Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1995 Jan 16;14(2):389–396. doi: 10.1002/j.1460-2075.1995.tb07013.x

Post-poly(Glu) cleavage and degradation modified by O-sulfated tyrosine: a novel post-translational processing mechanism.

J F Rehfeld 1, C P Hansen 1, A H Johnsen 1
PMCID: PMC398093  PMID: 7530658

Abstract

Expression of bioactive peptides requires several modifications of the primary translation product. Gastrin, a vertebrate gut hormone, occurs in multiple forms, including a bioactive fragment of the predominant gastrin-17. Gastrin-17 is, however, without known cleavage sites. In order to identify the new site, we therefore isolated, from antral mucosa, fragments of gastrin-34 and -17 monitored by monospecific immunoassays. After three steps of reverse-phase chromatography, the short gastrins were identified as hepta-, hexa- and pentapeptide amides. By far the most abundant of these was tyrosine O-sulfated gastrin-6. The near complete sulfation contrasts with the larger gastrins, of which only half are sulfated. The longest N-terminal fragment of gastrin-34 was a hexadecapeptide without complementarity to the short gastrins. Instead, the predominant N-terminal fragment of gastrin-17 was the decapeptide complementary to gastrin-7. Therefore the novel processing site is the Glu10-Ala11 bond that follows a poly(Glu6-10) sequence. Moreover, gastrin-7 is apparently trimmed, with subsequent accumulation of sulfated gastrin-6. Consequently, O-sulfated tyrosine ensures production of a new hormone which stimulates gastric acid secretion as potently as gastrin-17.

Full text

PDF
389

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersen B. N. Species variation in the tyrosine sulfation of mammalian gastrins. Gen Comp Endocrinol. 1985 Apr;58(1):44–50. doi: 10.1016/0016-6480(85)90134-0. [DOI] [PubMed] [Google Scholar]
  2. Andersen B. N., Stadil F. Sulfation of gastrin in Zollinger--Ellison sera: evidence for association between sulfation and proteolytic processing. Regul Pept. 1983 Jul;6(3):231–239. doi: 10.1016/0167-0115(83)90141-6. [DOI] [PubMed] [Google Scholar]
  3. Bardram L., Rehfeld J. F. Processing-independent radioimmunoanalysis: a general analytical principle applied to progastrin and its products. Anal Biochem. 1988 Dec;175(2):537–543. doi: 10.1016/0003-2697(88)90580-5. [DOI] [PubMed] [Google Scholar]
  4. Bjørnskov I., Rehfeld J. F., Johnsen A. H. Identification of four chicken gastrins, obtained by processing at post-Phe bonds. Peptides. 1992 May-Jun;13(3):595–601. doi: 10.1016/0196-9781(92)90095-k. [DOI] [PubMed] [Google Scholar]
  5. Boel E., Vuust J., Norris F., Norris K., Wind A., Rehfeld J. F., Marcker K. A. Molecular cloning of human gastrin cDNA: evidence for evolution of gastrin by gene duplication. Proc Natl Acad Sci U S A. 1983 May;80(10):2866–2869. doi: 10.1073/pnas.80.10.2866. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brand S. J., Andersen B. N., Rehfeld J. F. Complete tyrosine-O-sulphation of gastrin in neonatal rat pancreas. 1984 May 31-Jun 6Nature. 309(5967):456–458. doi: 10.1038/309456a0. [DOI] [PubMed] [Google Scholar]
  7. Cantor P., Petersen M. B., Christiansen J., Rehfeld J. F. Does sulfation of gastrin influence gastric acid secretion in man? Scand J Gastroenterol. 1990 Jul;25(7):739–745. doi: 10.3109/00365529008997601. [DOI] [PubMed] [Google Scholar]
  8. Christiansen L. A., Lindkaer Jensen S., Rehfeld J. F., Stadil F., Christensen K. C. Antral content and secretion of gastrins in pigs. Scand J Gastroenterol. 1978;13(6):719–725. doi: 10.3109/00365527809181787. [DOI] [PubMed] [Google Scholar]
  9. Darmer D., Schmutzler C., Diekhoff D., Grimmelikhuijzen C. J. Primary structure of the precursor for the sea anemone neuropeptide Antho-RFamide (less than Glu-Gly-Arg-Phe-NH2). Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2555–2559. doi: 10.1073/pnas.88.6.2555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fisher J. M., Scheller R. H. Prohormone processing and the secretory pathway. J Biol Chem. 1988 Nov 15;263(32):16515–16518. [PubMed] [Google Scholar]
  11. Fuller P. J., Stone D. L., Brand S. J. Molecular cloning and sequencing of a rat preprogastrin complementary deoxyribonucleic acid. Mol Endocrinol. 1987 Apr;1(4):306–311. doi: 10.1210/mend-1-4-306. [DOI] [PubMed] [Google Scholar]
  12. GREGORY H., HARDY P. M., JONES D. S., KENNER G. W., SHEPPARD R. C. THE ANTRAL HORMONE GASTRIN. STRUCTURE OF GASTRIN. Nature. 1964 Dec 5;204:931–933. doi: 10.1038/204931a0. [DOI] [PubMed] [Google Scholar]
  13. GREGORY R. A., TRACY H. J. A NOTE ON THE NATURE OF THE GASTRIN-LIKE STIMULANT PRESENT IN ZOLLINGER-ELLISON TUMOURS. Gut. 1964 Apr;5:115–117. [PubMed] [Google Scholar]
  14. Gantz I., Takeuchi T., Yamada T. Cloning of canine gastrin cDNA's encoding variant amino acid sequences. Digestion. 1990;46 (Suppl 2):99–104. doi: 10.1159/000200372. [DOI] [PubMed] [Google Scholar]
  15. Gregory R. A., Tracy H. J., Harris J. I., Runswick M. J., Moore S., Kenner G. W., Ramage R. Minigastrin; corrected structure and synthesis. Hoppe Seylers Z Physiol Chem. 1979 Jan;360(1):73–80. doi: 10.1515/bchm2.1979.360.1.73. [DOI] [PubMed] [Google Scholar]
  16. Gregory R. A., Tracy H. J. Isolation of two "big gastrins" from Zollinger-Ellison tumour tissue. Lancet. 1972 Oct 14;2(7781):797–799. doi: 10.1016/s0140-6736(72)92151-4. [DOI] [PubMed] [Google Scholar]
  17. HOFSTEE B. H. Non-inverted versus inverted plots in enzyme kinetics. Nature. 1959 Oct 24;184:1296–1298. doi: 10.1038/1841296b0. [DOI] [PubMed] [Google Scholar]
  18. Hilsted L., Hansen C. P. Corelease of amidated and glycine-extended antral gastrins after a meal. Am J Physiol. 1988 Nov;255(5 Pt 1):G665–G669. doi: 10.1152/ajpgi.1988.255.5.G665. [DOI] [PubMed] [Google Scholar]
  19. Hilsted L., Rehfeld J. F. Alpha-carboxyamidation of antral progastrin. Relation to other post-translational modifications. J Biol Chem. 1987 Dec 15;262(35):16953–16957. [PubMed] [Google Scholar]
  20. Hirst B. H., Holland J., Marr A. P., Parsons M. E., Sanders D. J. Comparison of effect of peptide length and sulphation on acid secretory potency of gastrin in the cat in vivo and in vitro. J Physiol. 1984 Dec;357:441–452. doi: 10.1113/jphysiol.1984.sp015510. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Huttner W. B. Sulphation of tyrosine residues-a widespread modification of proteins. Nature. 1982 Sep 16;299(5880):273–276. doi: 10.1038/299273a0. [DOI] [PubMed] [Google Scholar]
  22. Ito R., Sato K., Helmer T., Jay G., Agarwal K. Structural analysis of the gene encoding human gastrin: the large intron contains an Alu sequence. Proc Natl Acad Sci U S A. 1984 Aug;81(15):4662–4666. doi: 10.1073/pnas.81.15.4662. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Jensen S., Borch K., Hilsted L., Rehfeld J. F. Progastrin processing during antral G-cell hypersecretion in humans. Gastroenterology. 1989 Apr;96(4):1063–1070. doi: 10.1016/0016-5085(89)91624-7. [DOI] [PubMed] [Google Scholar]
  24. Johnsen A. H. Nondestructive amino acid analysis at the picomole level of proline-containing peptides using aminopeptidase M and prolidase: application to peptides containing tyrosine sulfate. Anal Biochem. 1991 Aug 15;197(1):182–186. doi: 10.1016/0003-2697(91)90376-5. [DOI] [PubMed] [Google Scholar]
  25. Jung L. J., Scheller R. H. Peptide processing and targeting in the neuronal secretory pathway. Science. 1991 Mar 15;251(4999):1330–1335. doi: 10.1126/science.2003219. [DOI] [PubMed] [Google Scholar]
  26. Kopin A. S., Lee Y. M., McBride E. W., Miller L. J., Lu M., Lin H. Y., Kolakowski L. F., Jr, Beinborn M. Expression cloning and characterization of the canine parietal cell gastrin receptor. Proc Natl Acad Sci U S A. 1992 Apr 15;89(8):3605–3609. doi: 10.1073/pnas.89.8.3605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Larsson L. I., Rehfeld J. F., Sundler F., Håkanson R. Pancreatic gastrin in foetal and neonatal rats. Nature. 1976 Aug 12;262(5569):609–610. doi: 10.1038/262609a0. [DOI] [PubMed] [Google Scholar]
  28. Lund T., Olsen J., Rehfeld J. F. Cloning and sequencing of the bovine gastrin gene. Mol Endocrinol. 1989 Oct;3(10):1585–1588. doi: 10.1210/mend-3-10-1585. [DOI] [PubMed] [Google Scholar]
  29. Lüttichau H. R., Van Solinge W. W., Nielsen F. C., Rehfeld J. F. Developmental expression of the gastrin and cholecystokinin genes in rat colon. Gastroenterology. 1993 Apr;104(4):1092–1098. doi: 10.1016/0016-5085(93)90278-k. [DOI] [PubMed] [Google Scholar]
  30. Mutt V., Jorpes J. E. Structure of porcine cholecystokinin-pancreozymin. 1. Cleavage with thrombin and with trypsin. Eur J Biochem. 1968 Oct 17;6(1):156–162. doi: 10.1111/j.1432-1033.1968.tb00433.x. [DOI] [PubMed] [Google Scholar]
  31. Nagle G. T., Painter S. D., Blankenship J. E., Kurosky A. Proteolytic processing of egg-laying hormone-related precursors in Aplysia. Identification of peptide regions critical for biological activity. J Biol Chem. 1988 Jul 5;263(19):9223–9237. [PubMed] [Google Scholar]
  32. Pauwels S., Najdovski T., Dimaline R., Lee C. M., Deschodt-Lanckman M. Degradation of human gastrin and CCK by endopeptidase 24.11: differential behaviour of the sulphated and unsulphated peptides. Biochim Biophys Acta. 1989 Jun 13;996(1-2):82–88. doi: 10.1016/0167-4838(89)90098-8. [DOI] [PubMed] [Google Scholar]
  33. Rehfeld J. F. Immunochemical studies on cholecystokinin. I. Development of sequence-specific radioimmunoassays for porcine triacontatriapeptide cholecystokinin. J Biol Chem. 1978 Jun 10;253(11):4016–4021. [PubMed] [Google Scholar]
  34. Rehfeld J. F., Johnsen A. H. Identification of gastrin component I as gastrin-71. The largest possible bioactive progastrin product. Eur J Biochem. 1994 Aug 1;223(3):765–773. doi: 10.1111/j.1432-1033.1994.tb19051.x. [DOI] [PubMed] [Google Scholar]
  35. Rehfeld J. F., Larsson L. I. Pituitary gastrins. Different processing in corticotrophs and melanotrophs. J Biol Chem. 1981 Oct 25;256(20):10426–10429. [PubMed] [Google Scholar]
  36. Rehfeld J. F., Larsson L. I. The predominating molecular form of gastrin and cholecystokinin in the gut is a small peptide corresponding to their COOH-terminal tetrapeptide amide. Acta Physiol Scand. 1979 Jan;105(1):117–119. doi: 10.1111/j.1748-1716.1979.tb06320.x. [DOI] [PubMed] [Google Scholar]
  37. Rehfeld J. F. Localisation of gastrins to neuro- and adenohypophysis. Nature. 1978 Feb 23;271(5647):771–773. doi: 10.1038/271771a0. [DOI] [PubMed] [Google Scholar]
  38. Rehfeld J. F. Progastrin and its products in the cerebellum. Neuropeptides. 1991 Dec;20(4):239–245. doi: 10.1016/0143-4179(91)90014-a. [DOI] [PubMed] [Google Scholar]
  39. Rehfeld J. F., Stadil F., Rubin B. Production and evaluation of antibodies for the radioimmunoassay of gastrin. Scand J Clin Lab Invest. 1972 Oct;30(2):221–232. doi: 10.3109/00365517209081114. [DOI] [PubMed] [Google Scholar]
  40. Rehfeld J. F., van Solinge W. W. The tumor biology of gastrin and cholecystokinin. Adv Cancer Res. 1994;63:295–347. doi: 10.1016/s0065-230x(08)60403-0. [DOI] [PubMed] [Google Scholar]
  41. Rehfield J. F., Uvnäs-Wallensten K. Gastrins in cat and dog: evidence for a biosynthetic relationship between the large molecular forms of gastrin and heptadecapeptide gastrin. J Physiol. 1978 Oct;283:379–396. doi: 10.1113/jphysiol.1978.sp012507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Schalling M., Persson H., Pelto-Huikko M., Odum L., Ekman P., Gottlieb C., Hökfelt T., Rehfeld J. F. Expression and localization of gastrin messenger RNA and peptide in spermatogenic cells. J Clin Invest. 1990 Aug;86(2):660–669. doi: 10.1172/JCI114758. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Schwartz T. W. The processing of peptide precursors. 'Proline-directed arginyl cleavage' and other monobasic processing mechanisms. FEBS Lett. 1986 May 5;200(1):1–10. doi: 10.1016/0014-5793(86)80500-2. [DOI] [PubMed] [Google Scholar]
  44. Unsworth C. D., Hughes J., Morely J. S. O-sulphated Leu-enkephalin in brain. Nature. 1982 Feb 11;295(5849):519–522. doi: 10.1038/295519a0. [DOI] [PubMed] [Google Scholar]
  45. Wank S. A., Harkins R., Jensen R. T., Shapira H., de Weerth A., Slattery T. Purification, molecular cloning, and functional expression of the cholecystokinin receptor from rat pancreas. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):3125–3129. doi: 10.1073/pnas.89.7.3125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Yanagisawa M., Kurihara H., Kimura S., Tomobe Y., Kobayashi M., Mitsui Y., Yazaki Y., Goto K., Masaki T. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature. 1988 Mar 31;332(6163):411–415. doi: 10.1038/332411a0. [DOI] [PubMed] [Google Scholar]
  47. Yoo O. J., Powell C. T., Agarwal K. L. Molecular cloning and nucleotide sequence of full-length of cDNA coding for porcine gastrin. Proc Natl Acad Sci U S A. 1982 Feb;79(4):1049–1053. doi: 10.1073/pnas.79.4.1049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. van Solinge W. W., Rehfeld J. F. Radioimmunoassay for sequence 38-54 of human progastrin: increased diagnostic specificity of gastrin-cell diseases. Clin Chim Acta. 1990 Nov 15;192(1):35–46. doi: 10.1016/0009-8981(90)90269-x. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES