Abstract
Fluorescence spectroscopy was used to characterize blue light responses from chloroplasts of adaxial guard cells from Pima cotton (Gossypium barbadense) and coleoptile tips from corn (Zea mays). The chloroplast response to blue light was quantified by measurements of the blue light-induced enhancement of a red light-stimulated quenching of chlorophyll a fluorescence. In adaxial (upper) guard cells, low fluence rates of blue light applied under saturating fluence rates of red light enhanced the red light-stimulated fluorescence quenching by up to 50%. In contrast, added blue light did not alter the red light-stimulated quenching from abaxial (lower) guard cells. This response pattern paralleled the blue light sensitivity of stomatal opening in the two leaf surfaces. An action spectrum for the blue light-induced enhancement of the red light-stimulated quenching showed a major peak at 450 nm and two minor peaks at 420 and 470 nm. This spectrum matched closely an action spectrum for blue light-stimulated stomatal opening. Coleoptile chloroplasts also showed an enhancement by blue light of red light-stimulated quenching. The action spectrum of this response, showing a major peak at 450 nm, a minor peak at 470 nm, and a shoulder at 430 nm, closely matched an action spectrum for blue light-stimulated coleoptile phototropism. Both action spectra match the absorption spectrum of zeaxanthin, a chloroplastic carotenoid recently implicated in blue light photoreception of both guard cells and coleoptiles. The remarkable similarity between the action spectra for the blue light responses of guard cells and coleoptile chloroplasts and the spectra for blue light-stimulated stomatal opening and phototropism, coupled to the recently reported evidence on a role of zeaxanthin in blue light photoreception, indicates that the guard cell and coleoptile chloroplasts specialize in sensory transduction.
Full text
PDF![2224](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb51/39939/b8f05f6d9ed3/pnas01509-0499.png)
![2225](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb51/39939/d30410dd0f10/pnas01509-0500.png)
![2226](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb51/39939/fa0666137624/pnas01509-0501.png)
![2227](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb51/39939/83ca10a59a8e/pnas01509-0502.png)
![2228](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb51/39939/b9cc3438db21/pnas01509-0503.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amodeo G., Srivastava A., Zeiger E. Vanadate inhibits blue light-stimulated swelling of vicia guard cell protoplasts. Plant Physiol. 1992 Nov;100(3):1567–1570. doi: 10.1104/pp.100.3.1567. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Assmann S. M. Signal transduction in guard cells. Annu Rev Cell Biol. 1993;9:345–375. doi: 10.1146/annurev.cb.09.110193.002021. [DOI] [PubMed] [Google Scholar]
- Horton P., Ruban A. V., Walters R. G. Regulation of Light Harvesting in Green Plants (Indication by Nonphotochemical Quenching of Chlorophyll Fluorescence). Plant Physiol. 1994 Oct;106(2):415–420. doi: 10.1104/pp.106.2.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaufman L. S. Transduction of Blue-Light Signals. Plant Physiol. 1993 Jun;102(2):333–337. doi: 10.1104/pp.102.2.333. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kinoshita T., Nishimura M., Shimazaki Ki. Cytosolic Concentration of Ca2+ Regulates the Plasma Membrane H+-ATPase in Guard Cells of Fava Bean. Plant Cell. 1995 Aug;7(8):1333–1342. doi: 10.1105/tpc.7.8.1333. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mawson B. T., Zeiger E. Blue light-modulation of chlorophyll a fluorescence transients in guard cell chloroplasts. Plant Physiol. 1991 Jul;96(3):753–760. doi: 10.1104/pp.96.3.753. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Quiñlones M. A., Zeiger E. A putative role of the xanthophyll, zeaxanthin, in blue light photoreception of corn coleoptiles. Science. 1994 Apr 22;264(5158):558–561. doi: 10.1126/science.264.5158.558. [DOI] [PubMed] [Google Scholar]
- Serrano E. E., Zeiger E., Hagiwara S. Red light stimulates an electrogenic proton pump in Vicia guard cell protoplasts. Proc Natl Acad Sci U S A. 1988 Jan;85(2):436–440. doi: 10.1073/pnas.85.2.436. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shropshire W., Withrow R. B. Action Spectrum of Phototropic Tip-Curvature of Avena. Plant Physiol. 1958 Sep;33(5):360–365. doi: 10.1104/pp.33.5.360. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Srivastava A., Zeiger E. Fast Fluorescence Quenching from Isolated Guard Cell Chloroplasts of Vicia faba Is Induced by Blue Light and Not by Red Light. Plant Physiol. 1992 Nov;100(3):1562–1566. doi: 10.1104/pp.100.3.1562. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zeiger E., Field C. Photocontrol of the Functional Coupling between Photosynthesis and Stomatal Conductance in the Intact Leaf : Blue Light and Par-Dependent Photosystems in Guard Cells. Plant Physiol. 1982 Aug;70(2):370–375. doi: 10.1104/pp.70.2.370. [DOI] [PMC free article] [PubMed] [Google Scholar]