Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Jan 11;70(Pt 2):o129. doi: 10.1107/S1600536814000464

Di­ethyl­ammonium di­hydrogen orthophosphate

Peter Held a,*
PMCID: PMC3998295  PMID: 24764856

Abstract

In the title molecular salt, [NH2(CH2CH3)2][H2PO4], two unique types of cations and anions, which are configurationally very similar, are present in the asymmetric unit. Both ions form sheets approximately parallel to (-1-1) linked by weak hydrogen bonds. The inter­connection within and between the sheets is reinforced by O—H⋯O and N—H⋯O hydrogen bonds involving the tetra­hedral H2PO4 anions and the ammonium groups.

Related literature  

For preparative details, see: Hanna et al. (1999). For related structures, see: Averbuch-Pouchot et al. (1987); Held (2003). graphic file with name e-70-0o129-scheme1.jpg

Experimental  

Crystal data  

  • C4H12N+·H2PO4

  • M r = 171.13

  • Triclinic, Inline graphic

  • a = 8.3643 (6) Å

  • b = 8.8308 (15) Å

  • c = 11.6446 (12) Å

  • α = 88.219 (10)°

  • β = 83.649 (7)°

  • γ = 79.700 (7)°

  • V = 841.00 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 295 K

  • 0.30 × 0.28 × 0.26 mm

Data collection  

  • Nonius MACH3 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.858, T max = 0.998

  • 10831 measured reflections

  • 5096 independent reflections

  • 3164 reflections with I > 2σ(I)

  • R int = 0.037

  • 3 standard reflections every 100 reflections intensity decay: −6.3%

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.119

  • S = 0.98

  • 5096 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.39 e Å−3

Data collection: CAD-4 (Enraf–Nonius, 1989); cell refinement: CAD-4; data reduction: WinGX (Farrugia, 2012); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ATOMS (Dowty, 2002) and ORTEP-3 for Windows (Farrugia, 2012)’; software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536814000464/wm2794sup1.cif

e-70-0o129-sup1.cif (23.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814000464/wm2794Isup2.hkl

e-70-0o129-Isup2.hkl (249.6KB, hkl)

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O13—H13⋯O21i 0.82 1.78 2.5851 (19) 166
O14—H14⋯O12ii 0.82 1.83 2.6058 (19) 158
O24—H24⋯O22iii 0.82 1.95 2.585 (2) 133
O23—H23⋯O11i 0.82 1.84 2.620 (2) 158
N1—H1A⋯O22iv 0.90 1.88 2.779 (2) 174
N1—H1B⋯O21v 0.90 1.87 2.769 (2) 177
N2—H2A⋯O11vi 0.90 1.87 2.714 (2) 155
N2—H2B⋯O12 0.90 1.91 2.795 (2) 168

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

supplementary crystallographic information

1. Comment

In the course of a systematic search for new 'double salts' of simple secondary amines and monovalent cations of various inorganic acids (Averbuch-Pouchot et al., 1987), the new structure of (C2N2H10)Li2(SO4)2 was described (Held, 2003). In continuation of these studies, sulfuric acid has been replaced with phosphoric acid in order to get an analogous lithium compound with a tetrahedral phosphoric unit. Moreover, ethylenediamine has been replaced with diethylamine. Surprisingly, lithium was not incorporated in the solid product and only the title compound, [NH2(CH2CH3)2]+[H2PO4]-, was finally obtained, the crystal structure of which is reported herein.

The crystal structure of [NH2(CH2CH3)2]+[H2PO4]- consists of diethylammonium cations, NH2(CH2CH3)2+, and dihydrogen orthophosphate anions, H2PO4- (Fig. 1). The ions form sheets approximately parallel to (112). The interconnection within and between the sheets is reinforced by a hydrogen bonding system between the tetrahedral dihydrogen orthophosphate groups on one hand and between the ammonium function and the H2PO4- units on the other (Figs. 2,3; Table 1).

2. Experimental

The title compound was obtained by reaction of an aqueous solution of lithium dihydrogenposphate with diethylammine in a stoichiometric ratio 1:1 (Hanna et al., 1999). The solution was kept at room temperature by cooling. The title compound crystallized by slow evaporation of the solvent at room temperature in form of colourless crystals with dimensions up to 4 mm within a few days.

Differential scanning calorimetry with a PerkinElmer DSC7 device in the temperature range from 183 K up to 293 K showed no significant feature.

3. Refinement

The H atoms were clearly discernible from difference Fourier maps. However, to all hydrogen atoms riding model contraints were applied in the least squares refinement, with C—H = 0.96 Å for methyl H atoms (Uiso(H) = 1.5Ueq(C)), with C—H = 0.97 (Uiso(H) = 1.2Ueq(C)) for methylene H atoms, with N—H = 0.90 Å (Uiso(H) = 1.2Ueq(N)) and with O—H = 0.82 Å (Uiso(H) = 1.2Ueq(O)).

Figures

Fig. 1.

Fig. 1.

The molecular entities in the structure of [NH2(CH2CH3)2]+[H2PO4]-, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H labels were omitted for clarity.

Fig. 2.

Fig. 2.

The unit cell of [NH2(CH2CH3)2]+[H2PO4]- with colour scheme: N (orange), O (blue), [H2PO4]-tetrahedra (blue), P (red), C grey) and H (white). Hydrogen bonds (light blue) between H2PO4 tetrahedra and hydrogen bonds (orange) between ammonium groups and H2PO4 tetrahedra are shown.

Fig. 3.

Fig. 3.

Clinographic projection of eight unit cells of [NH2(CH2CH3)2]+[H2PO4]-. The ionic units form sheets approximately parallel to (112). Hydrogen bonds (grey) interconnect the sheets.

Crystal data

C4H12N+·H2PO4 Z = 4
Mr = 171.13 F(000) = 368
Triclinic, P1 Dx = 1.352 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.3643 (6) Å Cell parameters from 25 reflections
b = 8.8308 (15) Å θ = 21.0–26.0°
c = 11.6446 (12) Å µ = 0.29 mm1
α = 88.219 (10)° T = 295 K
β = 83.649 (7)° Parallelepiped, colourless
γ = 79.700 (7)° 0.30 × 0.28 × 0.26 mm
V = 841.00 (18) Å3

Data collection

Nonius MACH3 diffractometer 3164 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.037
Graphite monochromator θmax = 30.4°, θmin = 2.5°
ω/2θ scans h = −11→11
Absorption correction: ψ scan (North et al., 1968) k = −12→12
Tmin = 0.858, Tmax = 0.998 l = −16→16
10831 measured reflections 3 standard reflections every 100 reflections
5096 independent reflections intensity decay: −6.3%

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119 H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0553P)2 + 0.1855P] where P = (Fo2 + 2Fc2)/3
5096 reflections (Δ/σ)max < 0.001
181 parameters Δρmax = 0.37 e Å3
0 restraints Δρmin = −0.39 e Å3

Special details

Experimental. A suitable single-crystal was carefully selected under a polarizing microscope and mounted in a glass capillary.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
P1 0.16567 (5) 0.37327 (5) 0.60452 (4) 0.02736 (12)
O11 0.33132 (15) 0.27994 (16) 0.61779 (12) 0.0362 (3)
O12 0.16402 (16) 0.53915 (15) 0.56977 (12) 0.0365 (3)
O13 0.05039 (16) 0.36883 (18) 0.71998 (12) 0.0426 (4)
H13 0.0986 0.3119 0.7669 0.064*
O14 0.08747 (18) 0.29249 (16) 0.51243 (13) 0.0418 (3)
H14 −0.0034 0.3416 0.5037 0.063*
P2 0.67897 (6) −0.09624 (6) 0.11311 (4) 0.03332 (13)
O21 0.83801 (17) −0.20760 (18) 0.10779 (12) 0.0431 (4)
O22 0.68455 (18) 0.04631 (17) 0.03943 (13) 0.0454 (4)
O23 0.6256 (2) −0.04343 (17) 0.24046 (13) 0.0502 (4)
H23 0.6138 −0.1185 0.2816 0.075*
O24 0.54703 (19) −0.18437 (17) 0.07620 (15) 0.0540 (4)
H24 0.4588 −0.1259 0.0784 0.081*
C11 0.2499 (4) 0.5728 (3) −0.0009 (3) 0.0663 (7)
H11A 0.3010 0.4677 −0.0143 0.100*
H11B 0.1790 0.5792 0.0702 0.100*
H11C 0.3322 0.6346 0.0040 0.100*
C12 0.1521 (3) 0.6303 (3) −0.0985 (2) 0.0551 (6)
H12A 0.2234 0.6223 −0.1705 0.066*
H12B 0.0700 0.5668 −0.1043 0.066*
N1 0.0712 (2) 0.7927 (2) −0.08051 (14) 0.0389 (4)
H1A 0.1462 0.8472 −0.0629 0.047*
H1B −0.0049 0.7962 −0.0192 0.047*
C13 −0.0092 (4) 0.8696 (3) −0.1815 (2) 0.0633 (7)
H13A −0.0518 0.9767 −0.1634 0.076*
H13B 0.0719 0.8668 −0.2481 0.076*
C14 −0.1460 (4) 0.7938 (4) −0.2114 (2) 0.0674 (8)
H14A −0.1939 0.8467 −0.2759 0.101*
H14B −0.2275 0.7978 −0.1461 0.101*
H14C −0.1040 0.6884 −0.2311 0.101*
C21 0.2697 (4) 0.9059 (3) 0.4832 (3) 0.0767 (9)
H21A 0.2125 1.0088 0.4722 0.115*
H21B 0.3793 0.9091 0.4988 0.115*
H21C 0.2144 0.8581 0.5472 0.115*
C22 0.2739 (3) 0.8160 (3) 0.3772 (2) 0.0530 (6)
H22A 0.3283 0.8650 0.3122 0.064*
H22B 0.1632 0.8138 0.3608 0.064*
N2 0.36206 (19) 0.65586 (19) 0.39194 (14) 0.0387 (4)
H2A 0.4643 0.6596 0.4076 0.046*
H2B 0.3118 0.6126 0.4535 0.046*
C23 0.3717 (3) 0.5556 (3) 0.2904 (2) 0.0524 (6)
H23A 0.4293 0.5993 0.2242 0.063*
H23B 0.2622 0.5520 0.2721 0.063*
C24 0.4584 (3) 0.3952 (3) 0.3128 (2) 0.0599 (7)
H24A 0.4627 0.3337 0.2456 0.090*
H24B 0.4005 0.3509 0.3773 0.090*
H24C 0.5675 0.3983 0.3297 0.090*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
P1 0.0192 (2) 0.0322 (2) 0.0307 (2) −0.00441 (17) −0.00520 (17) 0.00718 (18)
O11 0.0191 (6) 0.0458 (8) 0.0417 (8) −0.0025 (5) −0.0037 (5) 0.0122 (6)
O12 0.0325 (7) 0.0347 (7) 0.0448 (8) −0.0102 (6) −0.0119 (6) 0.0110 (6)
O13 0.0254 (7) 0.0588 (9) 0.0371 (7) 0.0040 (6) 0.0011 (6) 0.0160 (7)
O14 0.0397 (8) 0.0365 (7) 0.0507 (9) −0.0017 (6) −0.0193 (7) −0.0035 (6)
P2 0.0281 (2) 0.0350 (3) 0.0388 (3) −0.00980 (19) −0.0092 (2) 0.0130 (2)
O21 0.0312 (7) 0.0590 (9) 0.0344 (7) 0.0011 (6) −0.0025 (6) 0.0143 (7)
O22 0.0428 (8) 0.0464 (8) 0.0549 (9) −0.0229 (7) −0.0227 (7) 0.0253 (7)
O23 0.0586 (10) 0.0409 (8) 0.0447 (9) 0.0048 (7) −0.0021 (7) 0.0069 (7)
O24 0.0470 (9) 0.0392 (8) 0.0850 (12) −0.0202 (7) −0.0334 (8) 0.0228 (8)
C11 0.0626 (17) 0.0470 (14) 0.092 (2) −0.0091 (12) −0.0194 (16) −0.0012 (14)
C12 0.0502 (14) 0.0593 (15) 0.0571 (15) −0.0138 (11) 0.0012 (11) −0.0197 (12)
N1 0.0366 (9) 0.0481 (10) 0.0361 (9) −0.0195 (8) −0.0036 (7) 0.0022 (7)
C13 0.0762 (19) 0.0782 (18) 0.0452 (14) −0.0365 (15) −0.0179 (13) 0.0191 (13)
C14 0.0759 (19) 0.081 (2) 0.0537 (15) −0.0226 (15) −0.0304 (14) 0.0031 (14)
C21 0.074 (2) 0.0466 (15) 0.103 (2) 0.0002 (14) 0.0004 (18) 0.0028 (16)
C22 0.0306 (10) 0.0525 (13) 0.0738 (17) −0.0069 (9) −0.0045 (10) 0.0280 (12)
N2 0.0265 (8) 0.0485 (10) 0.0427 (9) −0.0117 (7) −0.0050 (7) 0.0104 (8)
C23 0.0418 (12) 0.0802 (18) 0.0401 (12) −0.0225 (12) −0.0078 (10) 0.0027 (12)
C24 0.0503 (14) 0.0718 (18) 0.0595 (16) −0.0205 (13) 0.0058 (12) −0.0170 (13)

Geometric parameters (Å, º)

P1—O11 1.5013 (13) C13—C14 1.501 (4)
P1—O12 1.5056 (14) C13—H13A 0.9700
P1—O14 1.5673 (14) C13—H13B 0.9700
P1—O13 1.5691 (14) C14—H14A 0.9600
O13—H13 0.8200 C14—H14B 0.9600
O14—H14 0.8200 C14—H14C 0.9600
P2—O21 1.5027 (14) C21—C22 1.482 (4)
P2—O22 1.5060 (14) C21—H21A 0.9600
P2—O23 1.5613 (16) C21—H21B 0.9600
P2—O24 1.5624 (15) C21—H21C 0.9600
O23—H23 0.8200 C22—N2 1.487 (3)
O24—H24 0.8200 C22—H22A 0.9700
C11—C12 1.497 (4) C22—H22B 0.9700
C11—H11A 0.9600 N2—C23 1.485 (3)
C11—H11B 0.9600 N2—H2A 0.9000
C11—H11C 0.9600 N2—H2B 0.9000
C12—N1 1.483 (3) C23—C24 1.501 (4)
C12—H12A 0.9700 C23—H23A 0.9700
C12—H12B 0.9700 C23—H23B 0.9700
N1—C13 1.503 (3) C24—H24A 0.9600
N1—H1A 0.9000 C24—H24B 0.9600
N1—H1B 0.9000 C24—H24C 0.9600
O11—P1—O12 115.38 (8) N1—C13—H13B 109.1
O11—P1—O14 107.71 (8) H13A—C13—H13B 107.9
O12—P1—O14 109.31 (8) C13—C14—H14A 109.5
O11—P1—O13 110.08 (7) C13—C14—H14B 109.5
O12—P1—O13 108.20 (8) H14A—C14—H14B 109.5
O14—P1—O13 105.74 (9) C13—C14—H14C 109.5
P1—O13—H13 109.5 H14A—C14—H14C 109.5
P1—O14—H14 109.5 H14B—C14—H14C 109.5
O21—P2—O22 114.38 (9) C22—C21—H21A 109.5
O21—P2—O23 109.41 (8) C22—C21—H21B 109.5
O22—P2—O23 107.50 (9) H21A—C21—H21B 109.5
O21—P2—O24 107.55 (9) C22—C21—H21C 109.5
O22—P2—O24 110.16 (8) H21A—C21—H21C 109.5
O23—P2—O24 107.65 (10) H21B—C21—H21C 109.5
P2—O23—H23 109.5 C21—C22—N2 110.6 (2)
P2—O24—H24 109.5 C21—C22—H22A 109.5
C12—C11—H11A 109.5 N2—C22—H22A 109.5
C12—C11—H11B 109.5 C21—C22—H22B 109.5
H11A—C11—H11B 109.5 N2—C22—H22B 109.5
C12—C11—H11C 109.5 H22A—C22—H22B 108.1
H11A—C11—H11C 109.5 C23—N2—C22 114.70 (18)
H11B—C11—H11C 109.5 C23—N2—H2A 108.6
N1—C12—C11 110.87 (19) C22—N2—H2A 108.6
N1—C12—H12A 109.5 C23—N2—H2B 108.6
C11—C12—H12A 109.5 C22—N2—H2B 108.6
N1—C12—H12B 109.5 H2A—N2—H2B 107.6
C11—C12—H12B 109.5 N2—C23—C24 111.64 (19)
H12A—C12—H12B 108.1 N2—C23—H23A 109.3
C12—N1—C13 115.31 (19) C24—C23—H23A 109.3
C12—N1—H1A 108.4 N2—C23—H23B 109.3
C13—N1—H1A 108.4 C24—C23—H23B 109.3
C12—N1—H1B 108.4 H23A—C23—H23B 108.0
C13—N1—H1B 108.4 C23—C24—H24A 109.5
H1A—N1—H1B 107.5 C23—C24—H24B 109.5
C14—C13—N1 112.3 (2) H24A—C24—H24B 109.5
C14—C13—H13A 109.1 C23—C24—H24C 109.5
N1—C13—H13A 109.1 H24A—C24—H24C 109.5
C14—C13—H13B 109.1 H24B—C24—H24C 109.5

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O13—H13···O21i 0.82 1.78 2.5851 (19) 166
O14—H14···O12ii 0.82 1.83 2.6058 (19) 158
O24—H24···O22iii 0.82 1.95 2.585 (2) 133
O23—H23···O11i 0.82 1.84 2.620 (2) 158
N1—H1A···O22iv 0.90 1.88 2.779 (2) 174
N1—H1B···O21v 0.90 1.87 2.769 (2) 177
N2—H2A···O11vi 0.90 1.87 2.714 (2) 155
N2—H2B···O12 0.90 1.91 2.795 (2) 168

Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x, −y+1, −z+1; (iii) −x+1, −y, −z; (iv) −x+1, −y+1, −z; (v) x−1, y+1, z; (vi) −x+1, −y+1, −z+1.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: WM2794).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  2. Averbuch-Pouchot, M. T., Durif, A. & Guitel, J.-C. (1987). Acta Cryst. C43, 1896–1898.
  3. Dowty, E. (2002). ATOMS Shape Software, Kingsport, Tennessee, USA.
  4. Enraf–Nonius (1989). CAD-4 Enraf–Nonius, Delft, The Netherlands.
  5. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  6. Hanna, A. A., Ali, A. F. & Khalil, M. Sh. (1999). Indian J. Chem. Technol. 6, 43–47.
  7. Held, P. (2003). Z. Kristallogr. New Cryst. Struct. 218, 13–16.
  8. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536814000464/wm2794sup1.cif

e-70-0o129-sup1.cif (23.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814000464/wm2794Isup2.hkl

e-70-0o129-Isup2.hkl (249.6KB, hkl)

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES