Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1996 Mar 5;93(5):1841–1846. doi: 10.1073/pnas.93.5.1841

Measurement of muscle protein synthesis by positron emission tomography with L-[methyl-11C]methionine.

H Hsu 1, Y M Yu 1, J W Babich 1, J F Burke 1, E Livni 1, R G Tompkins 1, V R Young 1, N M Alpert 1, A J Fischman 1
PMCID: PMC39869  PMID: 8700846

Abstract

Positron emission tomography (PET) with L-[methyl-11C]methionine was explored as an in vivo, noninvasive, quantitative method for measuring the protein synthesis rate (PSR) in paraspinal and hind limb muscles of anesthetized dogs. Approximately 25 mCi (1 Ci = 37 GBq) of L-[methyl-11C]methionine was injected intravenously, and serial images and arterial blood samples were acquired over 90 min. Data analysis was performed by fitting tissue- and metabolite-corrected arterial blood time-activity curves to a three-compartment model and assuming insignificant transamination and transmethylation in this tissue. PSR was calculated from fitted parameter values and plasma methionine concentrations. PSRs measured by PET were compared with arterio-venous (A-V) difference measurements across the hind limb during primed constant infusion (5-6 h) of L-[1-13C, methyl-2H3]methionine. Results of PET measurements demonstrated similar PSRs for paraspinal and hind limb muscles: 0.172 +/- 0.062 vs. 0.208 +/- 0.048 nmol-1.min-1.(g of muscle)-1 (P = not significant). PSR determined by the stable isotope technique was 0.27 +/- 0.050 nmol-1.min-1.(g of leg tissue)-1 (P < 0.07 from PET) and indicated that the contribution of transmethylation to total hind limb methionine utilization was approximately 10%. High levels of L-[methyl-11C]methionine utilization by bone marrow were observed. We conclude that muscle PSR can be measured in vivo by PET and that this approach offers promise for application in human metabolic studies.

Full text

PDF
1841

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barrett E. J., Revkin J. H., Young L. H., Zaret B. L., Jacob R., Gelfand R. A. An isotopic method for measurement of muscle protein synthesis and degradation in vivo. Biochem J. 1987 Jul 1;245(1):223–228. doi: 10.1042/bj2450223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Biolo G., Chinkes D., Zhang X. J., Wolfe R. R. Harry M. Vars Research Award. A new model to determine in vivo the relationship between amino acid transmembrane transport and protein kinetics in muscle. JPEN J Parenter Enteral Nutr. 1992 Jul-Aug;16(4):305–315. doi: 10.1177/0148607192016004305. [DOI] [PubMed] [Google Scholar]
  3. Biolo G., Declan Fleming R. Y., Wolfe R. R. Physiologic hyperinsulinemia stimulates protein synthesis and enhances transport of selected amino acids in human skeletal muscle. J Clin Invest. 1995 Feb;95(2):811–819. doi: 10.1172/JCI117731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Biolo G., Gastaldelli A., Zhang X. J., Wolfe R. R. Protein synthesis and breakdown in skin and muscle: a leg model of amino acid kinetics. Am J Physiol. 1994 Sep;267(3 Pt 1):E467–E474. doi: 10.1152/ajpendo.1994.267.3.E467. [DOI] [PubMed] [Google Scholar]
  5. Cheng K. N., Dworzak F., Ford G. C., Rennie M. J., Halliday D. Direct determination of leucine metabolism and protein breakdown in humans using L-[1-13C, 15N]-leucine and the forearm model. Eur J Clin Invest. 1985 Dec;15(6):349–354. doi: 10.1111/j.1365-2362.1985.tb00283.x. [DOI] [PubMed] [Google Scholar]
  6. Clark M. G., Colquhoun E. Q., Rattigan S., Dora K. A., Eldershaw T. P., Hall J. L., Ye J. Vascular and endocrine control of muscle metabolism. Am J Physiol. 1995 May;268(5 Pt 1):E797–E812. doi: 10.1152/ajpendo.1995.268.5.E797. [DOI] [PubMed] [Google Scholar]
  7. Deutz N. E., Reijven P. L., Athanasas G., Soeters P. B. Post-operative changes in hepatic, intestinal, splenic and muscle fluxes of amino acids and ammonia in pigs. Clin Sci (Lond) 1992 Nov;83(5):607–614. doi: 10.1042/cs0830607. [DOI] [PubMed] [Google Scholar]
  8. Elia M. General integration and regulation of metabolism at the organ level. Proc Nutr Soc. 1995 Mar;54(1):213–232. doi: 10.1079/pns19950050. [DOI] [PubMed] [Google Scholar]
  9. Finkelstein J. D. Methionine metabolism in mammals. J Nutr Biochem. 1990 May;1(5):228–237. doi: 10.1016/0955-2863(90)90070-2. [DOI] [PubMed] [Google Scholar]
  10. Goldberg A. L., Odessey R. Oxidation of amino acids by diaphragms from fed and fasted rats. Am J Physiol. 1972 Dec;223(6):1384–1391. doi: 10.1152/ajplegacy.1972.223.6.1384. [DOI] [PubMed] [Google Scholar]
  11. Hawkins R. A., Huang S. C., Barrio J. R., Keen R. E., Feng D., Mazziotta J. C., Phelps M. E. Estimation of local cerebral protein synthesis rates with L-[1-11C]leucine and PET: methods, model, and results in animals and humans. J Cereb Blood Flow Metab. 1989 Aug;9(4):446–460. doi: 10.1038/jcbfm.1989.68. [DOI] [PubMed] [Google Scholar]
  12. Ishiwata K., Vaalburg W., Elsinga P. H., Paans A. M., Woldring M. G. Comparison of L-[1-11C]methionine and L-methyl-[11C]methionine for measuring in vivo protein synthesis rates with PET. J Nucl Med. 1988 Aug;29(8):1419–1427. [PubMed] [Google Scholar]
  13. Kinney J. M., Elwyn D. H. Protein metabolism and injury. Annu Rev Nutr. 1983;3:433–466. doi: 10.1146/annurev.nu.03.070183.002245. [DOI] [PubMed] [Google Scholar]
  14. Långström B., Antoni G., Gullberg P., Halldin C., Malmborg P., Någren K., Rimland A., Svärd H. Synthesis of L- and D-[methyl-11C]methionine. J Nucl Med. 1987 Jun;28(6):1037–1040. [PubMed] [Google Scholar]
  15. Matthews D. E., Bier D. M. Stable isotope methods for nutritional investigation. Annu Rev Nutr. 1983;3:309–339. doi: 10.1146/annurev.nu.03.070183.001521. [DOI] [PubMed] [Google Scholar]
  16. Mudd S. H., Finkelstein J. D., Irreverre F., Laster L. Transsulfuration in mammals. Microassays and tissue distributions of three enzymes of the pathway. J Biol Chem. 1965 Nov;240(11):4382–4392. [PubMed] [Google Scholar]
  17. Phelps M. E., Barrio J. R., Huang S. C., Keen R. E., Chugani H., Mazziotta J. C. Criteria for the tracer kinetic measurement of cerebral protein synthesis in humans with positron emission tomography. Ann Neurol. 1984;15 (Suppl):S192–S202. doi: 10.1002/ana.410150736. [DOI] [PubMed] [Google Scholar]
  18. Planas A. M., Prenant C., Mazoyer B. M., Comar D., Di Giamberardino L. Regional cerebral L-[14C-methyl]methionine incorporation into proteins: evidence for methionine recycling in the rat brain. J Cereb Blood Flow Metab. 1992 Jul;12(4):603–612. doi: 10.1038/jcbfm.1992.84. [DOI] [PubMed] [Google Scholar]
  19. Rennie M. J. Muscle protein turnover and the wasting due to injury and disease. Br Med Bull. 1985 Jul;41(3):257–264. doi: 10.1093/oxfordjournals.bmb.a072060. [DOI] [PubMed] [Google Scholar]
  20. Rota Kops E., Herzog H., Schmid A., Holte S., Feinendegen L. E. Performance characteristics of an eight-ring whole body PET scanner. J Comput Assist Tomogr. 1990 May-Jun;14(3):437–445. doi: 10.1097/00004728-199005000-00022. [DOI] [PubMed] [Google Scholar]
  21. Sokoloff L., Reivich M., Kennedy C., Des Rosiers M. H., Patlak C. S., Pettigrew K. D., Sakurada O., Shinohara M. The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem. 1977 May;28(5):897–916. doi: 10.1111/j.1471-4159.1977.tb10649.x. [DOI] [PubMed] [Google Scholar]
  22. Storch K. J., Wagner D. A., Burke J. F., Young V. R. Quantitative study in vivo of methionine cycle in humans using [methyl-2H3]- and [1-13C]methionine. Am J Physiol. 1988 Sep;255(3 Pt 1):E322–E331. doi: 10.1152/ajpendo.1988.255.3.E322. [DOI] [PubMed] [Google Scholar]
  23. Storch K. J., Wagner D. A., Burke J. F., Young V. R. [1-13C; methyl-2H3]methionine kinetics in humans: methionine conservation and cystine sparing. Am J Physiol. 1990 May;258(5 Pt 1):E790–E798. doi: 10.1152/ajpendo.1990.258.5.E790. [DOI] [PubMed] [Google Scholar]
  24. Tessari P., Inchiostro S., Zanetti M., Barazzoni R. A model of skeletal muscle leucine kinetics measured across the human forearm. Am J Physiol. 1995 Jul;269(1 Pt 1):E127–E136. doi: 10.1152/ajpendo.1995.269.1.E127. [DOI] [PubMed] [Google Scholar]
  25. Waterlow J. C. Whole-body protein turnover in humans--past, present, and future. Annu Rev Nutr. 1995;15:57–92. doi: 10.1146/annurev.nu.15.070195.000421. [DOI] [PubMed] [Google Scholar]
  26. Young V. R. 1987 McCollum award lecture. Kinetics of human amino acid metabolism: nutritional implications and some lessons. Am J Clin Nutr. 1987 Nov;46(5):709–725. doi: 10.1093/ajcn/46.5.709. [DOI] [PubMed] [Google Scholar]
  27. Yu Y. M., Wagner D. A., Tredget E. E., Walaszewski J. A., Burke J. F., Young V. R. Quantitative role of splanchnic region in leucine metabolism: L-[1-13C,15N]leucine and substrate balance studies. Am J Physiol. 1990 Jul;259(1 Pt 1):E36–E51. doi: 10.1152/ajpendo.1990.259.1.E36. [DOI] [PubMed] [Google Scholar]
  28. Yu Y. M., Young V. R., Tompkins R. G., Burke J. F. Comparative evaluation of the quantitative utilization of parenterally and enterally administered leucine and L-[1-13C,15N]leucine within the whole body and the splanchnic region. JPEN J Parenter Enteral Nutr. 1995 May-Jun;19(3):209–215. doi: 10.1177/0148607195019003209. [DOI] [PubMed] [Google Scholar]
  29. Ziegler T. R., Gatzen C., Wilmore D. W. Strategies for attenuating protein-catabolic responses in the critically ill. Annu Rev Med. 1994;45:459–480. doi: 10.1146/annurev.med.45.1.459. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES