Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Jan 8;70(Pt 2):o120. doi: 10.1107/S1600536813034995

(2R,3S,4R,5R)-5-(4-Amino-5-iodo-7H-pyrrolo­[2,3-d]pyrimidin-7-yl)-4-fluoro-2-(hy­droxy­meth­yl)tetra­hydro­furan-3-ol

Wei Li a, Ruchun Yang a,*, Qiang Xiao a
PMCID: PMC3998288  PMID: 24764849

Abstract

The title compound, C11H12FIN4O3, is composed of a 7-carbapurine moiety connected via an N atom to 2-de­oxy-2-fluoro-β-d-ribose. The conformation about the N-glycosydic bond is −anti with χ = −129.0 (11)°. The glycosydic N—C bond length is 1.435 (14) Å. The sugar ring adopts an Nconformation with an unsymmetrical twist O-endo-C-exo (oT4). The conformation around the C—C bond is +sc, with a torsion angle of 53.0 (12)°. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds, forming chains propagating along the a axis. These chains are linked via O—H⋯I and C—H⋯O hydrogen bonds, forming layers lying parallel to the c axis.

Related literature  

For the biological activity of fluorinated nucleosides, see: Etzold et al. (1971); Hertel et al. (1988); Watanabe et al. (1979). For puckering amplitudes, see: Saenger (1983). For sugar ring conformations, see: Evans & Boeyens (1989). graphic file with name e-70-0o120-scheme1.jpg

Experimental  

Crystal data  

  • C11H12FIN4O3

  • M r = 394.15

  • Triclinic, Inline graphic

  • a = 5.2602 (4) Å

  • b = 7.1570 (6) Å

  • c = 9.0126 (10) Å

  • α = 84.533 (8)°

  • β = 83.400 (8)°

  • γ = 78.679 (7)°

  • V = 329.57 (5) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 2.46 mm−1

  • T = 293 K

  • 0.40 × 0.20 × 0.10 mm

Data collection  

  • Agilent Xcalibur (Eos, Gemini) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013) T min = 0.440, T max = 0.791

  • 1874 measured reflections

  • 1657 independent reflections

  • 1657 reflections with I > 2σ(I)

  • R int = 0.012

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.101

  • S = 1.12

  • 1657 reflections

  • 184 parameters

  • 543 restraints

  • H-atom parameters constrained

  • Δρmax = 0.81 e Å−3

  • Δρmin = −0.95 e Å−3

  • Absolute structure: Flack (1983)

  • Absolute structure parameter: −0.02 (4)

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813034995/kp2461sup1.cif

e-70-0o120-sup1.cif (16.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813034995/kp2461Isup2.hkl

e-70-0o120-Isup2.hkl (81.6KB, hkl)

Supporting information file. DOI: 10.1107/S1600536813034995/kp2461Isup3.cml

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O3i 0.98 2.60 3.247 (11) 124
N1—H1A⋯O3ii 0.86 2.55 3.189 (13) 132
O2—H2⋯I1iii 0.82 2.35 2.9933 136

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

This work was supported by National Natural Science Foundation (NSFC, Nos. 20962009, 21062006) and the Science Fund of the Education Office of Jiangxi (GJJ12583).

supplementary crystallographic information

1. Comment

Fluorinated nucleosides, containing fluorine atom(s) or fluorine containing groups in the sugar moiety or in the base moiety of nucleosides, greatly improve the bioactivity and stability of the corresponding compounds. The noteworthy of the fluorinated nucleosides are FMAU, FIAC, FLT, gemcitabine (Etzold, et al., 1971; Watanabe, et al., 1979; Hertel, et al., 1988), which have high antiherpes and in some cases antitumour activities.

In our study, we report a fluorinated nucleoside (Fig. 1). The three-dimensional structure and the packing of the title compound is shown Fig. 2 and hydrogen bonds geometry are summarized in Table 1. The orientation of the base relative to the sugar of purine nucleosides is defined by the torsion angle χ (O1-C7-N4-C5),being in the title compound -anti, withχ= –129.0 (11)°. The phase angle of pseudorotation (P)is 67.6 (11)°, and the maximum amplitude of puckering (τm) is 39.5 (7)° (Saenger, 1983). The sugar ring adopts a D conformation (Evans & Boeyens, 1989), with an unsymmetrical twist O1-endo-C10-exo(oT4). The packing of the title compound is stabilized by hydrogen bonds, leading to a two-dimensional network (Fig. 3 and Table 1). The nucleobases are arranged head-to-head in a staircase-like fashion, in a pattern propagated by the a axis of the unit cell.

2. Experimental

Synthesis of compound 1

2-Deoxy-2-fluoro-3,5-di-O-benzoyl-α-D-arabinofuranosyl bromide (66.4 mg, 1.57 mmol) was added into a well-stirred mixture of 6-chloro-7-iodo-pyrrole[2,3-d]pyrimidine (400 mg, 1.43 mmol), potassium hydroxide (281.1 mg, 5.01 mmol) in anhydrous CH3CN (8 mL) at 273 K. The reaction mixture was allowed to warm to room temperature and kept for 16 h. After the solvent was removed in vacuo, the residue was purified by column chromatography on silicagel to give I as a white solids.

Synthesis of compound 2

1(220.0 mg, 0.354 mmol) was suspended in 30 mL saturated methanolic ammonia and the solution was heated in a sealed bottle at 403 K for 12 h. The solution was evaporated in vacuo. The residue was purified by column chromatography on silica gel to afford 2 as a white solids. Crystals of the title compound (2) were obtained by slow evaporation of methanol.

3. Refinement

H atoms bond to N were located in a difference map and refined with distance of N—H = 0.86 Å or O—H = 0.82 Å and Uiso(H) = 1.2Ueq(N). other H atoms attached to C were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl) or 0.93 Å (aromatic) and with Uiso(H) = 1.2Ueq(aromatic) or Uiso(H) = 1.5Ueq(methyl).

Figures

Fig. 1.

Fig. 1.

Displacement ellipsoid plot of C11H12FIN4O3 are drawn at the 30% probability level and H atoms are represented as small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

Synthesis method of the title compound.

Fig. 3.

Fig. 3.

The packing of the title compound. Green lines indicate the hydrogen bonds.

Crystal data

C11H12FIN4O3 Z = 1
Mr = 394.15 F(000) = 192
Triclinic, P1 Dx = 1.986 Mg m3
Hall symbol: P 1 Mo Kα radiation, λ = 0.71073 Å
a = 5.2602 (4) Å Cell parameters from 1312 reflections
b = 7.1570 (6) Å θ = 2.9–28.5°
c = 9.0126 (10) Å µ = 2.46 mm1
α = 84.533 (8)° T = 293 K
β = 83.400 (8)° Block, colourless
γ = 78.679 (7)° 0.40 × 0.20 × 0.10 mm
V = 329.57 (5) Å3

Data collection

Agilent Xcalibur (Eos, Gemini) diffractometer 1657 independent reflections
Radiation source: Enhance (Mo) X-ray Source 1657 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.012
ω scans θmax = 25.0°, θmin = 2.9°
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013) h = −6→6
Tmin = 0.440, Tmax = 0.791 k = −8→7
1874 measured reflections l = −10→10

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.035 w = 1/[σ2(Fo2) + (0.0711P)2 + 0.4273P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.101 (Δ/σ)max < 0.001
S = 1.12 Δρmax = 0.81 e Å3
1657 reflections Δρmin = −0.95 e Å3
184 parameters Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
543 restraints Extinction coefficient: 0.067 (7)
Primary atom site location: structure-invariant direct methods Absolute structure: Flack (1983)
Secondary atom site location: difference Fourier map Absolute structure parameter: −0.02 (4)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
I1 0.1930 0.6449 0.3463 0.0308 (2)
F1 0.429 (2) 0.7543 (16) 0.9462 (11) 0.057 (3)
N1 0.461 (2) 1.0608 (16) 0.2063 (11) 0.048 (2)
H1A 0.4856 1.1477 0.1362 0.058*
H1B 0.3686 0.9781 0.1935 0.058*
N2 0.711 (2) 1.1864 (12) 0.3508 (12) 0.035 (2)
N3 0.8208 (15) 1.0496 (10) 0.5935 (8) 0.0301 (14)
N4 0.667 (2) 0.7549 (14) 0.6696 (13) 0.026 (2)
O1 0.936 (3) 0.4908 (14) 0.7689 (12) 0.032 (2)
O2 0.8391 (16) 0.4981 (11) 1.1671 (8) 0.0393 (16)
H2 0.9573 0.5579 1.1665 0.059*
O3 0.7857 (18) 0.1388 (10) 0.8929 (8) 0.0499 (19)
H3 0.6824 0.2335 0.8651 0.075*
C1 0.430 (2) 0.7432 (14) 0.4790 (11) 0.0288 (17)
C2 0.5445 (15) 0.9116 (11) 0.4542 (9) 0.0231 (15)
C3 0.567 (2) 1.0544 (15) 0.3346 (11) 0.0299 (19)
C4 0.820 (2) 1.1806 (15) 0.4769 (12) 0.034 (2)
H4 0.9075 1.2797 0.4856 0.040*
C5 0.6830 (16) 0.9159 (11) 0.5735 (9) 0.0239 (15)
C6 0.5113 (16) 0.6501 (12) 0.6100 (9) 0.0266 (16)
H6 0.4693 0.5350 0.6525 0.032*
C7 0.8350 (17) 0.6879 (12) 0.7859 (9) 0.0278 (16)
H7 0.9788 0.7584 0.7741 0.033*
C8 0.7021 (19) 0.6988 (13) 0.9462 (10) 0.0327 (17)
H8 0.7699 0.7901 0.9980 0.039*
C9 0.774 (2) 0.4980 (17) 1.0223 (16) 0.025 (2)
H9 0.6276 0.4317 1.0244 0.030*
C10 0.9965 (18) 0.4065 (12) 0.9139 (10) 0.0289 (16)
H10 1.1607 0.4371 0.9366 0.035*
C11 1.022 (2) 0.1922 (15) 0.9151 (13) 0.045 (2)
H11A 1.1544 0.1445 0.8369 0.055*
H11B 1.0774 0.1335 1.0104 0.055*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
I1 0.0289 (3) 0.0375 (3) 0.0286 (3) −0.01214 (17) −0.00417 (17) −0.00181 (17)
F1 0.056 (5) 0.064 (6) 0.032 (4) 0.024 (4) 0.007 (3) 0.009 (4)
N1 0.061 (6) 0.051 (5) 0.037 (5) −0.022 (5) −0.025 (5) 0.025 (4)
N2 0.044 (4) 0.030 (5) 0.031 (4) −0.012 (5) −0.008 (3) 0.016 (4)
N3 0.042 (3) 0.027 (3) 0.024 (3) −0.014 (3) −0.007 (3) 0.004 (3)
N4 0.038 (4) 0.023 (4) 0.017 (3) −0.011 (3) −0.006 (3) 0.010 (3)
O1 0.048 (4) 0.023 (3) 0.023 (4) −0.006 (3) 0.001 (3) 0.006 (3)
O2 0.057 (4) 0.048 (4) 0.021 (3) −0.029 (3) −0.017 (3) 0.010 (3)
O3 0.096 (6) 0.031 (4) 0.031 (4) −0.030 (4) −0.011 (4) −0.002 (3)
C1 0.030 (3) 0.027 (4) 0.029 (4) −0.010 (3) −0.004 (3) 0.012 (3)
C2 0.029 (3) 0.022 (3) 0.017 (3) −0.008 (3) −0.001 (3) 0.010 (3)
C3 0.035 (4) 0.029 (4) 0.024 (4) −0.008 (3) −0.005 (4) 0.012 (3)
C4 0.042 (5) 0.031 (4) 0.028 (4) −0.011 (4) −0.005 (4) 0.011 (4)
C5 0.033 (3) 0.020 (3) 0.018 (3) −0.007 (3) −0.003 (3) 0.005 (3)
C6 0.035 (3) 0.027 (3) 0.018 (3) −0.012 (3) −0.002 (3) 0.007 (3)
C7 0.040 (3) 0.027 (3) 0.019 (3) −0.013 (3) −0.008 (3) 0.006 (3)
C8 0.051 (4) 0.028 (4) 0.019 (3) −0.009 (3) −0.008 (3) 0.006 (3)
C9 0.038 (5) 0.023 (4) 0.020 (4) −0.016 (4) −0.017 (4) 0.007 (3)
C10 0.039 (4) 0.026 (4) 0.024 (4) −0.009 (3) −0.013 (3) 0.005 (3)
C11 0.062 (5) 0.033 (4) 0.037 (5) −0.001 (4) −0.014 (4) 0.008 (4)

Geometric parameters (Å, º)

I1—C1 2.080 (11) O3—H3 0.8200
F1—C8 1.411 (16) C1—C6 1.369 (13)
N1—C3 1.332 (14) C1—C2 1.438 (13)
N1—H1A 0.8600 C2—C5 1.372 (12)
N1—H1B 0.8600 C2—C3 1.424 (12)
N2—C4 1.326 (16) C4—H4 0.9300
N2—C3 1.350 (18) C6—H6 0.9300
N3—C4 1.340 (12) C7—C8 1.533 (12)
N3—C5 1.345 (11) C7—H7 0.9800
N4—C5 1.384 (12) C8—C9 1.529 (14)
N4—C6 1.393 (15) C8—H8 0.9800
N4—C7 1.435 (14) C9—C10 1.519 (17)
O1—C7 1.423 (14) C9—H9 0.9800
O1—C10 1.428 (13) C10—C11 1.512 (13)
O2—C9 1.387 (16) C10—H10 0.9800
O2—H2 0.8200 C11—H11A 0.9700
O3—C11 1.408 (15) C11—H11B 0.9700
C3—N1—H1A 120.0 O1—C7—C8 105.9 (7)
C3—N1—H1B 120.0 N4—C7—C8 115.4 (8)
H1A—N1—H1B 120.0 O1—C7—H7 109.4
C4—N2—C3 119.3 (9) N4—C7—H7 109.4
C4—N3—C5 111.9 (8) C8—C7—H7 109.4
C5—N4—C6 107.7 (9) F1—C8—C9 110.9 (9)
C5—N4—C7 124.2 (10) F1—C8—C7 111.0 (8)
C6—N4—C7 126.3 (8) C9—C8—C7 105.6 (8)
C7—O1—C10 106.5 (9) F1—C8—H8 109.8
C9—O2—H2 109.5 C9—C8—H8 109.8
C11—O3—H3 109.5 C7—C8—H8 109.8
C6—C1—C2 106.7 (9) O2—C9—C10 114.3 (9)
C6—C1—I1 124.3 (7) O2—C9—C8 113.1 (10)
C2—C1—I1 129.0 (6) C10—C9—C8 101.9 (9)
C5—C2—C3 116.5 (8) O2—C9—H9 109.1
C5—C2—C1 107.4 (7) C10—C9—H9 109.1
C3—C2—C1 135.8 (9) C8—C9—H9 109.1
N1—C3—N2 118.4 (9) O1—C10—C11 108.9 (8)
N1—C3—C2 123.8 (10) O1—C10—C9 105.4 (9)
N2—C3—C2 117.7 (9) C11—C10—C9 113.3 (9)
N2—C4—N3 127.9 (10) O1—C10—H10 109.7
N2—C4—H4 116.0 C11—C10—H10 109.7
N3—C4—H4 116.0 C9—C10—H10 109.7
N3—C5—C2 126.4 (7) O3—C11—C10 112.3 (8)
N3—C5—N4 124.6 (9) O3—C11—H11A 109.1
C2—C5—N4 108.9 (8) C10—C11—H11A 109.1
C1—C6—N4 109.2 (8) O3—C11—H11B 109.1
C1—C6—H6 125.4 C10—C11—H11B 109.1
N4—C6—H6 125.4 H11A—C11—H11B 107.9
O1—C7—N4 107.3 (9)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C8—H8···O3i 0.98 2.60 3.247 (11) 124
N1—H1A···O3ii 0.86 2.55 3.189 (13) 132
O2—H2···I1iii 0.82 2.35 2.9933 136

Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z−1; (iii) x+1, y, z+1.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: KP2461).

References

  1. Agilent (2013). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Etzold, G., Hintsche, R., Kowollik, G. & Langen, P. (1971). Tetrahedron, 27, 2463–2472.
  3. Evans, D. G. & Boeyens, J. C. A. (1989). Acta Cryst. B45, 581–590.
  4. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  5. Hertel, L. W., Kroin, J. S., Misner, J. W. & Tustin, J. M. (1988). J. Org. Chem., 53, 2406–2409.
  6. Saenger, W. (1983). Principles of Nucleic Acid Structure, p. 19. New York: Springer.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Watanabe, K. A., Reichman, U., Hirota, K., Lopez, C. & Fox, J. J. (1979). J. Med. Chem. 22, 21–24. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813034995/kp2461sup1.cif

e-70-0o120-sup1.cif (16.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813034995/kp2461Isup2.hkl

e-70-0o120-Isup2.hkl (81.6KB, hkl)

Supporting information file. DOI: 10.1107/S1600536813034995/kp2461Isup3.cml

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES