Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1996 Mar 19;93(6):2436–2441. doi: 10.1073/pnas.93.6.2436

Constitutive production of granulocyte/macrophage colony-stimulating factor by hypodense mononuclear eosinophils developed in vitro from hybrid eosinophil/basophil granulocytes.

J A Boyce 1, D Friend 1, M F Gurish 1, K F Austen 1, W F Owen 1
PMCID: PMC39815  PMID: 8637892

Abstract

We recently described the development in vitro of cells with granules characteristic of eosinophils and basophils (hybrid granulocytes) from normal human cord blood mononuclear cells cultured for 14 days with recombinant human (rh) interleukin (IL)-3, rhIL-5, and a soluble basement membrane, Matrigel. Hybrid granulocytes constitutively produced granulocyte/macrophage colony-stimulating factor (GM-CSF) and rapidly developed into eosinophils after the exogenous cytokines and Matrigel were removed. To characterize the developmental progression of hybrid granulocytes, cells were maintained for an additional 14 days in medium containing rhIL-3, rhIL-5, and Matrigel. After 28 days, 73% +/- 1% (mean +/- SEM; n = 6) of the nonadherent cells were mononuclear eosinophils, 13% +/- 3% were eosinophils with two or more nuclear lobes, 13% +/- 4% were hybrid granulocytes, and 0.2% +/- 0.1% were basophils. More than 90% of the mononuclear eosinophils were hypodense as determined by centrifugation through metrizamide gradients. After an additional 5 days of culture in medium without exogenous cytokines, 65% +/- 3% (n = 5) of the 28-day cells excluded trypan blue. In contrast, 2% +/- 1% of freshly isolated peripheral blood eosinophils survived 5 days of culture without exogenous cytokines (n = 5). Fifty percent conditioned medium from in vitro derived 28-day mononuclear eosinophils and 14-day hybrid granulocytes maintained the survival of 60% +/- 7% and 77% +/- 7%, respectively, of freshly isolated peripheral blood eosinophils for 72 h, compared with 20% +/- 8% survival in medium alone (n = 3). The eosinophil viability-sustaining activity of 50% mononuclear eosinophil-conditioned medium was neutralized with a GM-CSF antibody. A total of 88% of the 28-day cells exhibited immunochemical staining for GM-CSF. Thus, during eosinophilopoiesis, both hybrid eosinophil/basophil intermediates and immature mononuclear eosinophils exhibit autocrine regulation of viability due to constitutive production of GM-CSF.

Full text

PDF
2436

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anwar A. R., Moqbel R., Walsh G. M., Kay A. B., Wardlaw A. J. Adhesion to fibronectin prolongs eosinophil survival. J Exp Med. 1993 Mar 1;177(3):839–843. doi: 10.1084/jem.177.3.839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bach M. K., Brashler J. R., Sanders M. E., Furitsu T., Ishizaka T. How similar are in vitro differentiated, cord blood derived eosinophils to peripheral blood eosinophils? A comparison of their peroxidase and eosinophil-derived neurotoxin contents and of their responses to various activators. Int Arch Allergy Appl Immunol. 1990;93(4):323–329. doi: 10.1159/000235261. [DOI] [PubMed] [Google Scholar]
  3. Barcellos-Hoff M. H., Aggeler J., Ram T. G., Bissell M. J. Functional differentiation and alveolar morphogenesis of primary mammary cultures on reconstituted basement membrane. Development. 1989 Feb;105(2):223–235. doi: 10.1242/dev.105.2.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bitter M. A., Le Beau M. M., Larson R. A., Rosner M. C., Golomb H. M., Rowley J. D., Vardiman J. W. A morphologic and cytochemical study of acute myelomonocytic leukemia with abnormal marrow eosinophils associated with inv(16)(p13q22). Am J Clin Pathol. 1984 Jun;81(6):733–741. doi: 10.1093/ajcp/81.6.733. [DOI] [PubMed] [Google Scholar]
  5. Boyce J. A., Friend D., Matsumoto R., Austen K. F., Owen W. F. Differentiation in vitro of hybrid eosinophil/basophil granulocytes: autocrine function of an eosinophil developmental intermediate. J Exp Med. 1995 Jul 1;182(1):49–57. doi: 10.1084/jem.182.1.49. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Broide D. H., Paine M. M., Firestein G. S. Eosinophils express interleukin 5 and granulocyte macrophage-colony-stimulating factor mRNA at sites of allergic inflammation in asthmatics. J Clin Invest. 1992 Oct;90(4):1414–1424. doi: 10.1172/JCI116008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Capron M., Kazatchkine M. D., Fischer E., Joseph M., Butterworth A. E., Kusnierz J. P., Prin L., Papin J. P., Capron A. Functional role of the alpha-chain of complement receptor type 3 in human eosinophil-dependent antibody-mediated cytotoxicity against schistosomes. J Immunol. 1987 Sep 15;139(6):2059–2065. [PubMed] [Google Scholar]
  8. Cooper H. M., Tamura R. N., Quaranta V. The major laminin receptor of mouse embryonic stem cells is a novel isoform of the alpha 6 beta 1 integrin. J Cell Biol. 1991 Nov;115(3):843–850. doi: 10.1083/jcb.115.3.843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Denburg J. A., Woolley M., Leber B., Linden M., O'Byrne P. Basophil and eosinophil differentiation in allergic reactions. J Allergy Clin Immunol. 1994 Dec;94(6 Pt 2):1135–1141. doi: 10.1016/0091-6749(94)90321-2. [DOI] [PubMed] [Google Scholar]
  10. Dvorak A. M., Saito H., Estrella P., Kissell S., Arai N., Ishizaka T. Ultrastructure of eosinophils and basophils stimulated to develop in human cord blood mononuclear cell cultures containing recombinant human interleukin-5 or interleukin-3. Lab Invest. 1989 Jul;61(1):116–132. [PubMed] [Google Scholar]
  11. Flaumenhaft R., Rifkin D. B. The extracellular regulation of growth factor action. Mol Biol Cell. 1992 Oct;3(10):1057–1065. doi: 10.1091/mbc.3.10.1057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fukuda T., Gleich G. J. Heterogeneity of human eosinophils. J Allergy Clin Immunol. 1989 Feb;83(2 Pt 1):369–373. doi: 10.1016/0091-6749(89)90120-6. [DOI] [PubMed] [Google Scholar]
  13. Georas S. N., McIntyre B. W., Ebisawa M., Bednarczyk J. L., Sterbinsky S. A., Schleimer R. P., Bochner B. S. Expression of a functional laminin receptor (alpha 6 beta 1, very late activation antigen-6) on human eosinophils. Blood. 1993 Nov 1;82(9):2872–2879. [PubMed] [Google Scholar]
  14. Hansel T. T., De Vries I. J., Iff T., Rihs S., Wandzilak M., Betz S., Blaser K., Walker C. An improved immunomagnetic procedure for the isolation of highly purified human blood eosinophils. J Immunol Methods. 1991 Dec 15;145(1-2):105–110. doi: 10.1016/0022-1759(91)90315-7. [DOI] [PubMed] [Google Scholar]
  15. Her E., Frazer J., Austen K. F., Owen W. F., Jr Eosinophil hematopoietins antagonize the programmed cell death of eosinophils. Cytokine and glucocorticoid effects on eosinophils maintained by endothelial cell-conditioned medium. J Clin Invest. 1991 Dec;88(6):1982–1987. doi: 10.1172/JCI115524. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hoshi H., Ohno I., Honma M., Tanno Y., Yamauchi K., Tamura G., Shirato K. IL-5, IL-8 and GM-CSF immunostaining of sputum cells in bronchial asthma and chronic bronchitis. Clin Exp Allergy. 1995 Aug;25(8):720–728. doi: 10.1111/j.1365-2222.1995.tb00009.x. [DOI] [PubMed] [Google Scholar]
  17. Kajita T., Yui Y., Mita H., Taniguchi N., Saito H., Mishima T., Shida T. Release of leukotriene C4 from human eosinophils and its relation to the cell density. Int Arch Allergy Appl Immunol. 1985;78(4):406–410. doi: 10.1159/000233922. [DOI] [PubMed] [Google Scholar]
  18. Kita H., Ohnishi T., Okubo Y., Weiler D., Abrams J. S., Gleich G. J. Granulocyte/macrophage colony-stimulating factor and interleukin 3 release from human peripheral blood eosinophils and neutrophils. J Exp Med. 1991 Sep 1;174(3):745–748. doi: 10.1084/jem.174.3.745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Le Beau M. M., Larson R. A., Bitter M. A., Vardiman J. W., Golomb H. M., Rowley J. D. Association of an inversion of chromosome 16 with abnormal marrow eosinophils in acute myelomonocytic leukemia. A unique cytogenetic-clinicopathological association. N Engl J Med. 1983 Sep 15;309(11):630–636. doi: 10.1056/NEJM198309153091103. [DOI] [PubMed] [Google Scholar]
  20. Levi-Schaffer F., Lacy P., Severs N. J., Newman T. M., North J., Gomperts B., Kay A. B., Moqbel R. Association of granulocyte-macrophage colony-stimulating factor with the crystalloid granules of human eosinophils. Blood. 1995 May 1;85(9):2579–2586. [PubMed] [Google Scholar]
  21. Li M. L., Aggeler J., Farson D. A., Hatier C., Hassell J., Bissell M. J. Influence of a reconstituted basement membrane and its components on casein gene expression and secretion in mouse mammary epithelial cells. Proc Natl Acad Sci U S A. 1987 Jan;84(1):136–140. doi: 10.1073/pnas.84.1.136. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Matsuda H., Coughlin M. D., Bienenstock J., Denburg J. A. Nerve growth factor promotes human hemopoietic colony growth and differentiation. Proc Natl Acad Sci U S A. 1988 Sep;85(17):6508–6512. doi: 10.1073/pnas.85.17.6508. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Moqbel R., Hamid Q., Ying S., Barkans J., Hartnell A., Tsicopoulos A., Wardlaw A. J., Kay A. B. Expression of mRNA and immunoreactivity for the granulocyte/macrophage colony-stimulating factor in activated human eosinophils. J Exp Med. 1991 Sep 1;174(3):749–752. doi: 10.1084/jem.174.3.749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Nicosia R. F., Ottinetti A. Modulation of microvascular growth and morphogenesis by reconstituted basement membrane gel in three-dimensional cultures of rat aorta: a comparative study of angiogenesis in matrigel, collagen, fibrin, and plasma clot. In Vitro Cell Dev Biol. 1990 Feb;26(2):119–128. doi: 10.1007/BF02624102. [DOI] [PubMed] [Google Scholar]
  25. Nowak R. Cell biologists get the message in New Orleans. Science. 1994 Jan 7;263(5143):30–31. doi: 10.1126/science.7903824. [DOI] [PubMed] [Google Scholar]
  26. Ohno I., Lea R., Finotto S., Marshall J., Denburg J., Dolovich J., Gauldie J., Jordana M. Granulocyte/macrophage colony-stimulating factor (GM-CSF) gene expression by eosinophils in nasal polyposis. Am J Respir Cell Mol Biol. 1991 Dec;5(6):505–510. doi: 10.1165/ajrcmb/5.6.505. [DOI] [PubMed] [Google Scholar]
  27. Owen W. F., Jr, Rothenberg M. E., Silberstein D. S., Gasson J. C., Stevens R. L., Austen K. F., Soberman R. J. Regulation of human eosinophil viability, density, and function by granulocyte/macrophage colony-stimulating factor in the presence of 3T3 fibroblasts. J Exp Med. 1987 Jul 1;166(1):129–141. doi: 10.1084/jem.166.1.129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Owen W. F., Rothenberg M. E., Petersen J., Weller P. F., Silberstein D., Sheffer A. L., Stevens R. L., Soberman R. J., Austen K. F. Interleukin 5 and phenotypically altered eosinophils in the blood of patients with the idiopathic hypereosinophilic syndrome. J Exp Med. 1989 Jul 1;170(1):343–348. doi: 10.1084/jem.170.1.343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Peters M. S., Rodriguez M., Gleich G. J. Localization of human eosinophil granule major basic protein, eosinophil cationic protein, and eosinophil-derived neurotoxin by immunoelectron microscopy. Lab Invest. 1986 Jun;54(6):656–662. [PubMed] [Google Scholar]
  30. Poch T., Hermanský F., Lodrová V. A contribution to the simultaneous appearance of basophilic and eosinophilic granules in chronic myelocytic leukemia. Neoplasma. 1973;20(4):413–417. [PubMed] [Google Scholar]
  31. Prin L., Capron M., Tonnel A. B., Bletry O., Capron A. Heterogeneity of human peripheral blood eosinophils: variability in cell density and cytotoxic ability in relation to the level and the origin of hypereosinophilia. Int Arch Allergy Appl Immunol. 1983;72(4):336–346. doi: 10.1159/000234893. [DOI] [PubMed] [Google Scholar]
  32. Prin L., Charon J., Capron M., Gosset P., Taelman H., Tonnel A. B., Capron A. Heterogeneity of human eosinophils. II. Variability of respiratory burst activity related to cell density. Clin Exp Immunol. 1984 Sep;57(3):735–742. [PMC free article] [PubMed] [Google Scholar]
  33. RIIS P., ANTHONISEN P. EOSINOPHILIA IN PERIPHERAL BLOOD AND INFLAMMATORY EXUDATE IN NON-SPECIFIC PROCTOCOLITIS. Acta Med Scand. 1964 Jan;175:85–89. doi: 10.1111/j.0954-6820.1964.tb00553.x. [DOI] [PubMed] [Google Scholar]
  34. Rothenberg M. E., Owen W. F., Jr, Silberstein D. S., Woods J., Soberman R. J., Austen K. F., Stevens R. L. Human eosinophils have prolonged survival, enhanced functional properties, and become hypodense when exposed to human interleukin 3. J Clin Invest. 1988 Jun;81(6):1986–1992. doi: 10.1172/JCI113547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Rothenberg M. E., Petersen J., Stevens R. L., Silberstein D. S., McKenzie D. T., Austen K. F., Owen W. F., Jr IL-5-dependent conversion of normodense human eosinophils to the hypodense phenotype uses 3T3 fibroblasts for enhanced viability, accelerated hypodensity, and sustained antibody-dependent cytotoxicity. J Immunol. 1989 Oct 1;143(7):2311–2316. [PubMed] [Google Scholar]
  36. Saito H., Hatake K., Dvorak A. M., Leiferman K. M., Donnenberg A. D., Arai N., Ishizaka K., Ishizaka T. Selective differentiation and proliferation of hematopoietic cells induced by recombinant human interleukins. Proc Natl Acad Sci U S A. 1988 Apr;85(7):2288–2292. doi: 10.1073/pnas.85.7.2288. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Schuetz E. G., Schuetz J. D., May B., Guzelian P. S. Regulation of cytochrome P-450b/e and P-450p gene expression by growth hormone in adult rat hepatocytes cultured on a reconstituted basement membrane. J Biol Chem. 1990 Jan 15;265(2):1188–1192. [PubMed] [Google Scholar]
  38. Sedgwick J. B., Geiger K. M., Busse W. W. Superoxide generation by hypodense eosinophils from patients with asthma. Am Rev Respir Dis. 1990 Jul;142(1):120–125. doi: 10.1164/ajrccm/142.1.120. [DOI] [PubMed] [Google Scholar]
  39. Sparrevohn S., Wulff H. R. The nuclear segmentation of eosinophils under normal and pathological conditions. Acta Haematol. 1967;37(2):120–125. doi: 10.1159/000209059. [DOI] [PubMed] [Google Scholar]
  40. Stern M., Meagher L., Savill J., Haslett C. Apoptosis in human eosinophils. Programmed cell death in the eosinophil leads to phagocytosis by macrophages and is modulated by IL-5. J Immunol. 1992 Jun 1;148(11):3543–3549. [PubMed] [Google Scholar]
  41. Tsuda T., Wong D., Dolovich J., Bienenstock J., Marshall J., Denburg J. A. Synergistic effects of nerve growth factor and granulocyte-macrophage colony-stimulating factor on human basophilic cell differentiation. Blood. 1991 Mar 1;77(5):971–979. [PubMed] [Google Scholar]
  42. Walsh G. M., Hartnell A., Moqbel R., Cromwell O., Nagy L., Bradley B., Furitsu T., Ishizaka T., Kay A. B. Receptor expression and functional status of cultured human eosinophils derived from umbilical cord blood mononuclear cells. Blood. 1990 Jul 1;76(1):105–111. [PubMed] [Google Scholar]
  43. Watanabe I., Donahue S., Hoggatt N. Method for electron microscopic studies of circulating human leukocytes and observations on their fine structure. J Ultrastruct Res. 1967 Oct 31;20(5):366–382. doi: 10.1016/s0022-5320(67)80106-0. [DOI] [PubMed] [Google Scholar]
  44. Weil S. C., Hrisinko M. A. A hybrid eosinophilic-basophilic granulocyte in chronic granulocytic leukemia. Am J Clin Pathol. 1987 Jan;87(1):66–70. doi: 10.1093/ajcp/87.1.66. [DOI] [PubMed] [Google Scholar]
  45. Williams D. A., Rios M., Stephens C., Patel V. P. Fibronectin and VLA-4 in haematopoietic stem cell-microenvironment interactions. Nature. 1991 Aug 1;352(6334):438–441. doi: 10.1038/352438a0. [DOI] [PubMed] [Google Scholar]
  46. Yukawa T., Read R. C., Kroegel C., Rutman A., Chung K. F., Wilson R., Cole P. J., Barnes P. J. The effects of activated eosinophils and neutrophils on guinea pig airway epithelium in vitro. Am J Respir Cell Mol Biol. 1990 Apr;2(4):341–353. doi: 10.1165/ajrcmb/2.4.341. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES