Abstract
Is the pathway of protein folding determined by the relative stability of folding intermediates, or by the relative height of the activation barriers leading to these intermediates? This is a fundamental question for resolving the Levinthal paradox, which stated that protein folding by a random search mechanism would require a time too long to be plausible. To answer this question, we have studied the guanidinium chloride (GdmCl)-induced folding/unfolding of staphylococcal nuclease [(SNase, formerly EC 3.1.4.7; now called microbial nuclease or endonuclease, EC 3.1.31.1] by stopped-flow circular dichroism (CD) and differential scanning microcalorimetry (DSC). The data show that while the equilibrium transition is a quasi-two-state process, kinetics in the 2-ms to 500-s time range are triphasic. Data support the sequential mechanism for SNase folding: U3 <--> U2 <--> U1 <--> N0, where U1, U2, and U3 are substates of the unfolded protein and N0 is the native state. Analysis of the relative population of the U1, U2, and U3 species in 2.0 M GdmCl gives delta-G values for the U3 --> U2 reaction of +0.1 kcal/mol and for the U2 --> U1 reaction of -0.49 kcal/mol. The delta-G value for the U1 --> N0 reaction is calculated to be -4.5 kcal/mol from DSC data. The activation energy, enthalpy, and entropy for each kinetic step are also determined. These results allow us to make the following four conclusions. (i) Although the U1, U2, and U3 states are nearly isoenergetic, no random walk occurs among them during the folding. The pathway of folding is unique and sequential. In other words, the relative stability of the folding intermediates does not dictate the folding pathway. Instead, the folding is a descent toward the global free-energy minimum of the native state via the least activation path in the vast energy landscape. Barrier avoidance leads the way, and barrier height limits the rate. Thus, the Levinthal paradox is not applicable to the protein-folding problem. (ii) The main folding reaction (U1 --> N0), in which the peptide chain acquires most of its free energy (via van der Waals' contacts, hydrogen bonding, and electrostatic interactions), is a highly concerted process. These energy-acquiring events take place in a single kinetic phase. (iii) U1 appears to be a compact unfolded species; the rate of conversion of U2 to U1 depends on the viscosity of solution. (iv) All four relaxation times reported here depend on GdmCl concentrations: it is likely that none involve the cis/trans isomerization of prolines. Finally, a mechanism is presented in which formation of sheet-like chain conformations and a hydrophobic condensation event precede the main-chain folding reaction.
Full text
PDF





Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alexandrescu A. T., Ulrich E. L., Markley J. L. Hydrogen-1 NMR evidence for three interconverting forms of staphylococcal nuclease: effects of mutations and solution conditions on their distribution. Biochemistry. 1989 Jan 10;28(1):204–211. doi: 10.1021/bi00427a028. [DOI] [PubMed] [Google Scholar]
- Anfinsen C. B. Principles that govern the folding of protein chains. Science. 1973 Jul 20;181(4096):223–230. doi: 10.1126/science.181.4096.223. [DOI] [PubMed] [Google Scholar]
- Baldwin R. L. Protein folding. Matching speed and stability. Nature. 1994 May 19;369(6477):183–184. doi: 10.1038/369183a0. [DOI] [PubMed] [Google Scholar]
- Chang C. T., Wu C. S., Yang J. T. Circular dichroic analysis of protein conformation: inclusion of the beta-turns. Anal Biochem. 1978 Nov;91(1):13–31. doi: 10.1016/0003-2697(78)90812-6. [DOI] [PubMed] [Google Scholar]
- Chen H. M., Markin V. S., Tsong T. Y. Kinetic evidence of microscopic states in protein folding. Biochemistry. 1992 Dec 15;31(49):12369–12375. doi: 10.1021/bi00164a011. [DOI] [PubMed] [Google Scholar]
- Chen H. M., Markin V. S., Tsong T. Y. pH-induced folding/unfolding of staphylococcal nuclease: determination of kinetic parameters by the sequential-jump method. Biochemistry. 1992 Feb 11;31(5):1483–1491. doi: 10.1021/bi00120a027. [DOI] [PubMed] [Google Scholar]
- Chen H. M., You J. L., Markin V. S., Tsong T. Y. Kinetic analysis of the acid and the alkaline unfolded states of staphylococcal nuclease. J Mol Biol. 1991 Aug 5;220(3):771–778. doi: 10.1016/0022-2836(91)90116-n. [DOI] [PubMed] [Google Scholar]
- Davis A., Parr G. R., Taniuchi H. A kinetic study of the folding of nuclease B, a possible precursor of staphylococcal nuclease A. Biochim Biophys Acta. 1979 Jun 19;578(2):505–510. doi: 10.1016/0005-2795(79)90180-6. [DOI] [PubMed] [Google Scholar]
- Ellis J. Proteins as molecular chaperones. 1987 Jul 30-Aug 5Nature. 328(6129):378–379. doi: 10.1038/328378a0. [DOI] [PubMed] [Google Scholar]
- Ellis R. J., van der Vies S. M. Molecular chaperones. Annu Rev Biochem. 1991;60:321–347. doi: 10.1146/annurev.bi.60.070191.001541. [DOI] [PubMed] [Google Scholar]
- Epstein H. F., Schechter A. N., Chen R. F., Anfinsen C. B. Folding of staphylococcal nuclease: kinetic studies of two processes in acid renaturation. J Mol Biol. 1971 Sep 28;60(3):499–508. doi: 10.1016/0022-2836(71)90184-7. [DOI] [PubMed] [Google Scholar]
- Evans P. A., Kautz R. A., Fox R. O., Dobson C. M. A magnetization-transfer nuclear magnetic resonance study of the folding of staphylococcal nuclease. Biochemistry. 1989 Jan 10;28(1):362–370. doi: 10.1021/bi00427a050. [DOI] [PubMed] [Google Scholar]
- Fox R. O., Evans P. A., Dobson C. M. Multiple conformations of a protein demonstrated by magnetization transfer NMR spectroscopy. Nature. 1986 Mar 13;320(6058):192–194. doi: 10.1038/320192a0. [DOI] [PubMed] [Google Scholar]
- Fuchs S., Cuatrecasas P., Anfinsen C. B. An improved method for the purification of staphylococcal nuclease. J Biol Chem. 1967 Oct 25;242(20):4768–4770. [PubMed] [Google Scholar]
- Gottfried D. S., Haas E. Nonlocal interactions stabilize compact folding intermediates in reduced unfolded bovine pancreatic trypsin inhibitor. Biochemistry. 1992 Dec 15;31(49):12353–12362. doi: 10.1021/bi00164a009. [DOI] [PubMed] [Google Scholar]
- Griko Y. V., Privalov P. L., Sturtevant J. M., Venyaminov SYu Cold denaturation of staphylococcal nuclease. Proc Natl Acad Sci U S A. 1988 May;85(10):3343–3347. doi: 10.1073/pnas.85.10.3343. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kanehisa M. I., Tsong T. Y. Mechanism of the multiphasic kinetics in the folding and unfolding of globular proteins. J Mol Biol. 1978 Sep 5;124(1):177–194. doi: 10.1016/0022-2836(78)90155-9. [DOI] [PubMed] [Google Scholar]
- Kim P. S., Baldwin R. L. Intermediates in the folding reactions of small proteins. Annu Rev Biochem. 1990;59:631–660. doi: 10.1146/annurev.bi.59.070190.003215. [DOI] [PubMed] [Google Scholar]
- Kuwajima K. The molten globule state as a clue for understanding the folding and cooperativity of globular-protein structure. Proteins. 1989;6(2):87–103. doi: 10.1002/prot.340060202. [DOI] [PubMed] [Google Scholar]
- Lattman E. E., Fiebig K. M., Dill K. A. Modeling compact denatured states of proteins. Biochemistry. 1994 May 24;33(20):6158–6166. doi: 10.1021/bi00186a015. [DOI] [PubMed] [Google Scholar]
- Matthews C. R. Pathways of protein folding. Annu Rev Biochem. 1993;62:653–683. doi: 10.1146/annurev.bi.62.070193.003253. [DOI] [PubMed] [Google Scholar]
- Sali A., Shakhnovich E., Karplus M. How does a protein fold? Nature. 1994 May 19;369(6477):248–251. doi: 10.1038/369248a0. [DOI] [PubMed] [Google Scholar]
- Schechter A. N., Chen R. F., Anfinsen C. B. Kinetics of folding of staphylococcal nuclease. Science. 1970 Feb 6;167(3919):886–887. doi: 10.1126/science.167.3919.886. [DOI] [PubMed] [Google Scholar]
- Shortle D., Meeker A. K. Mutant forms of staphylococcal nuclease with altered patterns of guanidine hydrochloride and urea denaturation. Proteins. 1986 Sep;1(1):81–89. doi: 10.1002/prot.340010113. [DOI] [PubMed] [Google Scholar]
- Sosnick T. R., Mayne L., Hiller R., Englander S. W. The barriers in protein folding. Nat Struct Biol. 1994 Mar;1(3):149–156. doi: 10.1038/nsb0394-149. [DOI] [PubMed] [Google Scholar]
- Sugawara T., Kuwajima K., Sugai S. Folding of staphylococcal nuclease A studied by equilibrium and kinetic circular dichroism spectra. Biochemistry. 1991 Mar 12;30(10):2698–2706. doi: 10.1021/bi00224a018. [DOI] [PubMed] [Google Scholar]
- Tanford C. Protein denaturation. Adv Protein Chem. 1968;23:121–282. doi: 10.1016/s0065-3233(08)60401-5. [DOI] [PubMed] [Google Scholar]
- Tsong T. Y. Ferricytochrome c chain folding measured by the energy transfer of tryptophan 59 to the heme group. Biochemistry. 1976 Dec 14;15(25):5467–5473. doi: 10.1021/bi00670a007. [DOI] [PubMed] [Google Scholar]
- Wetlaufer D. B., Ristow S. Acquisition of three-dimensional structure of proteins. Annu Rev Biochem. 1973;42:135–158. doi: 10.1146/annurev.bi.42.070173.001031. [DOI] [PubMed] [Google Scholar]