Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2002 May 25;271(1):182–196. doi: 10.1006/viro.2000.0310

Characterization of Murine Coronavirus Neutralization Epitopes with Phage-Displayed Peptides

Mathilde WN Yu a, Jamie K Scott b, Alain Fournier a, Pierre J Talbot a,1
PMCID: PMC3987775  NIHMSID: NIHMS26235  PMID: 10814583

Abstract

Phage-displayed peptide libraries were used to map immunologically relevant epitopes on the surface (S) glycoprotein of a neurotropic murine coronavirus (MHV-A59). Three in vitro virus-neutralizing and in vivo protective mAbs against either continuous or discontinuous epitopes on the S glycoprotein were used to screen 12 different peptide libraries expressed on the pVIII major coat protein of the fd filamentous bacteriophage. Consensus sequences that matched short sequences within the S glycoprotein were identified. The sequence of a tight-binding, mAb-selected peptide suggested the location of a discontinuous epitope within the N-terminal S1 subunit. Several tightly binding phage were amplified and used directly as immunogens in BALB/c and C57BL/6 mice. Partial protection of C57BL/6 mice against a lethal acute virus infection was achieved with a phage preparation that displayed a linear epitope. Protection correlated with the presence of sufficient levels of specific antiviral antibodies recognizing the same immunodominant domain and 13-mer peptide, located within the C-terminal S2 subunit, as the selecting mAb. Thus, the direct use of phage-displayed peptides to evaluate protective antiviral immune responses complements their use to characterize antibody-binding epitopes. This is the first evaluation of protective immunization induced by mAb-selected phage-displayed peptides.

References

REFERENCES

  • 1.Armitage P., Berry G. Statistical Methods in Medical Research. Blackwell Sci; Oxford: 1987. [Google Scholar]
  • 2.Bachmann M.F., Kalinke U., Althage A., Freer G., Burkhart C., Roost H.-P., Aguet M., Hengartner H., Zinkernagel R.M. The role of antibody concentration and avidity in antiviral protection. Science. 1997;276:2024–2027. doi: 10.1126/science.276.5321.2024. [DOI] [PubMed] [Google Scholar]
  • 3.Balass M., Heldman Y., Cabilly S., Givol D., Katchalski-Katzir E., Fuchs S. Identification of a hexapeptide that mimics a conformation-dependent binding site of acetylcholine receptor by use of a phage-epitope library. Proc. Natl. Acad. Sci. USA. 1993;90:10638–10642. doi: 10.1073/pnas.90.22.10638. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Bastien N., Trudel M., Simard C. Protective immune responses induced by the immunization of mice with a recombinant bacteriophage displaying an epitope of the human respiratory syncytial virus. Virology. 1997;234:118–122. doi: 10.1006/viro.1997.8632. [DOI] [PubMed] [Google Scholar]
  • 5.Bonnycastle L.L.C., Mehroke J.S., Rashed M., Gong X., Scott J.K. Probing the basis of antibody reactivity with a panel of constrained peptide libraries displayed by filamentous phage. J. Mol. Biol. 1996;258:747–762. doi: 10.1006/jmbi.1996.0284. [DOI] [PubMed] [Google Scholar]
  • 6.Buchmeier M.J., Lewicki H.A., Talbot P.J., Knobler R.L. Murine hepatitis virus-4 (strain JHM) induced neurologic disease is modulated in vivo by monoclonal antibody. Virology. 1984;132:261–270. doi: 10.1016/0042-6822(84)90033-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Chargelegue D., Obeid O.E., Hsu S.C., Shaw M.D., Denbury A.N., Taylor G., Steward M.W. A peptide mimic of a protective epitope of respiratory syncytial virus selected from a combinatorial library induces virus-neutralizing antibodies and reduces viral load in vivo. J. Virol. 1998;72:2040–2046. doi: 10.1128/jvi.72.3.2040-2046.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Cheever F.S., Daniels J.B., Pappenheimer A.M., Bailey O.T. A murine virus (JHM) causing disseminated encephalomyelitis with extensive destruction of myelin. I. Isolation and biological properties of the virus. J. Exp. Med. 1949;90:181–194. doi: 10.1084/jem.90.3.195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Chen Y.-C.J., Delbrook K., Dealwis C., Mimms L., Mushahwar I.K., Mandecki W. Discontinuous epitopes of hepatitis B surface antigen derived from a filamentous phage peptide library. Proc. Natl. Acad. Sci. USA. 1996;93:1997–2001. doi: 10.1073/pnas.93.5.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Collins A.R., Knobler R.L., Powell H., Buchmeier M.J. Monoclonal antibodies to murine hepatitis virus-4 (strain JHM) define the viral glycoprotein responsible for attachment and cell–cell fusion. Virology. 1982;119:358–371. doi: 10.1016/0042-6822(82)90095-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Cwirla S.E., Peters E.A., Barrett R.W., Dower W.J. Peptides on phage: A vast library of peptides for identifying ligands. Proc. Natl. Acad. Sci. USA. 1990;87:6378–6382. doi: 10.1073/pnas.87.16.6378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Daniel C., Talbot P.J. Physico-chemical properties of murine hepatitis virus, strain A-59. Arch. Virol. 1987;96:241–248. doi: 10.1007/BF01320963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Daniel C., Talbot P.J. Protection from lethal coronavirus infection by affinity-purified spike glycoprotein of murine hepatitis virus, strain A59. Virology. 1990;174:87–94. doi: 10.1016/0042-6822(90)90057-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Daniel C., Anderson R., Buchmeier M.J., Fleming J.O., Spaan W.J.M., Wege H., Talbot P.J. Identification of an immunodominant linear neutralization domain on the S2 portion of the murine coronavirus spike glycoprotein and evidence that it forms part of a complex tridimensional structure. J. Virol. 1993;67:1185–1194. doi: 10.1128/jvi.67.3.1185-1194.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Daniel C., Lacroix M., Talbot P.J. Mapping of linear antigenic sites on the S glycoprotein of a neurotropic murine coronavirus with synthetic peptides: A combination of nine prediction algorithms fails to identify relevant epitopes and peptide immunogenicity is drastically influenced by the nature of the protein carrier. Virology. 1994;202:540–549. doi: 10.1006/viro.1994.1376. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.De Groot R.J., Luytjes W., Horzinek M.C., van der Zeijst B.A.M., Spaan W.J.M., Lenstra J.A. Evidence for a coiled-coil structure in the spike of coronaviruses. J. Mol. Biol. 1987;196:963–966. doi: 10.1016/0022-2836(87)90422-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.de la Cruz V.F., Lal A.A., McCutchan T.F. Antigenicity and epitope mapping of foreign sequences via genetically engineered filamentous phage. J. Biol. Chem. 1988;263:4318–4322. [PubMed] [Google Scholar]
  • 18.Demangel C., Lafaye P., Mazie J.C. Reproducing the immune response against the Plasmodium vivax merozoite surface protein 1 with mimotopes selected from a phage-displayed peptide library. Mol. Immunol. 1996;33:909–916. doi: 10.1016/s0161-5890(96)00058-2. [DOI] [PubMed] [Google Scholar]
  • 19.Felici F., Castagnoli L., Musacchio A., Jappelli R., Cesareni G. Selection of antibody ligands from a large library of oligopeptides expressed on a multivalent exposition vector. J. Mol. Biol. 1991;222:301. doi: 10.1016/0022-2836(91)90213-p. [DOI] [PubMed] [Google Scholar]
  • 20.Felici F., Luzzago A., Folgori A., Cortese R. Mimicking of discontinuous epitopes by phage-displayed peptides. II. Selection of clones recognized by a protective monoclonal antibody against the Bordetella pertussis toxin from phage peptide libraries. Gene. 1993;128:21–27. doi: 10.1016/0378-1119(93)90148-v. [DOI] [PubMed] [Google Scholar]
  • 21.Forest M., Fournier A. BOP reagent for the coupling of pGlu and Boc His (Tos) in solid phage synthesis. Int. J. Pept. Protein Res. 1990;35:89–94. doi: 10.1111/j.1399-3011.1990.tb00240.x. [DOI] [PubMed] [Google Scholar]
  • 22.Forest M., Martel J.C., St-Pierre S., Quirion R., Fournier A. Structural study of the N-terminal segment of neuropeptide-tyrosine. J. Med. Chem. 1990;33:1615–1619. doi: 10.1021/jm00168a014. [DOI] [PubMed] [Google Scholar]
  • 23.Forget M.-A., Lebel N., Sirois P., Boulanger Y., Fournier A. Biological and molecular analyses of structurally reduced analogues of endothelin-1. Mol. Pharmacol. 1990;49:1071–1079. [PubMed] [Google Scholar]
  • 24.Folgori A., Tafi R., Meola A., Felici F., Galfré G., Cortese R., Monaci P., Nicosia A. A general strategy to identify mimotopes of pathological antigens using only random peptide libraries and human sera. EMBO J. 1994;13:2236–2243. doi: 10.1002/j.1460-2075.1994.tb06501.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Fournier A., Wang C.T., Felix A.M. Applications of BOP reagent in solid phage synthesis. Advantages of BOP reagent for difficult couplings exemplified by a synthesis of [Ala15]-GRF(1-29)-NH2. Int. J. Pept. Protein Res. 1988;31:86–97. doi: 10.1111/j.1399-3011.1988.tb00010.x. [DOI] [PubMed] [Google Scholar]
  • 26.Greenwood J., Willis A.E., Perham R.N. Multiple display of foreign peptides on a filamentous bacteriophage. Peptides from Plasmodium falciparum circumsporozoite protein as antigens. J. Mol. Biol. 1991;220:821–827. doi: 10.1016/0022-2836(91)90354-9. [DOI] [PubMed] [Google Scholar]
  • 27.Grosse B., Siddell S.G. Characterization of a monoclonal antibody resistant variant of MHV. Adv. Exp. Med. Biol. 1993;342:177–182. doi: 10.1007/978-1-4615-2996-5_28. [DOI] [PubMed] [Google Scholar]
  • 28.Harris S.L., Craig L., Mehroke J.S., Rashed M., Zwick M.B., Kenar K., Toone E.J., Greenspan N., Auzanneau F.-I., Marino-Albernas J.-R., Pinto B.M., Scott J.K. Exploring the basis of peptide-carbohydrate crossreactivity: Evidence for discrimination by peptides between closely related anti-carbohydrate antibodies. Proc. Natl. Acad. Sci. USA. 1997;94:2454–2459. doi: 10.1073/pnas.94.6.2454. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Hoess R.H., Mack A.J., Walton H., Reilly T.M. Identification of a structural epitope by using a peptide library displayed on filamentous bacteriophage. J. Immunol. 1994;153:724–729. [PubMed] [Google Scholar]
  • 30.Holmes K.V., Lai M.M.C. Coronaviridae: The viruses and their replication. In: Fields B.N., Knipe D.M., Howley P.M., editors. Fields Virology. Raven Press; Philadelphia: 1996. pp. 1075–1093. [Google Scholar]
  • 31.Koolen M.J.M., Borst M.A.J., Horzinek M.C., Spaan W.J.M. Immunogenic peptide comprising a mouse hepatitis virus A59 B-cell epitope and an influenza virus T-cell epitope protects against lethal infection. J. Virol. 1990;64:6270–6273. doi: 10.1128/jvi.64.12.6270-6273.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Kubo H., Yamada Y.K., Taguchi F. Localization of neutralizing epitopes and the receptor-binding site within the amino-terminal 330 amino acids of the murine coronavirus spike protein. J. Virol. 1994;68:5403–5410. doi: 10.1128/jvi.68.9.5403-5410.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Kumanishi T. Brain tumors induced with Rous sarcoma virus, Schmidt–Ruppin strain. I. Induction of brain tumors in adult mice with Rous chicken sarcoma cells. Jpn. J. Exp. Med. 1967;37:461–474. [PubMed] [Google Scholar]
  • 34.Kunita S., Zhang L., Homberger F.R., Compto S.R. Molecular characterization of the S proteins of two enterotropic murine coronavirus strains. Virus Res. 1995;35:277–289. doi: 10.1016/0168-1702(94)00089-U. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Laemmli U.K. Cleavage of structural protein during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  • 36.Lamarre A., Talbot P.J. Protection from lethal coronavirus infection by immunoglobulin fragments. J. Immunol. 1995;154:3975–3984. [PubMed] [Google Scholar]
  • 37.Lamarre A., Yu M.W.N., Chagnon F., Talbot P.J. A recombinant single chain antibody neutralizes coronavirus infectivity but only slightly delays lethal infection of mice. Eur. J. Immunol. 1997;27:3447–3455. doi: 10.1002/eji.1830271245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Le-Nguyen D., Heitz A., Castro B. Renin substrates. Part 2. Rapid solid phage synthesis of the ratine sequence tetrapeptide using BOP reagent. J. Chem. Soc. Perkin Trans. 1987;1:1915–1919. [Google Scholar]
  • 39.Lenstra J.A., Erkens J.H.F., Langeveld J.G.A., Posthumus W.P.A., Meloen R.H., Gebauer F., Correa I., Enjuanes L., Stanley K.K. Isolation of sequences from a random-sequence expression library that mimic viral epitopes. J. Immunol. Methods. 1992;152:149–157. doi: 10.1016/0022-1759(92)90136-H. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Lutz M.B., Granucci F., Winzler C., Marconi G., Paglia P., Foti M., Abmann C.U., Cairns L., Rescigno M., Ricciardi-Castagnoli P. Retroviral immortalization of phagocytic and dendritic cell clones as a tool to investigate functional heterogeneity. J. Immunol. Methods. 1994;174:269–279. doi: 10.1016/0022-1759(94)90031-0. [DOI] [PubMed] [Google Scholar]
  • 41.Luytjes W., Sturman L.S., Bredenbeek P.J., Charite J., van der Zeijst B.A., Horzinek M.C., Spaan W.J. Primary structure of the glycoprotein E2 of coronavirus MHV-A59 and identification of the trypsin cleavage site. Virology. 1987;161:479–487. doi: 10.1016/0042-6822(87)90142-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Luytjes W., Geerts D., Posthumus W., Meloen R., Spaan W. Amino acid sequence of a conserved neutralizing epitope of murine coronaviruses. J. Virol. 1989;63:1408–1412. doi: 10.1128/jvi.63.3.1408-1412.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Luzzago A., Felici F., Tramontano A., Pessi A., Cortese R. Mimicking of discontinuous epitopes by phage-displayed peptides. I. Epitope mapping of human H ferritin using a phage library of constrained peptides. Gene. 1993;128:51–57. doi: 10.1016/0378-1119(93)90152-s. [DOI] [PubMed] [Google Scholar]
  • 44.Manil L., Motté P., Pernas P., Troalen F., Bohuon C., Bellet D. Evaluation of protocols for purification of mouse monoclonal antibodies. J. Immunol. Methods. 1986;90:25–37. doi: 10.1016/0022-1759(86)90379-0. [DOI] [PubMed] [Google Scholar]
  • 45.Meola A., Delmastro P., Monaci P., Luzzago A., Nicosia A., Felici F., Cortese R., Galfrè G. Derivation of vaccines from mimotopes. Immunologic properties of human hepatitis B virus surface antigen mimotopes displayed on filamentous phage. J. Immunol. 1995;154:3162–3172. [PubMed] [Google Scholar]
  • 46.Minenkova O.O., Il'ichev A.A., Kishchenko G.P., Il'icheva T.N., Khripin Y.L., Oreshkov S.F., Petrenko V.A. Design of specific immunogen using bacteriophage M13 as carrier. Gene. 1993;128:85–88. doi: 10.1016/0378-1119(93)90157-x. [DOI] [PubMed] [Google Scholar]
  • 47.Motti C., Nuzzo M., Meola A., Galfré G., Felici F., Cortese R., Nicosia A., Monaci P. Recognition by human sera and immunogenicity of HBsAg mimotopes selected from an M13 phage display library. Gene. 1994;146:191–198. doi: 10.1016/0378-1119(94)90292-5. [DOI] [PubMed] [Google Scholar]
  • 48.Nakanaga K., Yamanouchi K., Fujiwara K. Protective effect of monoclonal antibodies on lethal mouse hepatitis virus infection in mice. J. Virol. 1986;59:168–171. doi: 10.1128/jvi.59.1.168-171.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Oldenburg K.R., Loganathan D., Goldstein I.J., Schultz P.G., Gallop M.A. Peptide ligands for a sugar-binding protein isolated from a random peptide library. Proc. Natl. Acad. Sci. USA. 1992;89:5393–5397. doi: 10.1073/pnas.89.12.5393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Prezzi C., Nuzzo M., Meola A., Delmastro P., Galfrè G., Cortese R., Nicosia A., Monaci P. Selection of antigenic and immunogenic mimics of hepatitis C virus using sera from patients. J. Immunol. 1996;156:4504–4513. [PubMed] [Google Scholar]
  • 51.Saeki K., Ohtsuka N., Taguchi F. Identification of spike protein residues of murine coronavirus responsible for receptor-binding activity by use of soluble receptor-resistant mutants. J. Virol. 1997;71:9024–9031. doi: 10.1128/jvi.71.12.9024-9031.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Schmidt I., Skinner M., Siddell S. Nucleotide sequence of the gene encoding the surface projection glycoprotein of coronavirus MHV-JHM. J. Gen. Virol. 1987;68:47–56. doi: 10.1099/0022-1317-68-1-47. [DOI] [PubMed] [Google Scholar]
  • 53.Scott J.K., Smith G.P. Searching for peptide ligands with an epitope library. Science. 1990;249:386–390. doi: 10.1126/science.1696028. [DOI] [PubMed] [Google Scholar]
  • 54.Scott J.K., Loganathan D., Easley R.B., Gong X., Goldstein I.J. A family of concanavalin A-binding peptides from a hexapeptide epitope library. Proc. Natl. Acad. Sci. USA. 1992;89:5398–5402. doi: 10.1073/pnas.89.12.5398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.Siddell S., Wege H., ter Meulen V. The biology of coronaviruses. J. Gen. Virol. 1983;64:761–776. doi: 10.1099/0022-1317-64-4-761. [DOI] [PubMed] [Google Scholar]
  • 56.Smith P., Scott J.K. Libraries of peptides and proteins displayed on filamentous phage. Methods Enzymol. 1993;217:228–257. doi: 10.1016/0076-6879(93)17065-d. [DOI] [PubMed] [Google Scholar]
  • 57.Spaan W., Cavanagh D., Horzinek M.C. Coronaviruses: Structure and genome expression. J. Gen. Virol. 1988;69:2939–2952. doi: 10.1099/0022-1317-69-12-2939. [DOI] [PubMed] [Google Scholar]
  • 58.Stephen C.W., Lane D.P. Mutant conformation of p53: Precise epitope mapping using a filamentous phage epitope library. J. Mol. Biol. 1992;225:577–583. doi: 10.1016/0022-2836(92)90386-x. [DOI] [PubMed] [Google Scholar]
  • 59.Steward M.W., Stanley C.M., Obeid O.E. A mimotope from a solid-phage peptide library induces a measles virus-neutralizing and protective antibody response. J. Virol. 1995;69:7668–7673. doi: 10.1128/jvi.69.12.7668-7673.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60.Stohlman S.A., Bergmann C.C., van der Veen R.C., Hinton D.R. Mouse hepatitis virus-specific cytotoxic T lymphocytes protect from lethal infection without eliminating virus from the central nervous system. J. Virol. 1995;69:684–694. doi: 10.1128/jvi.69.2.684-694.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.Stoute J.A., Ballou W.R., Kolodny N., Deal C.D., Wirtz R.A., Lindler L.E. Induction of humoral immune response against Plasmodium falciparum sporozoites by immunization with a synthetic peptide mimotope whose sequence was derived from screening a filamentous phage epitope library. Infect. Immun. 1995;63:934–939. doi: 10.1128/iai.63.3.934-939.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.Sturman L.S., Ricard C.S., Holmes K.V. Proteolytic cleavage of the E2 glycoprotein of murine coronavirus: Activation of cell-fusing activity of virions by trypsin and separation of two different 90 K cleavage fragments. J. Virol. 1985;56:904–911. doi: 10.1128/jvi.56.3.904-911.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63.Taguchi F., Ikeda T., Shida H. Molecular cloning and expression of a spike protein of neurovirulent murine coronavirus JHMV variant Cl-2. J. Gen. Virol. 1992;73:1065–1072. doi: 10.1099/0022-1317-73-5-1065. [DOI] [PubMed] [Google Scholar]
  • 64.Talbot P.J., Dionne G., Lacroix M. Technological Advances in Vaccine Development, A. R. Liss; New York: 1988. Protection against viral encephalitis by a synthetic peptide selected for surface probability. p. 379–389. [Google Scholar]
  • 65.Vijayakrishnan L., Sarkar S., Roy R.P., Rao K.V.S. B cell responses to a peptide epitope. IV. Subtle sequence changes in flanking residues modulate immunogenicity. J. Immunol. 1997;159:1809–1819. [PubMed] [Google Scholar]
  • 66.Ward E.S., Güsson D., Griffiths A.D., Jones P.T., Winter G. Binding activities of a repertoire of single immunoglobulin variable domains secreted from Escherichia coli. Nature. 1989;341:544–546. doi: 10.1038/341544a0. [DOI] [PubMed] [Google Scholar]
  • 67.Weiner L.P. Pathogenesis of demyelination induced by mouse hepatitis virus (JHM virus) Arch. Neurol. 1973;28:298–303. doi: 10.1001/archneur.1973.00490230034003. [DOI] [PubMed] [Google Scholar]
  • 68.Williams R.K., Jiang G.S., Holmes K.V. Receptor for mouse hepatitis virus is a member of the carcinoembryonic antigen family of glycoproteins. Proc. Natl. Acad. Sci. USA. 1991;88:5533–5536. doi: 10.1073/pnas.88.13.5533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69.Williamson J.S.P., Stohlman S.A. Effective clearance of mouse hepatitis virus from the central nervous system requires both CD4+ and CD8+ T cells. J. Virol. 1990;64:4589–4592. doi: 10.1128/jvi.64.9.4589-4592.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70.Willis A.E., Perham R.N., Wraith D. Immunological properties of foreign peptides in multiple display on a filamentous bacteriophage. Gene. 1993;128:79–83. doi: 10.1016/0378-1119(93)90156-w. [DOI] [PubMed] [Google Scholar]
  • 71.Yu M.W.N., Lemieux S., Talbot P.J. Genetic control of anti-idiotypic vaccination against coronavirus infection. Eur. J. Immunol. 1996;26:3230–3233. doi: 10.1002/eji.1830261258. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72.Zhong G., Smith G.P., Berry J., Brunham R.C. Conformational mimicry of a chlamydial neutralization epitope on filamentous phage. J. Biol. Chem. 1994;269:24183–24188. [PubMed] [Google Scholar]

Articles from Virology are provided here courtesy of Elsevier

RESOURCES