Abstract
Perturbation methods add variation terms to a known experimental solution of one problem to approach a solution for a related problem without known exact solution. One problem of this type in immunology is the prediction of the possible action of epitope of one peptide after a perturbation or variation in the structure of a known peptide and/or other boundary conditions (host organism, biological process, and experimental assay). However, to the best of our knowledge, there are no reports of general-purpose perturbation models to solve this problem. In a recent work, we introduced a new quantitative structure-property relationship theory for the study of perturbations in complex biomolecular systems. In this work, we developed the first model able to classify more than 200,000 cases of perturbations with accuracy, sensitivity, and specificity >90% both in training and validation series. The perturbations include structural changes in >50000 peptides determined in experimental assays with boundary conditions involving >500 source organisms, >50 host organisms, >10 biological process, and >30 experimental techniques. The model may be useful for the prediction of new epitopes or the optimization of known peptides towards computational vaccine design.
1. Introduction
National Institute of Allergy and Infectious Diseases (NIAID) supported the launch, in 2004, of the Immune Epitope Database (IEDB), http://www.iedb.org/ [1–4]. The IEDB system withdrew information from approximately 99% of all papers published to date that describe immune epitopes. In doing so, IEDB system analyses over 22 million PubMed abstracts and subsequently curated ≈13 K references, including ≈7 K manuscripts about infectious diseases, ≈1 K about allergy topics, ≈4 K about autoimmunity, and 1 K about transplant/alloantigen topics [5]. IEDB lists a huge amount of information about the molecular structure as well as the experimental conditions (c ij) in which different ith molecules were determined to be immune epitopes or not. This explosion of information makes necessary both query/display functions for retrieval of known data from IEDB as well predictive tools for new epitopes. Salimi et al. [5] reviewed advances in epitope analysis and predictive tools available in the IEDB. In fact, IEDB analysis resource (IEDB-AR: http://tools.iedb.org/) is a collection of tools for prediction of molecular targets of T- and B-cell immune responses (i.e., epitopes) [6, 7].
On the other hand, Quantitative Structure-Activity/Property Relationships (QSAR/QSPR) techniques are useful tool to predict new drugs, RNA, drug-protein complexes, and protein-protein complexes. In general, QSAR/QSPR-like methods transform molecular structures into numeric molecular descriptors (λ i) in a first stage and later fit a model to predict the biological process. For example, DRAGON [8–10], CODESSA [11, 12], MOE [13], TOPS-MODE [14–17], TOMOCOMD [18, 19], and MARCH-INSIDE [20] are among the most used softwares to calculate molecular descriptors based on quantum mechanics (QM) and/or graph theory [21–27]. The software STATISTICA [28] and WEKA [29] are often used to perform multivariate statistics and/or machine learning (ML) analysis in order to preprocess data and later fit the final QSAR/QSPR model using techniques like principal component analysis (PCA), linear discriminant analysis (LDA), support vector machine (SVM), or artificial neural networks (ANN) [28].
QSAR/QSPR models are also important in immunoinformatics to predict the propensity of different molecular structures to play different roles in immunological processes. They include skin vaccine adjuvants and sensitizers [30–38], drugs and their activity/toxicity protein targets in the immune system [39], and epitopes [40–49]. Moreover, Reche and Reinherz [50] implemented PEPVAC (promiscuous epitope-based vaccine), a web server for the formulation of multiepitope vaccines that predict peptides binding to five distinct HLA class I supertypes (A2, A3, B7, A24, and B15). PEPVAC can also identify conserved MHC ligands, as well as those with a C-terminus resulting from proteasomal cleavage. The Dana-Farber Cancer Institute hosted the PEPVAC server at the site http://immunax.dfci.harvard.edu/PEPVAC/. To close with a last example, Lafuente and Reche [51] reviewed the available methods for predicting MHC-peptide binding and discussed their most relevant advantages and drawbacks.
In many complex QSPR-like problems in immunoinformatics, like in other areas, we know the exact experimental result (known solution) of the problem, but we are interested in the possible result obtained after a change (perturbation) on one or multiple values of the initial conditions of the experiment (new solution). For instance, we often know, for large collections of ith molecules (m i), organic compounds, drugs, xenobiotics, and/or peptide sequences, the efficiency of the compound ε(c ij) as adjuvant, action as epitope, immunotoxicity, and/or the interaction (affinity, inhibition, etc.) with immunological targets. In addition, we often known for each molecule the exact conditions (c ij) of assay for the initial experiment including structure of the molecule m i (drug, adjuvant, and sequence of the peptide), source organism (so), host organism (ho), immunological process (ip), experimental technique (tq), concentration, temperature, time, solvents, and coadjuvants. This is the case of big data retrieved from very large databases like IEDB [1–4] and CHEMBL [52]. However, we do not know the possible result of the experiment if we change at least one of these conditions (perturbation). We refer to small changes or perturbations in both structure and condition for input or output variables. It means that we include changes in ho, so, ip, and tq, changes of the compound by one analogue compound with similar structure, changes in the sequence of the epitope (artificial by organic synthesis or natural mutations), and polarity of the solvent or coadjuvants. In these cases, we could use a perturbation theory model to solve the QSAR/QSPR problem. Perturbation theory includes methods that add “small” terms to a known solution of a problem in order to approach a solution to a related problem without known solution. Perturbation models have been widely used in all branches of science from QM to astronomy and life sciences including chaos or “butterfly effect,” Bohr's atomic theory, Heisenberg's mechanics, Zeeman's and Stark's effects, and other models with applications in like protein spectroscopy and others [53–57]. In a very recent work Gonzalez-Diaz et al. [58] formulated a general-purpose perturbation theory or model for multiple-boundary QSPR/QSAR problems. However, there is not report in the immunoinformatics literature of a general QSPR perturbation model for IEDB B-epitopes. Here we report the first example of QSPR-perturbation model for B-epitopes reported in IEDB able to predict the probability of occurrence of an epitope after a perturbation in the sequence, the experimental technique, the exposition process, and/or the source or host organisms.
2. Materials and Methods
2.1. Molecular Descriptors for Peptides
We calculated the molecular descriptors of the structure of peptides using the software MARCH-INSIDE (MI) based on the algorithm with the same name [59]. The MI approach uses a Markov Chain method to calculate the kth mean values of different physicochemical molecular properties λ(m i) for ith molecules (m). These λ(m i) values are calculated as an average of k λ(m i) values for all atoms placed at topological distance d ≤ k; which are in turn the means of atomic properties (λ j) for all atoms in the molecule and its neighbors placed at d = k. For instance, it is possible to derive average estimations of molecular refractivities kMR(m i), partition coefficients k P(m i), and hardness k η(m i) for atoms placed at different topological distances d ≤ k. In this first work, we calculated only one type of λ(m i) values. We calculated for all peptides the average value χ(m i) of all the atomic electronegativities χ i for all δ i atoms connected to the ith atom (i → j) and their neighbors placed at a distance d ≤ 5 [59]:
(1) |
We calculate the probabilities k p(λ j) for any atomic property including k p(χ j) using a Markov Chain model for the gradual effects of the neighboring atoms at different distances in the molecular backbone. This method has been explained in detail in many previous works so we omit the details here [59].
2.2. Electronegativity Perturbation Model for Prediction of B-Epitopes
Very recently Gonzalez-Diaz et al. [58] formulated a general-purpose perturbation theory or model for multiple-boundary QSPR/QSAR problems. We adapted here this new theory or modeling method to approach to the peptide prediction problem from the point of view of perturbation theory. Let be a set of ith peptide molecules denoted as m i with a value of efficiency ε ij as epitopes experimentally determined under a set of boundary conditions c j ≡ (c 0, c 1, c 2, c 3,…, c n). We put the main emphasis here on peptides reported in the database IEDB. In this sense, the boundary conditions c j used here are the same reported in this database, c 0 = is the specific peptide, c 1 = soj, c 2 = hoj, c 3 = ipj, and c 4 = tqj. In general, so is the organism that expresses the peptide (but it can include also artificial peptides, cellular lines, etc.), ho is the host organism exposed to the peptide by means of the bp detected with tq. As our analysis, based on the data reported by IEDB we are unable to work with continuous values of epitope activity ε ij. Consequently, we have to predict the discrete function of B-epitope efficiency λ(ε ij) = 1 for epitopes reported in the conditions c j and λ(ε ij) = 0, otherwise. Our main aim is to predict the shift or change in a function of the output efficiency Δλ(ε ij) = λ(ε ij)ref − λ(ε ij)new that takes place after a change, variation, or perturbation (ΔV) in the structure and/or boundary conditions of a peptide of reference. But we know the efficiency of the process of reference λ(ε ij)ref in addition to the molecular structure and the set of conditions c j for initial (reference) and final processes (new). Consequently, to predict Δλ(ε ij) we have to predict only λ(ε ij)new the efficiency function of the new state obtained by a change in the structure of the peptide and/or the boundary conditions. Let ΔV be a perturbation in a function λ; we can define V ij as the state information function for the reference and new states. According to our recent model [58], we can write V ij as a function of the conditions and structure of the peptide m i as follows. In fact, the variational state functions V ij have to be written in pairs in order to describe the initial (reference) and final (new) states of a perturbation, as follow:
(2) |
The state function n V ij is for the ith peptide measured under a set of c ij boundary conditions in output, final, or new state. The conjugated state function r V qr is for the qth peptide measured under a set of c qr boundary conditions for the input, initial, or reference state. The difference ΔV between the new (output) state and the reference (input) state is the additive perturbation [58]. Consider
(2) |
Equation (3) described before opens the door to test different hypothesis. A simple hypotheses is H0: existence of one small and constant value of the perturbation function ΔV = e 0 for all the pairs of peptides and a linear relationship between perturbations of input/output boundary conditions with coefficients a ij, b ij, c qr, and d ij. Consider
(2) |
We can use elemental algebraic operations to obtain from these equations an expression for efficiency as epitope of the peptide λ(ε ij)new. In this case, considering b ij ≈ d qr, we can obtain the different expressions; the last may be very useful to solve the QSRR problem for the large datasets formed by IEDB B-epitopes. Consider
(2) |
3. Results and Discussion
We propose herein, for the first time, a QSRR-perturbation model able to predict variations in the propensity of a peptide to act as B-epitope taking into consideration the propensity of a peptide of reference and the changes in peptide sequence, immunological process, host organism, source organisms, and the experimental technique used. The best QSPR-perturbation model found here with LDA was
(6) |
The first input term is the value λ(ε ij)ref is the scoring function λ of the efficiency of the initial process ε ij (known solution). The function λ(ε ij)ref = 1 if the ith peptide could experimentally be demonstrated to be a B-epitope in the assay of reference (reference) carried out in the conditions c j, λ(ε ij)ref = 0 otherwise. The variational-perturbation terms ΔΔχ cj are at the same time terms typical of perturbation theory and moving average (MA) functions used in Box-Jenkin models in time series [60]. These new types of terms account both for the deviation of the electronegativity of all amino acids in the sequence of the new peptide with respect to the peptide of reference and with respect to all boundary conditions. In Table 2, we give the overall classification results obtained with this model. Speck-Planche et al. [61–63] introduced different multitarget/multiplexing QSAR models that incorporate this type of information based on MAs. The results obtained with the present model are excellent compared with other similar models in the literature useful for other problems including moving average models [64, 65] or perturbation models [58]. Notably, this is also the first model combining both perturbation theory and MAs in a QSPR context.
Table 1.
Data | Stat. | Pred. | Predicted epitope perturbations | |
---|---|---|---|---|
subset | param. | % | λ(ε ij) = 1 | λ(ε ij) = 0 |
λ(ε ij) = 1 | Sp | 97.0 | 84607 | 2660 |
λ(ε ij) = 0 | Sn | 93.6 | 4354 | 63548 |
| ||||
Total train | Ac | 95.5 | ||
| ||||
λ(ε ij) = 1 | Sp | 97.1 | 28060 | 840 |
λ(ε ij) = 0 | Sn | 93.3 | 1485 | 20641 |
| ||||
Total cv | Ac | 95.4 |
Bold font is used to highlight the number of cases correctly classified by the model.
The other input terms are the following. The first Δχ seq = χ(m q)ref − χ(m i)new is the perturbation term for the variation or in the mean value of electronegativity for all amino acids in the sequence of the peptide of reference. The remnant input variables of the model ΔΔχ cj = Δχ cj-ref − Δχ cj-new = [χ(m q)ref − *χ(c qr)ref]−[χ(m i)new − *χ(c ij)new] quantify values of the conditions of the new assay cj-new that represent perturbations with respect to the initial conditions c ij-ref of the assay of reference. The quantities *χ(c ij) and *χ(c qr) are the average values of the mean electronegativity values χ(m i) and χ(m q) for all new and reference peptides in IEDB that are epitopes under the jth or rth boundary condition. The values of these terms have been tabulated for >500 source organisms, >50 host organisms, >10 biological process, and >30 experimental techniques. We must substitute the values of χ(m i) and χ(m q) of the new and reference peptides and the tabulated values of *χ(c ij) and *χ(c qr) for all combinations of boundary conditions to predict the perturbations of the action as epitope of peptides. In doing so we can found the optimal sequence and boundary conditions towards the use of the peptide in the development of a vaccine. In Table 2 we give some of these values of *χ(c ij) and *χ(c qr).
Table 2.
Source organism (so) | N in | N out | *χ |
---|---|---|---|
Homo sapiens | 38920 | 39274 | 2.685 |
Plasmodium falciparum | 10669 | 9446 | 2.704 |
Hepatitis C virus | 9935 | 10239 | 2.683 |
Bos taurus | 5671 | 5780 | 2.690 |
Canine parvovirus | 5655 | 5637 | 2.693 |
Foot-mouth disease virus | 4062 | 4176 | 2.676 |
Triticum aestivum | 3769 | 3887 | 2.703 |
Bacillus anthracis | 3602 | 3600 | 2.699 |
Human papillomavirus | 3316 | 3414 | 2.693 |
Human herpesvirus | 3026 | 3132 | 2.684 |
Gallus gallus | 2850 | 2829 | 2.689 |
Arachis hypogaea | 2648 | 2670 | 2.687 |
Mycobacterium tuberculosis | 2637 | 2593 | 2.688 |
Clostridium botulinum | 2588 | 2722 | 2.685 |
SARS coronavirus | 2550 | 2704 | 2.686 |
Mus musculus | 2334 | 2287 | 2.682 |
Hepatitis B virus | 2007 | 2066 | 2.680 |
Helicobacter pylori | 1958 | 1796 | 2.695 |
Hevea brasiliensis | 1938 | 1958 | 2.697 |
Hepatitis E virus | 1928 | 1941 | 2.685 |
Shigella flexneri | 1878 | 1701 | 2.699 |
Dengue virus 2 | 1767 | 1828 | 2.679 |
Staphylococcus aureus | 1757 | 1661 | 2.694 |
Treponema pallidum | 1739 | 1755 | 2.691 |
Escherichia coli | 1721 | 1678 | 2.689 |
Murine hepatitis virus | 1575 | 1603 | 2.692 |
Haemophilus influenzae | 1545 | 1587 | 2.695 |
Streptococcus mutans | 1523 | 1537 | 2.697 |
Puumala virus (strain) | 1505 | 1574 | 2.689 |
Chlamydia trachomatis | 1402 | 1546 | 2.704 |
Human respiratory virus | 1347 | 1398 | 2.682 |
Borrelia burgdorferi | 1228 | 1237 | 2.698 |
Hepatitis delta virus | 1182 | 1199 | 2.690 |
Streptococcus pyogenes | 1181 | 1251 | 2.697 |
Porphyromonas gingivalis | 1143 | 1085 | 2.688 |
Human enterovirus | 1106 | 1132 | 2.689 |
Influenza A virus | 1085 | 1086 | 2.687 |
Mycoplasma hyopneumoniae | 1044 | 1024 | 2.695 |
Rattus norvegicus | 1025 | 1039 | 2.689 |
Bordetella pertussis | 1011 | 960 | 2.685 |
Human T-lymphotropic virus | 996 | 1031 | 2.680 |
Anaplasma marginale | 977 | 857 | 2.707 |
Measles virus strain | 804 | 810 | 2.688 |
Fasciola hepatica | 803 | 857 | 2.685 |
Neisseria meningitidis | 789 | 853 | 2.696 |
Human poliovirus | 766 | 780 | 2.690 |
Tityus serrulatus | 764 | 775 | 2.680 |
Torpedo californica | 752 | 788 | 2.687 |
Cryptomeria japonica | 719 | 794 | 2.680 |
Mycobacterium bovis | 717 | 733 | 2.688 |
Trypanosoma cruzi | 691 | 777 | 2.704 |
Andes virus CHI-7913 | 679 | 687 | 2.690 |
Bovine papillomavirus | 672 | 665 | 2.692 |
Human hepatitis | 670 | 696 | 2.688 |
Leishmania infantum | 659 | 735 | 2.688 |
Human parvovirus | 649 | 691 | 2.683 |
Poa pratensis | 648 | 664 | 2.692 |
Aspergillus fumigatus | 642 | 709 | 2.677 |
Duck hepatitis | 587 | 603 | 2.688 |
Olea europaea | 571 | 577 | 2.692 |
Porcine reproductive | 515 | 514 | 2.681 |
Fagopyrum esculentum | 509 | 497 | 2.685 |
Juniperus ashei | 505 | 568 | 2.672 |
Mycobacterium leprae | 489 | 542 | 2.690 |
Glycine max | 477 | 509 | 2.685 |
D. pteronyssinus | 455 | 464 | 2.680 |
Plasmodium vivax | 453 | 446 | 2.690 |
Chlamydophila pneumoniae | 446 | 462 | 2.690 |
Pseudomonas aeruginosa | 443 | 454 | 2.691 |
Vibrio cholera | 427 | 426 | 2.694 |
Streptococcus sp. | 426 | 425 | 2.691 |
Mycobacterium avium | 425 | 415 | 2.689 |
Dermatophagoides farinae | 410 | 390 | 2.693 |
Human coxsackievirus | 406 | 392 | 2.694 |
Equine infectious virus | 404 | 419 | 2.688 |
Babesia equi | 383 | 371 | 2.696 |
Prunus dulcis | 383 | 379 | 2.708 |
Human adenovirus | 375 | 405 | 2.686 |
Theileria parva | 366 | 371 | 2.713 |
Candida albicans | 365 | 370 | 2.690 |
Porcine endogenous | 355 | 351 | 2.692 |
Ovis aries | 352 | 350 | 2.683 |
Chironomus thummi | 347 | 338 | 2.691 |
Sus scrofa | 343 | 362 | 2.686 |
Bovine leukemia virus | 333 | 329 | 2.676 |
Ricinus communis | 329 | 314 | 2.692 |
Androctonus australis | 322 | 357 | 2.685 |
Renibacterium salmoninarum | 319 | 350 | 2.690 |
Orientia tsutsugamushi | 309 | 372 | 2.705 |
Anacardium occidentale | 293 | 306 | 2.693 |
Conus geographus | 289 | 295 | 2.660 |
| |||
Host organism (ho) | N in | N out | *χ |
| |||
Homo sapiens | 257293 | 91093 | 2.6856 |
Mus musculus | 107867 | 51466 | 2.6873 |
Oryctolagus cuniculus | 65053 | 31433 | 2.6900 |
Bos taurus | 15333 | 2072 | 2.6909 |
Rattus norvegicus | 9450 | 3562 | 2.6876 |
Aotus sp. | 9044 | 3933 | 2.6879 |
Sus scrofa | 7725 | 3464 | 2.6873 |
Gallus gallus | 7507 | 997 | 2.6790 |
Canis lupus | 6604 | 3334 | 2.6906 |
Macaca mulatta | 5261 | 2569 | 2.6993 |
Ovis aries | 3953 | 1653 | 2.6836 |
Equus caballus | 3943 | 2099 | 2.6842 |
Cavia porcellus | 3458 | 1688 | 2.6833 |
Capra hircus | 2182 | 1127 | 2.6830 |
Aotus nancymaae | 1659 | 852 | 2.6837 |
Pan troglodytes | 1614 | 732 | 2.6757 |
Marmota monax | 1100 | 509 | 2.7011 |
Felis catus | 901 | 279 | 2.6838 |
Myodes glareolus | 814 | 388 | 2.6863 |
Anas platyrhynchos | 688 | 342 | 2.6880 |
Homo sapiens (human) | 508 | 270 | 2.6851 |
Trichosurus vulpecula | 456 | 126 | 2.6921 |
Mesocricetus auratus | 438 | 104 | 2.6909 |
Macaca cyclopis | 382 | 193 | 2.6871 |
O. tshawytscha | 333 | 159 | 2.6929 |
Macaca fuscata | 188 | 100 | 2.6667 |
Cricetulus migratorius | 171 | 142 | 2.7008 |
Camelus dromedarius | 171 | 89 | 2.6886 |
Dicentrarchus labrax | 121 | 55 | 2.6759 |
Macaca fascicularis | 96 | 52 | 2.6793 |
Saimiri sciureus | 92 | 44 | 2.6900 |
Canis familiaris | 77 | 42 | 2.6850 |
Rattus rattus | 72 | 31 | 2.6760 |
Callithrix pygmaea | 67 | 30 | 2.6920 |
Chinchilla lanigera | 41 | 24 | 2.6729 |
Aotus lemurinus | 30 | 19 | 2.6860 |
Papio cynocephalus | 27 | 13 | 2.7267 |
Aotus griseimembra | 26 | 12 | 2.7000 |
Mustela vison | 18 | 10 | 2.7000 |
Chlorocebus aethiops | 15 | 10 | 2.6875 |
Bos indicus | 13 | 4 | 2.6925 |
Oncorhynchus mykiss | 10 | 4 | 2.6700 |
M. macquariensis | 9 | 6 | 2.6600 |
Cricetulus griseus | 8 | 4 | 2.6900 |
Aotus trivirgatus | 7 | 4 | 2.7000 |
| |||
Process type (pt) | N in | N out | *χ |
| |||
AID | 111197 | 108536 | 2.6876 |
OOID | 32419 | 32617 | 2.6868 |
OAID | 19210 | 18954 | 2.6801 |
OOA | 15863 | 16303 | 2.6902 |
NI | 13430 | 15206 | 2.6845 |
EWEIR | 4818 | 4864 | 2.6843 |
EEE | 3113 | 3546 | 2.6906 |
OOD | 2806 | 2799 | 2.6887 |
AICD | 1077 | 1095 | 2.6812 |
EWED | 696 | 686 | 2.6879 |
DEWED | 280 | 337 | 2.6804 |
TT | 260 | 215 | 2.6806 |
OOC | 153 | 137 | 2.6800 |
| |||
Technique (tq) | N in | N out | *χ |
| |||
ELISA | 133458 | 135109 | 2.6871 |
WI | 33627 | 33292 | 2.6887 |
ACAbB | 7780 | 9068 | 2.6862 |
PhDIP | 7450 | 4496 | 2.6771 |
RIA | 5241 | 5218 | 2.6858 |
IFAIH | 4454 | 4581 | 2.6879 |
NIAA | 4222 | 4316 | 2.6892 |
FIA | 2255 | 2276 | 2.6897 |
PAC | 1312 | 1219 | 2.6837 |
IP | 1127 | 1089 | 2.6886 |
SPR | 758 | 639 | 2.6860 |
FACS | 608 | 647 | 2.6907 |
Other | 502 | 495 | 2.6813 |
SAC | 484 | 393 | 2.6878 |
ELISPOT | 396 | 412 | 2.6979 |
RDAT | 366 | 323 | 2.6859 |
EDAT | 284 | 330 | 2.6800 |
XRC | 231 | 227 | 2.6880 |
MS | 209 | 179 | 2.6849 |
PFF | 171 | 153 | 2.6820 |
AbDPO | 162 | 295 | 2.6968 |
CdC | 146 | 205 | 2.6895 |
IAbBA | 144 | 183 | 2.6940 |
IOT | 124 | 106 | 2.6835 |
HAGGI | 115 | 122 | 2.6834 |
IgMHR | 89 | 90 | 2.6929 |
EAAA | 84 | 139 | 2.6922 |
HS | 82 | 67 | 2.6791 |
AbdCC | 73 | 118 | 2.6897 |
AGG | 50 | 60 | 2.6980 |
CM | 50 | 57 | 2.6863 |
The ∗indicates that quantities like ∗ χ is the average value of the mean electronegativity (m i) for all the peptides in IEDB that are epitopes for the same boundary condition.
In Table 3 we depict the sequences and input-output boundary conditions for top perturbations present in IEDB. All these perturbations have observed value of λ(ε ij)new = 1 and predicted value also equal to 1 with a high probability. See Supplementary Material available online at http://dx.doi.org/10.1155/2014/768515 file contains a full list of >200,000 cases of perturbations.
Table 3.
New experiment | Experiment of reference | Input perturbation terms | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
IDE | Sequence | ho | so | ip | tq | IDE | Sequence | ho | so | ip | tq | Δχ | ΔΔχ ho | ΔΔχ so | ΔΔχ ip | ΔΔχ tq |
115153 | MKGVVC TRIYEKV |
Homo sapiens | Homo sapiens | OAID | ELISA | 115155 | NNQRK KAKNTP FNMLKRERN |
Mus musculus | Dengue virus 2 | AID | WI | 0.01 | 0.012 | 0.004 | 0.017 | 0.012 |
52124 | QQQPP | Homo sapiens | Triticum aestivum | OOA | ELISA | 52128 | QQQQGG SQSQKGKQQ |
Homo sapiens | Glycine max | OOA | WI | 0 | 0 | −0.018 | 0 | 0.002 |
3639 | APLGVT | Homo sapiens | Hepatitis E virus | EWEIR | ELISA | 3652 | APLTRG SCRKRN RSPER |
Homo sapiens | Human herpesvirus | OOID | ELISA | 0.04 | 0.04 | 0.039 | 0.043 | 0.04 |
135959 | LTRAYA KDVKFG |
Homo sapiens | Homo sapiens | OAID | ELISA | 135963 | NGQEEK AGVVS TGLIGGG |
Mus musculus | MD | AID | ELISA | −0.04 | −0.038 | −0.047 | −0.033 | −0.04 |
108075 | PREPQVY | Homo sapiens | Homo sapiens | OAID | ELISA | 108078 | PTSPSGV EEWIVTQ VVPGVA |
Oryctolagus cuniculus | Homo sapiens | AID | ACAbB | −0.01 | −0.006 | −0.01 | −0.003 | −0.011 |
25113 | HVVDLP | Homo sapiens | Hepatitis E virus | EWEIR | ELISA | 25126 | HWGNH SKSHPQR |
Mus musculus | MD | AID | ELISA | 0.02 | 0.022 | 0.013 | 0.023 | 0.02 |
48780 | PPFSPQ | Homo sapiens | Hepatitis delta virus | OOID | ELISA | 48782 | PPFTSAV GGVDHRS |
Mus musculus | MD | AID | SAC | 0.02 | 0.022 | 0.008 | 0.021 | 0.021 |
40988 | LYVVAYQA | Mus musculus | Viscum album | AID | ELISA | 41004 | MAARLCC QLDPARDV |
Homo sapiens | Hepatitis B virus | OOID | ELISA | 0.02 | 0.018 | 0.006 | 0.019 | 0.02 |
50439 | QDAYNAAG | Mus musculus | Mycobacterium scrofulaceum | AID | ELISA | 50445 | QDCNCSI YPGHAS GHRMAWD |
Homo sapiens | Hepatitis C virus | OOID | ELISA | 0.04 | 0.038 | 0.028 | 0.039 | 0.04 |
98849 | KIPAVFKIDA | Homo sapiens | Bos taurus | DEWED | WI | 98850 | KKGSEEE GDITNPIN |
Homo sapiens | Arachis hypogaea | OOA | IFAIH | −0.05 | −0.05 | −0.053 | −0.04 | −0.051 |
116171 | TQDQDP BBHFFK NIVTPR |
Homo sapiens | Homo sapiens | OAID | ACAbB | 116286 | CGKGLS ATVTGG QKGRGSR |
Oryctolagus cuniculus | Mus musculus | AID | MS | 0.01 | 0.014 | 0.008 | 0.017 | 0.009 |
123442 | LLKDLRKN | Homo sapiens | Borna disease virus | EWEIR | WI | 123443 | LLTEHR MTWDPA QPPRDLTE |
Homo sapiens | Homo sapiens | OOID | ELISA | −0.02 | −0.02 | −0.025 | −0.017 | −0.022 |
47858 | PHVVDL | Homo sapiens | Hepatitis E virus | EWEIR | ELISA | 47860 | PHWIK KPNRQG LGYYS |
Capra hircus | Human T-lymphotropic virus | AID | ACAbB | 0.01 | 0.007 | 0.005 | 0.013 | 0.009 |
61783 | STNKAVVSLS | Bos taurus | Bovine respiratory | AID | ELISA | 61792 | STNPKP QRKTKRN TNRRPQD |
Homo sapiens | Hepatitis C virus | OOID | ELISA | 0.03 | 0.025 | 0.019 | 0.029 | 0.03 |
118210 | VMLYQISEE | Homo sapiens | Homo sapiens | OAID | WI | 118217 | VTKYITK GWKEVH |
Oryctolagus cuniculus | Homo sapiens | AID | ELISA | 0.05 | 0.054 | 0.05 | 0.057 | 0.048 |
130944 | LFKHS | Oryctolagus cuniculus | Rattus norvegicus | AID | ELISA | 130956 | LPPRVTP KWSLDA WSTWR |
Homo sapiens | MD | OOD | WI | 0.01 | 0.006 | −0.002 | 0.011 | 0.012 |
23028 | GVKYA | Homo sapiens | MD | OAID | WI | 23032 | GVLAKD VRFSQV |
Homo sapiens | MD | OOID | ELISA | 0 | 0 | 0 | 0.007 | −0.002 |
51199 | QKKAIE | Oryctolagus cuniculus | Vibrio cholerae | AID | ELISA | 51204 | QKKNK RNTNRR PQDV |
Homo sapiens | Hepatitis C virus | OOID | ELISA | 0.03 | 0.026 | 0.018 | 0.029 | 0.03 |
144783 | SHVVT MLDNF |
Homo sapiens | Homo sapiens | NI | ELISA | 144786 | SMNRGRG THPSLIWM |
Mus musculus | MD | AID | ACAbB | 0.03 | 0.032 | 0.023 | 0.033 | 0.029 |
134343 | DLYIK | Mus musculus | Human papillomavirus | AID | NIAA | 134344 | DMAQV TVGPGLL GVSTL |
Mus musculus | Homo sapiens | AID | WI | 0 | 0 | −0.009 | 0 | 0 |
38321 | LNQLAGRM | Anas platyrhynchos | Duck hepatitis | AID | ELISA | 38323 | LNQTAR AFPDCAI CWEPSPP |
Oryctolagus cuniculus | Bovine leukemia virus | AID | ACAbB | −0.01 | −0.008 | −0.022 | −0.01 | −0.011 |
144657 | GQITVD MMYG |
Homo sapiens | Homo sapiens | OAID | ELISA | 144661 | GREGYP ADGGCA WPACYC |
Oryctolagus cuniculus | MD | AID | WI | 0.02 | 0.024 | 0.013 | 0.027 | 0.022 |
21084 | GLQN | Mus musculus | Chlamydia trachomatis | AID | ELISA | 21093 | GLRAQD DFSGWDI NTPAFEW |
Mus musculus | Mycobacterium tuberculosis | AID | WI | 0.03 | 0.03 | 0.013 | 0.03 | 0.032 |
98453 | SGFSGSVQFV | Oryctolagus cuniculus | Neisseria meningitidis | AID | ELISA | 98456 | SICSNN PTCWAIC KRIPNKK |
Mus musculus | Human respiratory virus | AID | IFAIH | 0.04 | 0.037 | 0.027 | 0.04 | 0.041 |
98453 | SGFSGSVQFV | Mus musculus | Neisseria meningitidis | AID | ELISA | 98456 | SICSNN PTCWAIC KRIPNKK |
Mus musculus | Human respiratory virus | AID | IFAIH | 0.04 | 0.04 | 0.027 | 0.04 | 0.041 |
107107 | EAIQP | Rattus norvegicus | Homo sapiens | AID | ELISA | 107110 | EKERRP SPIGTATLL |
Homo sapiens | MD | OOA | ELISA | 0.05 | 0.048 | 0.043 | 0.053 | 0.05 |
110857 | FTGEAY SYWSAK |
Homo sapiens | Mycoplasma penetrans | EWEIR | ELISA | 110859 | GEESRIS LPLPNF SSLNLRE |
Mus musculus | Homo sapiens | AID | FIA | 0 | 0.002 | −0.017 | 0.003 | 0.003 |
36315 | LGSAYP | Mus musculus | Mycobacterium leprae | MD | ELISA | 36317 | LGSGAFG TIYKG |
Mus musculus | Avian erythroblastosis virus | AID | ACAbB | 0.01 | 0.01 | 0 | 0.011 | 0.009 |
122034 | WNPAD | Rattus norvegicus | Torpedo californica | AID | ELISA | 122035 | WNPAD YGGIKWN PADYGGIK |
Rattus norvegicus | MD | AID | RIA | 0.01 | 0.01 | 0.001 | 0.01 | 0.009 |
25013 | HVADIDKLID | Mus musculus | Puumala virus Kazan | AID | ELISA | 25021 | HVAPTH YVTESDA SQRVTQL |
Homo sapiens | Hepatitis C virus | OOID | ELISA | 0 | −0.002 | −0.014 | −0.001 | 0 |
36162 | LGIHE | Oryctolagus cuniculus | Candida albicans | AID | ELISA | 36166 | LGIMGE YRGTPRN QDLYDAA |
Mus musculus | Human respiratory virus | AID | RIA | 0 | −0.003 | −0.007 | 0 | −0.001 |
67253 | TWEVLH | Mus musculus | Plasmodium vivax | AID | ELISA | 67257 | TWGEN ETDVLLL NNTRPPQ |
Homo sapiens | Hepatitis C virus | OOID | ACAbB | −0.02 | −0.022 | −0.027 | −0.021 | −0.021 |
50990 | QGYRVSSYLP | Homo sapiens | Hevea brasiliensis | OOA | WI | 50998 | QHEQDR PTPSPAP SRPFSVL |
Homo sapiens | Hepatitis E virus | OOID | ELISA | 0.01 | 0.01 | −0.002 | 0.007 | 0.008 |
100458 | RDVLQLYAPE | Mus musculus | Bacillus anthracis | AID | ELISA | 100462 | RFSTRY GNQNGRI RVLQRFD |
Homo sapiens | Arachis hypogaea | EWED | ELISA | 0.03 | 0.028 | 0.018 | 0.03 | 0.03 |
111036 | TESTFT GEAYSV |
Homo sapiens | Mycoplasma penetrans | EWEIR | ELISA | 111039 | TGVPID PAVPDSS IVPLLES |
Bos taurus | Bovine papillomavirus | AID | ELISA | 0.03 | 0.035 | 0.02 | 0.033 | 0.03 |
117919 | IFIEME | Homo sapiens | Homo sapiens | OAID | WI | 117921 | IGIIDLIE KRKFNQ |
Mus musculus | Homo sapiens | AID | WI | 0.03 | 0.032 | 0.03 | 0.037 | 0.03 |
7127 | CTDTDKLF | Oryctolagus cuniculus | Shigella flexneri | AID | ELISA | 7128 | CTDVST AIHADQL TPAW |
Homo sapiens | SARS coronavirus | OOID | ELISA | 0.01 | 0.006 | −0.003 | 0.009 | 0.01 |
112253 | PGQSPKL | Homo sapiens | Homo sapiens | OAID | ELISA | 112255 | PIRALV GDEVELP CRISPGK |
Mus musculus | Homo sapiens | AID | ELISA | 0.01 | 0.012 | 0.01 | 0.017 | 0.01 |
122034 | WNPAD | Rattus norvegicus | Torpedo californica | AID | ELISA | 122038 | WNPDDY GGVKWNP DDYGGVK |
Rattus norvegicus | MD | AID | RIA | 0 | 0 | −0.009 | 0 | −0.001 |
131878 | FLMLVG GSTL |
Homo sapiens | Homo sapiens | OAID | ACAbB | 131879 | FLVAHT RARAPSA GERARRS |
Mus musculus | Mus musculus | AID | NIAA | 0.03 | 0.032 | 0.028 | 0.037 | 0.033 |
70664 | VQVVYDYQ | Homo sapiens | Treponema pallidum | OOID | ELISA | 70667 | VQWMNR LIAFAFAG NHVSP |
Homo sapiens | Hepatitis C virus | OOID | ELISA | 0.05 | 0.05 | 0.041 | 0.05 | 0.05 |
71545 | VTV | Homo sapiens | Helicobacter pylori | OOID | ELISA | 71559 | VTVRGGL RILSPDRK |
Homo sapiens | Arachis hypogaea | OOA | WI | 0.04 | 0.04 | 0.032 | 0.043 | 0.042 |
127856 | TDVRYKD | Mus musculus | Mus musculus | AID | ACAbB | 127857 | TDVRYK DDMYHFF CPAIQAQ |
Mus musculus | Mus musculus | AID | PFF | 0.01 | 0.01 | 0.01 | 0.01 | 0.006 |
112149 | GVGWIRQ | Homo sapiens | Homo sapiens | OAID | ELISA | 112152 | HHPART AHYGSLP QKSHGRT |
Homo sapiens | Homo sapiens | AID | ELISA | 0 | 0 | 0 | 0.007 | 0 |
119581 | FSCSVMHE | Homo sapiens | Homo sapiens | OAID | ELISA | 119582 | GLQLIQL INVDEVNQI |
Mus musculus | Homo sapiens | AID | RIA | −0.01 | −0.008 | −0.01 | −0.003 | −0.011 |
144657 | GQITVD MMYG |
Homo sapiens | Homo sapiens | OAID | ELISA | 144659 | GREGYP ADGGAA GYCNTE |
Oryctolagus cuniculus | MD | AID | WI | −0.01 | −0.006 | −0.017 | −0.003 | −0.008 |
25013 | HVADI DKLID |
Mus musculus | Puumala virus Kazan | AID | ELISA | 25022 | HVAPTH YVVESDA SQRVTQV |
Homo sapiens | Hepatitis C virus | OOID | ELISA | 0 | −0.002 | −0.014 | −0.001 | 0 |
144652 | GMRGM KGLVY |
Homo sapiens | Homo sapiens | OAID | ELISA | 144654 | GPHPTLE VVPMGRGS |
Mus musculus | MD | AID | ELISA | −0.02 | −0.018 | −0.027 | −0.013 | −0.02 |
104515 | HDCRPKKI | Mus musculus | La Crosse virus | AID | IFAIH | 104521 | IGTLKKIL DETVKD KIAKEQ |
Rattus norvegicus | Streptococcus pyogenes | AID | ELISA | −0.04 | −0.04 | −0.053 | −0.04 | −0.041 |
7367 | CYGDWA | Homo sapiens | Triticum aestivum | OOA | ELISA | 7374 | CYGLPDS EPTKTNGK |
Mus musculus | Tityus serrulatus | AID | WI | −0.02 | −0.018 | −0.043 | −0.023 | −0.018 |
7367 | CYGDWA | Homo sapiens | Triticum aestivum | OOA | ELISA | 7374 | CYGLPDS EPTKTNGK |
Mus musculus | Tityus serrulatus | AID | WI | −0.02 | −0.018 | −0.043 | −0.023 | −0.018 |
144610 | DFFTYK | Mus musculus | Porcine transmissible | AID | WI | 144611 | DFNGSF DMNGTITA |
Oryctolagus cuniculus | Escherichia coli | AID | ELISA | −0.01 | −0.007 | −0.018 | −0.01 | −0.012 |
112047 | ASTRESG | Homo sapiens | Homo sapiens | OAID | ELISA | 112048 | ATASTM DHARHGF LPRHRDT |
Homo sapiens | Homo sapiens | AID | ELISA | 0.05 | 0.05 | 0.05 | 0.057 | 0.05 |
36136 | LGGVFT | Homo sapiens | Dengue virus 2 | OOID | ELISA | 36137 | LGGWKLQ SDPRAYAL |
Homo sapiens | Ambrosia artemisiifolia | OOA | RIA | 0.01 | 0.01 | 0.007 | 0.013 | 0.009 |
115256 | FRELKD LKGY |
Homo sapiens | Bos taurus | DEWED | WI | 115261 | GDLEILL QKWENG ECAQKKI |
Homo sapiens | Bos taurus | OOA | FIA | −0.01 | −0.01 | −0.01 | 0 | −0.009 |
129024 | KADQLYK | Homo sapiens | Homo sapiens | OAID | ELISA | 129026 | KAKKP AAAAGA KKAKS |
Oryctolagus cuniculus | Homo sapiens | AID | ELISA | 0.03 | 0.034 | 0.03 | 0.037 | 0.03 |
148481 | YTRDLVYK | Rattus norvegicus | Homo sapiens | AID | WI | 148483 | YVPIVT FYSEISM HSSRAIP |
Oryctolagus cuniculus | MD | AID | ELISA | 0 | 0.002 | −0.007 | 0 | −0.002 |
150850 | GY | Mus musculus | Human papillomavirus | AID | ELISA | 150853 | HIGGLSI LDPIFGVL |
Homo sapiens | Dermatophagoides farinae | OOA | ACAbB | 0.04 | 0.038 | 0.04 | 0.043 | 0.039 |
107366 | FPPKPKD | Homo sapiens | Homo sapiens | OAID | ELISA | 107376 | GDRSGYS SPGSPG |
Mus musculus | Homo sapiens | AID | ACAbB | −0.03 | −0.028 | −0.03 | −0.023 | −0.031 |
114859 | ICGTD GVTYT |
Homo sapiens | Gallus gallus | OOA | WI | 114865 | IVERETR GQSENPL WHALRR |
Rattus norvegicus | Human herpesvirus | AID | ELISA | 0.04 | 0.042 | 0.035 | 0.037 | 0.038 |
62149 | SVHLF | Homo sapiens | MD | OAID | WI | 62150 | SVIALGS QEGALHQ ALAGAI |
Equus caballus | West Nile virus | AID | IFAIH | −0.02 | −0.021 | −0.012 | −0.013 | −0.021 |
98455 | SGSVQFVPIQ | Mus musculus | Neisseria meningitidis | AID | ELISA | 98456 | SICSNNP TCWAICK RIPNKK |
Mus musculus | Human respiratory virus | AID | IFAIH | 0.04 | 0.04 | 0.027 | 0.04 | 0.041 |
61783 | STNKAV VSLS |
Bos taurus | Bovine respiratory | AID | ELISA | 61791 | STNPKPQ RKTKRNT NRRPQ |
Homo sapiens | Hepatitis C virus | EWEIR | ACAbB | 0.04 | 0.035 | 0.029 | 0.037 | 0.039 |
100318 | NAPKT FQFIN |
Mus musculus | Bacillus anthracis | AID | ELISA | 100319 | NASSELH LLGFGIN AENNHR |
Homo sapiens | Arachis hypogaea | EWED | ELISA | 0 | −0.002 | −0.012 | 0 | 0 |
118947 | PFSAPPPA | Homo sapiens | Homo sapiens | OAID | ELISA | 118948 | PGAIEQG PADDPGE GPSTGP |
Homo sapiens | Human herpesvirus | NI | ACAbB | −0.04 | −0.04 | −0.041 | −0.036 | −0.041 |
78323 | YSFRD | Mus musculus | Bluetongue virus 1 | AID | ELISA | 78341 | AALTAEN TAIKKRN ADAKA |
Homo sapiens | Streptococcus mutans | EEE | ELISA | 0.01 | 0.008 | 0.007 | 0.013 | 0.01 |
145831 | IPLGTRP | Mus musculus | Human papillomavirus | AID | ELISA | 145841 | KEDFRY AISSTNEI GLLGA |
Sus scrofa | Classical swine | AID | PAC | −0.04 | −0.04 | −0.045 | −0.04 | −0.043 |
119592 | HTFPAVLQ | Homo sapiens | Homo sapiens | OAID | ELISA | 119596 | IHIPSEKI WRPDLVLY |
Mus musculus | Homo sapiens | AID | RIA | 0.01 | 0.012 | 0.01 | 0.017 | 0.009 |
58780 | SKAANLSIIK | MD | Beet necrotic | MD | WI | 58783 | SKAFSN CYPYDVP DYASL |
Oryctolagus cuniculus | Influenza A virus | AID | RIA | −0.01 | −0.004 | −0.014 | −0.009 | −0.013 |
115153 | MKGVVC TRIYEKV |
Homo sapiens | Homo sapiens | NI | ELISA | 115155 | NNQRKK AKNTPFN MLKRERN |
Mus musculus | Dengue virus 2 | AID | ELISA | 0.01 | 0.012 | 0.004 | 0.013 | 0.01 |
133629 | LPLRF | Oryctolagus cuniculus | Gallus gallus | AID | ACAbB | 133630 | LPPGLHV FPLASNRS |
Mus musculus | MD | AID | SPR | −0.01 | −0.013 | −0.021 | −0.01 | −0.01 |
96215 | EEEEAE DKED |
Homo sapiens | Homo sapiens | OAID | ELISA | 96216 | EEEGLLK KSADTLW NMQK |
Mus musculus | Mus musculus | AID | ELISA | 0.08 | 0.082 | 0.078 | 0.087 | 0.08 |
39782 | LTAASV | Homo sapiens | Triticum aestivum | OOA | ELISA | 39788 | LTAELKI YSVIQAEI NKHL |
Oryctolagus cuniculus | Yersinia pestis | AID | ACAbB | 0.01 | 0.014 | −0.001 | 0.007 | 0.009 |
107479 | KFNWYVD | Homo sapiens | Homo sapiens | OAID | ELISA | 107482 | KGEPGL PGRGFP GFP |
Mus musculus | Homo sapiens | AID | ACAbB | 0 | 0.002 | 0 | 0.007 | −0.001 |
63569 | TETVNSDI | Macaca mulatta | Shigella flexneri | AID | ELISA | 63573 | TEVELKER KHRIEDAV RNAK |
Homo sapiens | Mycobacterium leprae | OOID | ELISA | 0.05 | 0.036 | 0.041 | 0.049 | 0.05 |
134028 | DDTIS | Mus musculus | Homo sapiens | AID | NIAA | 134029 | DEDENQS PRSFQKKTR |
Oryctolagus cuniculus | Homo sapiens | AID | ELISA | 0.05 | 0.053 | 0.05 | 0.05 | 0.048 |
23028 | GVKYA | Homo sapiens | MD | OAID | WI | 23032 | GVLAKDV RFSQV |
Homo sapiens | MD | EWEIR | ACAbB | 0 | 0 | 0 | 0.004 | −0.003 |
115293 | IMCVKK ILDK |
Homo sapiens | Bos taurus | DEWED | WI | 115295 | INPSKEN LCSTFCK EVVRNA |
Homo sapiens | Bos taurus | OOA | FIA | −0.03 | −0.03 | −0.03 | −0.02 | −0.029 |
65105 | TLTPENTL | Mus musculus | Shigella flexneri | AID | ELISA | 65110 | TLTSGSD LDRCTT FDDV |
Oryctolagus cuniculus | SARS coronavirus | AID | ELISA | 0.01 | 0.013 | −0.003 | 0.01 | 0.01 |
134471 | PKPEQ | Mus musculus | Streptococcus pneumoniae | AID | FACS | 134472 | PLLPGT STTSTG PCKT |
Homo sapiens | Hepatitis B virus | AID | ELISA | 0.02 | 0.018 | 0.019 | 0.02 | 0.016 |
142228 | LYCYEQ LNDSSE |
Homo sapiens | Human papillomavirus | NI | ELISA | 142250 | NWGDEP SKRRDRS NSRGRKN |
Felis catus | Feline infectious | AID | ELISA | 0.07 | 0.068 | 0.071 | 0.073 | 0.07 |
21549 | GNYDFW YQS |
Homo sapiens | Staphylococcus aureus | OOID | ELISA | 21553 | GNYNYKY RYLRHGK LRPFER |
Mus musculus | SARS coronavirus | AID | ELISA | 0.03 | 0.032 | 0.021 | 0.031 | 0.03 |
21549 | GNYDFWYQS | Homo sapiens | Staphylococcus aureus | OOID | ELISA | 21553 | GNYNYKY RYLRHGK LRPFER |
Oryctolagus cuniculus | SARS coronavirus | AID | ELISA | 0.03 | 0.034 | 0.021 | 0.031 | 0.03 |
34908 | LAPLGE | Homo sapiens | Hepatitis E virus | EWEIR | ELISA | 34914 | LAPSTL RSLRKR RLSSP |
Homo sapiens | Human herpesvirus | OOID | ELISA | 0.06 | 0.06 | 0.059 | 0.063 | 0.06 |
130454 | CLFPNNSYC | Mus musculus | MD | AID | NIAA | 130456 | CRPQVN NPKEWS CAAC |
Homo sapiens | MD | OOD | ACAbB | 0.01 | 0.008 | 0.01 | 0.011 | 0.007 |
19644 | GFVPSM | Homo sapiens | Hepatitis delta virus | OOID | ELISA | 19647 | GFVSASI FGFQAEV GPNNTR |
Oryctolagus cuniculus | Vaccinia virus WR | AID | ELISA | −0.01 | −0.006 | −0.013 | −0.009 | −0.01 |
20678 | GKRPE | Mus musculus | Streptococcus pyogenes | AID | WI | 20680 | GKSKRD AKNNAAK LAVDKLL |
Mus musculus | Vaccinia virus WR | AID | WI | 0.01 | 0.01 | 0.001 | 0.01 | 0.01 |
123278 | GYLKDLPTT | Ovis aries | Fasciola hepatica | AID | ELISA | 123282 | HACQKK LLKFEAL QQEEGEE |
Rattus norvegicus | Gallus gallus | AID | PFF | −0.02 | −0.016 | −0.016 | −0.02 | −0.025 |
141067 | PLSLEPDP | Mus musculus | Homo sapiens | AID | FACS | 141073 | REGVRW RVMAIQ |
Mus musculus | Homo sapiens | AID | ELISA | 0.06 | 0.06 | 0.06 | 0.06 | 0.056 |
139248 | SFAGTVIE | Mus musculus | Classical swine | AID | WI | 139305 | TAAQITQ RKWEAA REAEQRR |
Oryctolagus cuniculus | Homo sapiens | AID | IP | 0.03 | 0.033 | 0.026 | 0.03 | 0.03 |
104515 | HDCRPKKI | Mus musculus | La Crosse virus | AID | IFAIH | 104520 | IAKEQE NKETIGT LKKILDE |
Rattus norvegicus | Streptococcus pyogenes | AID | ELISA | −0.06 | −0.06 | −0.073 | −0.06 | −0.061 |
113517 | HLYADGLTD | Mus musculus | Human papillomavirus | AID | IFAIH | 113518 | HNKIQA IELEDLLR YSKLYR |
Mus musculus | Homo sapiens | AID | ELISA | 0.02 | 0.02 | 0.011 | 0.02 | 0.019 |
156970 | VERHQ | Homo sapiens | Homo sapiens | OAID | ELISA | 156975 | WSSTV LRVSPT RTVP |
Mus musculus | MD | AID | ELISA | 0.01 | 0.012 | 0.003 | 0.017 | 0.01 |
78252 | PVQNLT | Mus musculus | Porphyromonas gingivalis | AID | WI | 78253 | QGGCGR GWAFSA TGAIEA |
Mus musculus | Glycine max | AID | ELISA | 0.02 | 0.02 | 0.017 | 0.02 | 0.018 |
6068 | CCPDKNKS | Mus musculus | Human herpesvirus | AID | WI | 6074 | CCRHKQ KDVGDVK QTLPPS |
Ovis aries | MD | AID | ELISA | 0.01 | 0.006 | 0.004 | 0.01 | 0.008 |
53109 | RAGVCY | Homo sapiens | Triticum aestivum | OOA | ELISA | 53116 |
RAILTA FSPAQDI WGTS |
Oryctolagus cuniculus | SARS coronavirus | AID | ELISA | −0.02 | −0.016 | −0.037 | −0.023 | −0.02 |
147041 | IPEQ | Homo sapiens | Triticum aestivum | OOA | WI | 147064 | KHQGA QYVWN RTA |
Homo sapiens | Bos taurus | OOID | WI | 0.06 | 0.06 | 0.047 | 0.057 | 0.06 |
70664 | VQVVYDYQ | Oryctolagus cuniculus | Treponema pallidum | AID | ELISA | 70667 | VQWMN RLIAFAF AGNHVSP |
Homo sapiens | Hepatitis C virus | OOID | ELISA | 0.05 | 0.046 | 0.041 | 0.049 | 0.05 |
134343 | DLYIK | Mus musculus | Human papillomavirus | AID | PhDIP | 134344 | DMAQV TVGPGLL GVSTL |
Mus musculus | Homo sapiens | AID | PhDIP | 0 | 0 | −0.009 | 0 | 0 |
4. Conclusions
It is possible to develop general models for vaccine design able to predict the results of multiple input-output perturbations in peptide sequence and experimental assay boundary conditions using ideas of QSPR analysis, perturbation theory, and Box and Jenkins MA operators. The electronegativity values calculated with MARCH-INSIDE seem to be good molecular descriptors for this type of QSPR-perturbation models.
Conflict of Interests
The authors declare that there is no conflict of interests regarding the publication of this paper.
Supplementary Material
Acknowledgments
The present study was partially supported by Grants AGL2010-22290-C02 and AGL2011-30563-C03 from Ministerio de Ciencia e Innovación, Spain, and Grant CN 2012/155 from Xunta de Galicia, Spain.
References
- 1.Peters B, Sidney J, Bourne P, et al. The design and implementation of the immune epitope database and analysis resource. Immunogenetics. 2005;57(5):326–336. doi: 10.1007/s00251-005-0803-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Peters B, Sidney J, Bourne P, et al. The immune epitope database and analysis resource: from vision to blueprint. PLoS Biology. 2005;3(3):p. e91. doi: 10.1371/journal.pbio.0030091. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Wang P, Morgan AA, Zhang Q, Sette A, Peters B. Automating document classification for the Immune Epitope Database. BMC Bioinformatics. 2007;8, article 269 doi: 10.1186/1471-2105-8-269. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Sette A. The immune epitope database and analysis resource: from vision to blueprint. Genome Informatics. 2004;15(2):p. 299. [PubMed] [Google Scholar]
- 5.Salimi N, Fleri W, Peters B, Sette A. The immune epitope database: a historical retrospective of the first decade. Immunology. 2012;137(2):117–123. doi: 10.1111/j.1365-2567.2012.03611.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Kim Y, Sette A, Peters B. Applications for T-cell epitope queries and tools in the Immune Epitope Database and Analysis Resource. Journal of Immunological Methods. 2011;374(1-2):62–69. doi: 10.1016/j.jim.2010.10.010. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Kim Y, Ponomarenko J, Zhu Z, Tamang D, et al. Immune epitope database analysis resource. Nucleic Acids Research. 2012:W525–W530. doi: 10.1093/nar/gks438. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Helguera AM, Combes RD, Gonzalez MP, Cordeiro MNDS. Applications of 2D descriptors in drug design: a DRAGON tale. Current Topics in Medicinal Chemistry. 2008;8(18):1628–1655. doi: 10.2174/156802608786786598. [DOI] [PubMed] [Google Scholar]
- 9.Casañola-Martín GM, Marrero-Ponce Y, Khan MTH, et al. Dragon method for finding novel tyrosinase inhibitors: Biosilico identification and experimental in vitro assays. The European Journal of Medicinal Chemistry. 2007;42(11-12):1370–1381. doi: 10.1016/j.ejmech.2007.01.026. [DOI] [PubMed] [Google Scholar]
- 10.Tetko IV, Gasteiger J, Todeschini R, et al. Virtual computational chemistry laboratory—design and description. Journal of Computer-Aided Molecular Design. 2005;19(6):453–463. doi: 10.1007/s10822-005-8694-y. [DOI] [PubMed] [Google Scholar]
- 11.Katritzky AR, Oliferenko A, Lomaka A, Karelson M. Six-membered cyclic ureas as HIV-1 protease inhibitors: a QSAR study based on CODESSA PRO approach. Bioorganic and Medicinal Chemistry Letters. 2002;12(23):3453–3457. doi: 10.1016/s0960-894x(02)00741-2. [DOI] [PubMed] [Google Scholar]
- 12.Katritzky AR, Perumal S, Petrukhin R, Kleinpeter E. CODESSA-based theoretical QSPR model for hydantoin HPLC-RT lipophilicities. Journal of Chemical Information and Computer Sciences. 2001;41(3):569–574. doi: 10.1021/ci000099t. [DOI] [PubMed] [Google Scholar]
- 13.Vilar S, Cozza G, Moro S. Medicinal chemistry and the molecular operating environment (MOE): application of QSAR and molecular docking to drug discovery. Current Topics in Medicinal Chemistry. 2008;8(18):1555–1572. doi: 10.2174/156802608786786624. [DOI] [PubMed] [Google Scholar]
- 14.Marzaro G, Chilin A, Guiotto A, et al. Using the TOPS-MODE approach to fit multi-target QSAR models for tyrosine kinases inhibitors. The European Journal of Medicinal Chemistry. 2011;46(6):2185–2192. doi: 10.1016/j.ejmech.2011.02.072. [DOI] [PubMed] [Google Scholar]
- 15.Vilar S, Estrada E, Uriarte E, Santana L, Gutierrez Y. In silico studies toward the discovery of new anti-HIV nucleoside compounds through the use of tops-mode and 2D/3D connectivity indices. 2. Purine derivatives. Journal of Chemical Information and Modeling. 2005;45(2):502–514. doi: 10.1021/ci049662o. [DOI] [PubMed] [Google Scholar]
- 16.Estrada E, Quincoces JA, Patlewicz G. Creating molecular diversity from antioxidants in Brazilian propolis. combination of TOPS-MODE QSAR and virtual structure generation. Molecular Diversity. 2004;8(1):21–33. doi: 10.1023/b:modi.0000006804.97390.40. [DOI] [PubMed] [Google Scholar]
- 17.Estrada E, González H. What are the limits of applicability for graph theoretic descriptors in QSPR/QSAR? modeling dipole moments of aromatic compounds with TOPS-MODE descriptors. Journal of Chemical Information and Computer Sciences. 2003;43(1):75–84. doi: 10.1021/ci025604w. [DOI] [PubMed] [Google Scholar]
- 18.Marrero-Ponce Y, Castillo-Garit JA, Olazabal E, et al. Tomocomd-Cardd, a novel approach for computer-aided “rational” drug design: I. Theoretical and experimental assessment of a promising method for computational screening and in silico design of new anthelmintic compounds. Journal of Computer-Aided Molecular Design. 2004;18(10):615–634. doi: 10.1007/s10822-004-5171-y. [DOI] [PubMed] [Google Scholar]
- 19.Marrero Ponce Y, Medina Marrero R, Castro EA, et al. Protein quadratic indices of the “macromolecular pseudograph’s α-carbon atom adjacency matrix”. 1. prediction of arc repressor alanine-mutant’s stability. Molecules. 2004;9(12):1124–1147. doi: 10.3390/91201124. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.González-Díaz H, Prado-Prado F, Ubeira FM. Predicting antimicrobial drugs and targets with the MARCH-INSIDE approach. Current Topics in Medicinal Chemistry. 2008;8(18):1676–1690. doi: 10.2174/156802608786786543. [DOI] [PubMed] [Google Scholar]
- 21.García-Domenech R, Gálvez J, de Julián-Ortiz JV, Pogliani L. Some new trends in chemical graph theory. Chemical Reviews. 2008;108(3):1127–1169. doi: 10.1021/cr0780006. [DOI] [PubMed] [Google Scholar]
- 22.Estrada E, Uriarte E. Recent advances on the role of topological indices in drug discovery research. Current Medicinal Chemistry. 2001;8(13):1573–1588. doi: 10.2174/0929867013371923. [DOI] [PubMed] [Google Scholar]
- 23.Todeschini R, Consonni V. Handbook of Molecular Descriptors. Weinheim, Germany: Wiley-VCH; 2008. [Google Scholar]
- 24.Estrada E, Delgado EJ, Alderete JB, Jaña GA. Quantum-connectivity descriptors in modeling solubility of environmentally important organic compounds. Journal of Computational Chemistry. 2004;25(14):1787–1796. doi: 10.1002/jcc.20099. [DOI] [PubMed] [Google Scholar]
- 25.Besalu E, Girones X, Amat L, Carbo-Dorca R. Molecular quantum similarity and the fundamentals of QSAR. Accounts of Chemical Research. 2002;35(5):289–295. doi: 10.1021/ar010048x. [DOI] [PubMed] [Google Scholar]
- 26.Rincón DA, Cordeiro MNDS, Mosquera RA. On the electronic structure of cocaine and its metabolites. Journal of Physical Chemistry A. 2009;113(50):13937–13942. doi: 10.1021/jp9056048. [DOI] [PubMed] [Google Scholar]
- 27.Mandado M, González-Moa MJ, Mosquera RA. Chemical graph theory and n-center electron delocalization indices: a study on polycyclic aromatic hydrocarbons. Journal of Computational Chemistry. 2007;28(10):1625–1633. doi: 10.1002/jcc.20647. [DOI] [PubMed] [Google Scholar]
- 28.Hill T, Lewicki P. STATISTICS: Methods and Applications: A Comprehensive Reference for Science, Industry and Data Mining. Tulsa, Okla, USA: StatSoft; 2006. [Google Scholar]
- 29.Frank E, Hall M, Trigg L, Holmes G, Witten IH. Data mining in bioinformatics using Weka. Bioinformatics. 2004;20(15):2479–2481. doi: 10.1093/bioinformatics/bth261. [DOI] [PubMed] [Google Scholar]
- 30.Patlewicz G, Ball N, Booth ED, Hulzebos E, Zvinavashe E, Hennes C. Use of category approaches, read-across and (Q)SAR: general considerations. Regulatory Toxicology and Pharmacology. 2013;67(1):1–12. doi: 10.1016/j.yrtph.2013.06.002. [DOI] [PubMed] [Google Scholar]
- 31.Roberts DW, Patlewicz GY. Updating the skin sensitization in vitro data assessment paradigm in 2009—a chemistry and QSAR perspective. Journal of Applied Toxicology. 2010;30(3):286–288. doi: 10.1002/jat.1508. [DOI] [PubMed] [Google Scholar]
- 32.Roberts DW, Patlewicz GY. Nonanimal alternatives for skin sensitization: letter to the editor. Toxicological Sciences. 2008;106(2):572–574. doi: 10.1093/toxsci/kfn181. [DOI] [PubMed] [Google Scholar]
- 33.Estrada E, Patlewicz G, Gutierrez Y. From knowledge generation to knowledge archive. a general strategy using TOPS-MODE with DEREK to formulate new alerts for skin sensitization. Journal of Chemical Information and Computer Sciences. 2004;44(2):688–698. doi: 10.1021/ci0342425. [DOI] [PubMed] [Google Scholar]
- 34.Gerberick GF, Ryan CA, Kern PS, et al. A chemical dataset for evaluation of alternative approaches to skin-sensitization testing. Contact Dermatitis. 2004;50(5):274–288. doi: 10.1111/j.0105-1873.2004.00290.x. [DOI] [PubMed] [Google Scholar]
- 35.Patlewicz GY, Basketter DA, Smith Pease CK, et al. Further evaluation of quantitative structure–activity relationship models for the prediction of the skin sensitization potency of selected fragrance allergens. Contact Dermatitis. 2004;50(2):91–97. doi: 10.1111/j.0105-1873.2004.00322.x. [DOI] [PubMed] [Google Scholar]
- 36.Estrada E, Patlewicz G, Chamberlain M, Basketter D, Larbey S. Computer-aided knowledge generation for understanding skin sensitization mechanisms: the TOPS-MODE approach. Chemical Research in Toxicology. 2003;16(10):1226–1235. doi: 10.1021/tx034093k. [DOI] [PubMed] [Google Scholar]
- 37.Patlewicz G, Rodford R, Walker JD. Quantitative structure-activity relationships for predicting skin and eye irritation. Environmental Toxicology and Chemistry. 2003;22(8):1862–1869. doi: 10.1897/01-439. [DOI] [PubMed] [Google Scholar]
- 38.Patlewicz GY, Rodford RA, Ellis G, Barratt MD. A QSAR model for the eye irritation of cationic surfactants. Toxicology In Vitro. 2000;14(1):79–84. doi: 10.1016/s0887-2333(99)00086-7. [DOI] [PubMed] [Google Scholar]
- 39.Tenorio-Borroto E, Penuelas Rivas CG, Vasquez Chagoyan JC, Castanedo N, Prado-Prado FJ, Garcia-Mera X. ANN multiplexing model of drugs effect on macrophages; theoretical and flow cytometry study on the cytotoxicity of the anti-microbial drug G1 in spleen. Bioorganic & Medicinal Chemistry. 2012;20(20):6181–6194. doi: 10.1016/j.bmc.2012.07.020. [DOI] [PubMed] [Google Scholar]
- 40.Flower DR, McSparron H, Blythe MJ, et al. Computational vaccinology: quantitative approaches. Novartis Foundation Symposium. 2003;254:102–120. [PubMed] [Google Scholar]
- 41.Doytchinova IA, Guan P, Flower DR. Quantitative structure-activity relationships and the prediction of MHC supermotifs. Methods. 2004;34(4):444–453. doi: 10.1016/j.ymeth.2004.06.007. [DOI] [PubMed] [Google Scholar]
- 42.Xiao Y, Segal MR. Prediction of genomewide conserved epitope profiles of HIV-1: classifier choice and peptide representation. Statistical Applications in Genetics and Molecular Biology. 2005;4(1, article 25) doi: 10.2202/1544-6115.1158. [DOI] [PubMed] [Google Scholar]
- 43.Fagerberg T, Zoete V, Viatte S, Baumgaertner P, Alves PM, Romero P, et al. Prediction of cross-recognition of peptide-HLA A2 by melan-a-specific cytotoxic T lymphocytes using three-dimensional quantitative structure-activity relationships. PLoS ONE. 2013;8(7) doi: 10.1371/journal.pone.0065590.e65590 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 44.Barh D, Misra AN, Kumar A, Vasco A. A novel strategy of epitope design in Neisseria gonorrhoeae . Bioinformation. 2010;5(2):77–82. doi: 10.6026/97320630005077. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 45.Bi J, Song R, Yang H, et al. Stepwise identification of HLA-A*0201-restricted CD8+ T-cell epitope peptides from herpes simplex virus type 1 genome boosted by a steprank scheme. Biopolymers. 2011;96(3):328–339. doi: 10.1002/bip.21564. [DOI] [PubMed] [Google Scholar]
- 46.Bremel RD, Homan EJ. An integrated approach to epitope analysis II: a system for proteomic-scale prediction of immunological characteristics. Immunome Research. 2010;6(1, article 8) doi: 10.1186/1745-7580-6-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 47.Diez-Rivero CM, Chenlo B, Zuluaga P, Reche PA. Quantitative modeling of peptide binding to TAP using support vector machine. Proteins. 2010;78(1):63–72. doi: 10.1002/prot.22535. [DOI] [PubMed] [Google Scholar]
- 48.Martínez-Naves E, Lafuente EM, Reche PA. Recognition of the ligand-type specificity of classical and non-classical MHC I proteins. FEBS Letters. 2011;585(21):3478–3484. doi: 10.1016/j.febslet.2011.10.007. [DOI] [PubMed] [Google Scholar]
- 49.Bhasin M, Reinherz EL, Reche PA. Recognition and classification of histones using support vector machine. Journal of Computational Biology. 2006;13(1):102–112. doi: 10.1089/cmb.2006.13.102. [DOI] [PubMed] [Google Scholar]
- 50.Reche PA, Reinherz EL. PEPVAC: a web server for multi-epitope vaccine development based on the prediction of supertypic MHC ligands. Nucleic Acids Research. 2005;33(2):W138–W142. doi: 10.1093/nar/gki357. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 51.Lafuente EM, Reche PA. Prediction of MHC-peptide binding: a systematic and comprehensive overview. Current Pharmaceutical Design. 2009;15(28):3209–3220. doi: 10.2174/138161209789105162. [DOI] [PubMed] [Google Scholar]
- 52.Gaulton A, Bellis LJ, Bento AP, et al. A large-scale bioactivity database for drug discovery. Nucleic Acids Research. 2012:D1100–D1107. doi: 10.1093/nar/gkr777. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 53.Cropper WH. Great Physicists: The Life and Times of Leading Physicists from Galileo to Hawking. New York, NY, USA: Oxford University Press; 2004. [Google Scholar]
- 54.Bouzarth EL, Brooks A, Camassa R, et al. Epicyclic orbits in a viscous fluid about a precessing rod: theory and experiments at the micro-and macro-scales. Physical Review E. 2007;76(1, part 2) doi: 10.1103/PhysRevE.76.016313.016313 [DOI] [PubMed] [Google Scholar]
- 55.Laberge M. Intrinsic protein electric fields: basic non-covalent interactions and relationship to protein-induced Stark effects. Biochimica et Biophysica Acta. 1998;1386(2):305–330. doi: 10.1016/s0167-4838(98)00100-9. [DOI] [PubMed] [Google Scholar]
- 56.Fernandez FM, Morales JA. Perturbation theory without wave functions for the Zeeman effect in hydrogen. Physical Review A. 1992;46(1):318–326. doi: 10.1103/physreva.46.318. [DOI] [PubMed] [Google Scholar]
- 57.Marshall BD, Chapman WG. Thermodynamic perturbation theory for associating fluids with small bond angles: effects of steric hindrance, ring formation, and double bonding. Physical Reiew E. 2013;87(5):12 pages. doi: 10.1103/PhysRevE.87.052307.052307 [DOI] [PubMed] [Google Scholar]
- 58.Gonzalez-Diaz H, Arrasate S, Gomez-San Juan A, et al. New theory for multiple input-output perturbations in complex molecular systems. 1. Linear QSPR electronegativity models in physical, organic, and medicinal chemistry. Current Topics in Medicinal Chemistry. 2013 doi: 10.2174/1568026611313140011. [DOI] [PubMed] [Google Scholar]
- 59.Gonzalez-Diaz H, Arrasate S, Sotomayor N, et al. MIANN models in medicinal, physical and organic chemistry. Current Topics in Medicinal Chemistry. 2013;13(5):619–641. doi: 10.2174/1568026611313050006. [DOI] [PubMed] [Google Scholar]
- 60.Box GEP, Jenkins GM. Time Series Analysis: Forecasting and Control. San Francisco, Calif, USA: Holden-Day; 1970. [Google Scholar]
- 61.Speck-Planche A, Kleandrova VV, Luan F, Cordeiro MN. Unified multi-target approach for the rational in silico design of anti-bladder cancer agents. Anti-Cancer Agents in Medicial Chemistry. 2013;13(5):791–800. doi: 10.2174/1871520611313050013. [DOI] [PubMed] [Google Scholar]
- 62.Speck-Planche A, Kleandrova VV, Cordeiro MN. New insights toward the discovery of antibacterial agents: multi-tasking QSBER model for the simultaneous prediction of anti-tuberculosis activity and toxicological profiles of drugs. The European Journal of Pharmaceutical Sciences. 2013;48(4-5):812–818. doi: 10.1016/j.ejps.2013.01.011. [DOI] [PubMed] [Google Scholar]
- 63.Speck-Planche A, Kleandrova VV, Luan F, Cordeiro MN. Multi-target inhibitors for proteins associated with Alzheimer: in silico discovery using fragment-based descriptors. Current Alzheimer Research. 2013;10(2):117–124. doi: 10.2174/1567205011310020001. [DOI] [PubMed] [Google Scholar]
- 64.Speck-Planche A, Kleandrova VV, Luan F, Cordeiro MN. In silico discovery and virtual screening of multi-target inhibitors for proteins in Mycobacterium tuberculosis. Combinatorial Chemistry & High Throughput Screening. 2012;15(8):666–673. doi: 10.2174/138620712802650487. [DOI] [PubMed] [Google Scholar]
- 65.Speck-Planche A, Kleandrova VV, Luan F, Cordeiro MNDS. Chemoinformatics in anti-cancer chemotherapy: multi-target QSAR model for the in silico discovery of anti-breast cancer agents. The European Journal of Pharmaceutical Sciences. 2012;47(1):273–279. doi: 10.1016/j.ejps.2012.04.012. [DOI] [PubMed] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.