Abstract
In rats and humans, metabolic acidosis stimulates protein degradation and glucocorticoids have been implicated in this response. To evaluate the importance of glucocorticoids in stimulating proteolysis, we measured protein degradation in BC3H1 myocytes cultured in 12% serum. Acidification accelerated protein degradation but dexamethasone did not augment this response. To reduce the influence of glucocorticoids and other hormones and cytokines in 12% serum that could mediate proteolysis, we studied BC3H1 myocytes maintained in only 1% serum. Acidification of the medium or addition of dexamethasone at pH 7.4 did not significantly increase protein degradation, while acidification plus dexamethasone accelerated proteolysis. The steroid receptor antagonist RU 486 prevented this proteolytic response. Acidification of the medium with 1% serum did increase the mRNAs for ubiquitin and the C2 proteasome subunit, but when dexamethasone was added the mRNAs were increased significantly more. The steroid-receptor antagonist RU 486 suppressed this response to the addition of dexamethasone but the mRNAs remained at the levels measured in cells at pH 7.1 alone. Thus, acidification alone can increase the mRNAs of the ubiquitin-proteasome proteolytic pathway, but both acidosis and glucocorticoids are required to stimulate protein degradation. Since these changes occur without adding cytokines or other hormones, we conclude that the proteolytic response to acidification requires glucocorticoids.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akioka H., Forsberg N. E., Ishida N., Okumura K., Nogami M., Taguchi H., Noda C., Tanaka K. Isolation and characterization of the HC8 subunit gene of the human proteasome. Biochem Biophys Res Commun. 1995 Feb 6;207(1):318–323. doi: 10.1006/bbrc.1995.1190. [DOI] [PubMed] [Google Scholar]
- Ballard F. J., Wong S. S., Knowles S. E., Partridge N. C., Martin T. J., Wood C. M., Gunn J. M. Insulin inhibition of protein degradation in cell monolayers. J Cell Physiol. 1980 Nov;105(2):335–346. doi: 10.1002/jcp.1041050216. [DOI] [PubMed] [Google Scholar]
- Brasier A. R., Tate J. E., Habener J. F. Optimized use of the firefly luciferase assay as a reporter gene in mammalian cell lines. Biotechniques. 1989 Nov-Dec;7(10):1116–1122. [PubMed] [Google Scholar]
- Ciechanover A., Gonen H., Elias S., Mayer A. Degradation of proteins by the ubiquitin-mediated proteolytic pathway. New Biol. 1990 Mar;2(3):227–234. [PubMed] [Google Scholar]
- England B. K., Chastain J. L., Mitch W. E. Abnormalities in protein synthesis and degradation induced by extracellular pH in BC3H1 myocytes. Am J Physiol. 1991 Feb;260(2 Pt 1):C277–C282. doi: 10.1152/ajpcell.1991.260.2.C277. [DOI] [PubMed] [Google Scholar]
- Finley D., Chau V. Ubiquitination. Annu Rev Cell Biol. 1991;7:25–69. doi: 10.1146/annurev.cb.07.110191.000325. [DOI] [PubMed] [Google Scholar]
- Fort P., Marty L., Piechaczyk M., el Sabrouty S., Dani C., Jeanteur P., Blanchard J. M. Various rat adult tissues express only one major mRNA species from the glyceraldehyde-3-phosphate-dehydrogenase multigenic family. Nucleic Acids Res. 1985 Mar 11;13(5):1431–1442. doi: 10.1093/nar/13.5.1431. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fujiwara T., Tanaka K., Kumatori A., Shin S., Yoshimura T., Ichihara A., Tokunaga F., Aruga R., Iwanaga S., Kakizuka A. Molecular cloning of cDNA for proteasomes (multicatalytic proteinase complexes) from rat liver: primary structure of the largest component (C2). Biochemistry. 1989 Sep 5;28(18):7332–7340. doi: 10.1021/bi00444a028. [DOI] [PubMed] [Google Scholar]
- Goldberg A. L. The mechanism and functions of ATP-dependent proteases in bacterial and animal cells. Eur J Biochem. 1992 Jan 15;203(1-2):9–23. doi: 10.1111/j.1432-1033.1992.tb19822.x. [DOI] [PubMed] [Google Scholar]
- Goodman M. N. Tumor necrosis factor induces skeletal muscle protein breakdown in rats. Am J Physiol. 1991 May;260(5 Pt 1):E727–E730. doi: 10.1152/ajpendo.1991.260.5.E727. [DOI] [PubMed] [Google Scholar]
- Gulve E. A., Dice J. F. Regulation of protein synthesis and degradation in L8 myotubes. Effects of serum, insulin and insulin-like growth factors. Biochem J. 1989 Jun 1;260(2):377–387. doi: 10.1042/bj2600377. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hall-Angerås M., Angerås U., Zamir O., Hasselgren P. O., Fischer J. E. Interaction between corticosterone and tumor necrosis factor stimulated protein breakdown in rat skeletal muscle, similar to sepsis. Surgery. 1990 Aug;108(2):460–466. [PubMed] [Google Scholar]
- Holtzman E. J., Soper B. W., Stow J. L., Ausiello D. A., Ercolani L. Regulation of the G-protein alpha i-2 subunit gene in LLC-PK1 renal cells and isolation of porcine genomic clones encoding the gene promoter. J Biol Chem. 1991 Jan 25;266(3):1763–1771. [PubMed] [Google Scholar]
- Hwang J. J., Curthoys N. P. Effect of acute alterations in acid-base balance on rat renal glutaminase and phosphoenolpyruvate carboxykinase gene expression. J Biol Chem. 1991 May 25;266(15):9392–9396. [PubMed] [Google Scholar]
- Kaiser S., Curthoys N. P. Effect of pH and bicarbonate on phosphoenolpyruvate carboxykinase and glutaminase mRNA levels in cultured renal epithelial cells. J Biol Chem. 1991 May 25;266(15):9397–9402. [PubMed] [Google Scholar]
- Kalhoff H., Manz F., Diekmann L., Kunz C., Stock G. J., Weisser F. Decreased growth rate of low-birth-weight infants with prolonged maximum renal acid stimulation. Acta Paediatr. 1993 Jun-Jul;82(6-7):522–527. doi: 10.1111/j.1651-2227.1993.tb12742.x. [DOI] [PubMed] [Google Scholar]
- Kettelhut I. C., Wing S. S., Goldberg A. L. Endocrine regulation of protein breakdown in skeletal muscle. Diabetes Metab Rev. 1988 Dec;4(8):751–772. doi: 10.1002/dmr.5610040805. [DOI] [PubMed] [Google Scholar]
- Llovera M., López-Soriano F. J., Argilés J. M. Effects of tumor necrosis factor-alpha on muscle-protein turnover in female Wistar rats. J Natl Cancer Inst. 1993 Aug 18;85(16):1334–1339. doi: 10.1093/jnci/85.16.1334. [DOI] [PubMed] [Google Scholar]
- May R. C., Kelly R. A., Mitch W. E. Metabolic acidosis stimulates protein degradation in rat muscle by a glucocorticoid-dependent mechanism. J Clin Invest. 1986 Feb;77(2):614–621. doi: 10.1172/JCI112344. [DOI] [PMC free article] [PubMed] [Google Scholar]
- May R. C., Masud T., Logue B., Bailey J., England B. K. Metabolic acidosis accelerates whole body protein degradation and leucine oxidation by a glucocorticoid-dependent mechanism. Miner Electrolyte Metab. 1992;18(2-5):245–249. [PubMed] [Google Scholar]
- May R. C., Masud T., Logue B., Bailey J., England B. Chronic metabolic acidosis accelerates whole body proteolysis and oxidation in awake rats. Kidney Int. 1992 Jun;41(6):1535–1542. doi: 10.1038/ki.1992.223. [DOI] [PubMed] [Google Scholar]
- McSherry E., Morris R. C., Jr Attainment and maintenance of normal stature with alkali therapy in infants and children with classic renal tubular acidosis. J Clin Invest. 1978 Feb;61(2):509–527. doi: 10.1172/JCI108962. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Medina R., Wing S. S., Goldberg A. L. Increase in levels of polyubiquitin and proteasome mRNA in skeletal muscle during starvation and denervation atrophy. Biochem J. 1995 May 1;307(Pt 3):631–637. doi: 10.1042/bj3070631. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mitch W. E., Medina R., Grieber S., May R. C., England B. K., Price S. R., Bailey J. L., Goldberg A. L. Metabolic acidosis stimulates muscle protein degradation by activating the adenosine triphosphate-dependent pathway involving ubiquitin and proteasomes. J Clin Invest. 1994 May;93(5):2127–2133. doi: 10.1172/JCI117208. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nawabi M. D., Block K. P., Chakrabarti M. C., Buse M. G. Administration of endotoxin, tumor necrosis factor, or interleukin 1 to rats activates skeletal muscle branched-chain alpha-keto acid dehydrogenase. J Clin Invest. 1990 Jan;85(1):256–263. doi: 10.1172/JCI114421. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pollock A. S., Long J. A. The 5'region of the rat phosphoenolpyruvate carboxykinase gene confers pH sensitivity to chimeric genes expressed in renal and liver cell lines capable of expressing PEPCK. Biochem Biophys Res Commun. 1989 Oct 16;164(1):81–87. doi: 10.1016/0006-291x(89)91685-9. [DOI] [PubMed] [Google Scholar]
- Price S. R., England B. K., Bailey J. L., Van Vreede K., Mitch W. E. Acidosis and glucocorticoids concomitantly increase ubiquitin and proteasome subunit mRNAs in rat muscle. Am J Physiol. 1994 Oct;267(4 Pt 1):C955–C960. doi: 10.1152/ajpcell.1994.267.4.C955. [DOI] [PubMed] [Google Scholar]
- Reaich D., Channon S. M., Scrimgeour C. M., Goodship T. H. Ammonium chloride-induced acidosis increases protein breakdown and amino acid oxidation in humans. Am J Physiol. 1992 Oct;263(4 Pt 1):E735–E739. doi: 10.1152/ajpendo.1992.263.4.E735. [DOI] [PubMed] [Google Scholar]
- Schlesinger M. J., Bond U. Ubiquitin genes. Oxf Surv Eukaryot Genes. 1987;4:77–91. [PubMed] [Google Scholar]
- Strelkov A. B., Fields A. L., Baracos V. E. Effects of systemic inhibition of prostaglandin production on protein metabolism in tumor-bearing rats. Am J Physiol. 1989 Aug;257(2 Pt 1):C261–C269. doi: 10.1152/ajpcell.1989.257.2.C261. [DOI] [PubMed] [Google Scholar]
- Tamura T., Osaka F., Kawamura Y., Higuti T., Ishida N., Nothwang H. G., Tsurumi C., Tanaka K., Ichihara A. Isolation and characterization of alpha-type HC3 and beta-type HC5 subunit genes of human proteasomes. J Mol Biol. 1994 Nov 18;244(1):117–124. doi: 10.1006/jmbi.1994.1710. [DOI] [PubMed] [Google Scholar]
- Tong J., Shapiro R. A., Curthoys N. P. Changes in the levels of translatable glutaminase mRNA during onset and recovery from metabolic acidosis. Biochemistry. 1987 May 19;26(10):2773–2777. doi: 10.1021/bi00384a018. [DOI] [PubMed] [Google Scholar]
- Vandenburgh H., Kaufman S. Protein degradation in embryonic skeletal muscle. Effect of medium, cell type, inhibitors, and passive stretch. J Biol Chem. 1980 Jun 25;255(12):5826–5833. [PubMed] [Google Scholar]
- Wing S. S., Goldberg A. L. Glucocorticoids activate the ATP-ubiquitin-dependent proteolytic system in skeletal muscle during fasting. Am J Physiol. 1993 Apr;264(4 Pt 1):E668–E676. doi: 10.1152/ajpendo.1993.264.4.E668. [DOI] [PubMed] [Google Scholar]