19. Mills J. B., Reagan C. R., Rudman D., Kostyo J. L., Zachariah P., Wilhelmi A. E. Metabolic effects of plasmin digests of human growth hormone in the rat and man. J Clin Invest. 1973 Nov;52(11):2941–2951. doi: 10.1172/JCI107491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Olson K. C., Fenno J., Lin N., Harkins R. N., Snider C., Kohr W. H., Ross M. J., Fodge D., Prender G., Stebbing N. Purified human growth hormone from E. coli is biologically active. Nature. 1981 Oct 1;293(5831):408–411. doi: 10.1038/293408a0. [DOI] [PubMed] [Google Scholar]
  21. Rosenfeld R. G., Wilson D. M., Dollar L. A., Bennett A., Hintz R. L. Both human pituitary growth hormone and recombinant DNA-derived human growth hormone cause insulin resistance at a postreceptor site. J Clin Endocrinol Metab. 1982 May;54(5):1033–1038. doi: 10.1210/jcem-54-5-1033. [DOI] [PubMed] [Google Scholar]
  22. Yudaev N. A., Pankov YuA, Keda YuM, Sazina E. T., Osipova T. A., Shwachkin YuP, Ryabtsev M. N. The effect of synthetic fragment 31-44 of human growth hormone on glucose uptake by isolated adipose tissue. Biochem Biophys Res Commun. 1983 Feb 10;110(3):866–872. doi: 10.1016/0006-291x(83)91041-0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES