Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Jan 18;70(Pt 2):o169–o170. doi: 10.1107/S1600536814000154

(S,Z)-3-Phenyl-2-[(1,1,1-tri­chloro-7-meth­oxy-2,7-dioxohept-3-en-4-yl)amino]­propanoic acid monohydrate

Alex Fabiani Claro Flores a,*, Juliano Rosa de Menezes Vicenti a, Lucas Pizzuti b, Patrick Teixeira Campos c
PMCID: PMC3998325  PMID: 24764886

Abstract

In the title compound, C17H18Cl3NO5·H2O, intra­molecular N—H⋯O and C—H⋯Cl hydrogen bonds form S(6) and S(5) ring motifs, respectively. The chiral organic mol­ecule is connected to the solvent water mol­ecule by a short O—H⋯O hydrogen bond. In the crystal, a weak C—H⋯Cl inter­action connects the organic mol­ecules along [100] while the water mol­ecules act as bridges between the organic mol­ecules in both the [100] and [010] directions, generating layers parallel to the ab plane.

Related literature  

For the synthesis of the title compound and a similar crystal structure, see: Flores et al. (2008). For information about levulinic acid and the biological properties of its derivatives, see: Flores et al. (2013); Hachuła et al. (2013); Lo & Ng (2008). For short inter­molecular hydrogen-bond inter­actions, see: Pojarová et al. (2010). For intra­molecular hydrogen-bonding systems, see: da Costa et al. (2013).graphic file with name e-70-0o169-scheme1.jpg

Experimental  

Crystal data  

  • C17H18Cl3NO5·H2O

  • M r = 440.69

  • Triclinic, Inline graphic

  • a = 5.6684 (16) Å

  • b = 8.601 (3) Å

  • c = 10.336 (3) Å

  • α = 87.720 (19)°

  • β = 85.696 (17)°

  • γ = 85.649 (17)°

  • V = 500.8 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.49 mm−1

  • T = 296 K

  • 0.98 × 0.30 × 0.12 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: Gaussian (XPREP; Bruker, 2006) T min = 0.881, T max = 1

  • 13424 measured reflections

  • 6020 independent reflections

  • 4784 reflections with I > 2σ(I)

  • R int = 0.024

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.105

  • S = 1.04

  • 6020 reflections

  • 256 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.32 e Å−3

  • Absolute structure: Flack parameter determined using 1984 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013)

  • Absolute structure parameter: 0.04 (2)

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814000154/pk2509sup1.cif

e-70-0o169-sup1.cif (414.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814000154/pk2509Isup2.hkl

e-70-0o169-Isup2.hkl (329.9KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814000154/pk2509Isup3.cml

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6A⋯Cl1i 0.97 2.94 3.774 (3) 145
O33—H33B⋯O91ii 0.87 (6) 1.89 (6) 2.766 (4) 177 (5)
N41—H41⋯O21 0.83 (5) 2.05 (6) 2.672 (3) 131 (5)
O33—H33A⋯O21iii 0.76 (6) 2.06 (6) 2.815 (3) 171 (6)
O92—H92⋯O33 0.89 (5) 1.66 (5) 2.542 (4) 175 (5)
C3—H3⋯Cl1 0.93 2.55 3.031 (3) 112

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors are grateful for financial support from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Universal grant 6577818477962764–01), the Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS, PqG grant 1016236) and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES-PROEX).

supplementary crystallographic information

1. Comment

Dielectrophiles derived from levulinic acid (Hachuła et al., 2013; Lo & Ng, 2008) belong to an important class of organic synthetic intermediates for the synthesis of a variety of heterocyclic compounds. Such precursors are used to produce pyrrolidinones, pyrrolones, pyrazoles and pyrimidines with very interesting biological activities (Flores et al., 2008; Flores et al., 2013). As a part of our studies, we report in this paper the crystal structure of (S,Z)-3-phenyl-2-(1,1,1-trichloro-7–2,7-dioxo-3-hepten- 4-ylamine)propanoic acid, obtained from the reaction between methyl 7,7,7-trichloro-4-methoxy-6-oxo-3-heptenoate and L-phenylalanine.

In the crystal structure of the title compound, the asymmetric unit is composed of the whole chiral organic molecule, C17H18Cl3NO5, connected to a water molecule (Fig.1). This connection consists of a short intermolecular hydrogen bond interaction involving the hydrogen atom of the carboxylic acid fragment [O92—H92···O33, 2.542 (4) Å; Pojarová et al., 2010]. Additionally, S(6) and S(5) ring motifs are formed by two distinct intramolecular hydrogen bonding systems, N41—H41···O21 [2.672 (3) Å] and C3—H3···Cl1 [3.031 (3) Å], respectively, thereby stabilizing the structure (da Costa et al., 2013).

There is also a weak C6—H6A···Cl1i intermolecular interaction [3.774 (3) Å] connecting organic molecules along the [100] crystallographic direction. The water molecules act as a bridging element in the crystal structure by expanding its dimensionality in both [100] and [010] crystallographic directions. The intermolecular hydrogen bond interactions generate bidimensional layers parallel to the ab plane. Each atom of the water molecule is connected to different groups on adjacent organic molecules: carboxylic acid [O92—H92···O33, 2.542 (4) Å and O33—H33B···O91ii, 2.766 (4) Å] and ketone [O33—H33A···O21iii, 2.815 (3) Å]. Symmetry codes: (i) x–1, y, z; (ii) x + 1, y, z; (iii) x, y + 1, z. A super cell central projection of the crystal structure can be viewed in Fig. 2, which depicts a crystal packing diagram as viewed along the crystallographic a axis.

2. Experimental

To a stirred solution of methyl 7,7,7-trichloro-4-methoxy-6-oxo-3-heptenoate (5 mmol, 1.52 g) and L-phenylalanine (5.5 mmol, 0.91 g), at 25 °C, was added a solution of 1 mol·L-1 NaOH. There was an immediate formation of a yellow precipitate and the mixture was further stirred for 30 minutes. A solution of 50% HCl was added until the pH ≈ 1, when there was complete precipitation of the yellow solid. The solid was extracted with ethyl acetate, and this solution was dried over anhydrous MgSO4. The ethyl acetate was removed on a rotary evaporator to give the product as a yellow solid. Yield: 79%. m. p. 120 – 123 °C. 1H NMR (400 MHz, DMSO-D6, TMS): δ 2.17 (m, 2H, CH2), 2.44 (m, 2H, CH2), 3.06 (dd, 1H, 3J=9.1 Hz, 2J=14 Hz, CH2Ph), 3.37 (dd, 1H, 3J=9.1 Hz, 2J=14 Hz, CH2Ph), 3.66 (s, 3H, OMe), 4.53 (m, 1H, CHchiral), 5.60 (s, 1H, =CH), 7.22–7.33 (m, 5H, Ph), 10.9 (d, 1H, 3J = 10 Hz, NH) p.p.m.; 13C NMR (100 MHz, DMSO-D6): δ 26.8, 31.5, 39.9, 52.2, 58.1, 86.0, 96.9, 127.5, 128.9, 129.5, 135.4, 169.9, 172.0, 173.2, 181.2 p.p.m.. Crystals were grown from a methanol solution, which was slowly evaporated at room temperature.

3. Refinement

All H atoms attached to carbon were positioned with idealized geometry and were refined isotropically. For H atoms of CH3 group, Uiso(H) was set to 1.5Ueq(C) using a riding model with C—H = 0.96 Å. For all remaining H atoms attached to C atoms, Uiso(H) was set to 1.2Ueq(C) using a riding model with the following C—H distances: C—H (CH) = 0.93 Å, C—H (CHchiral) = 0.98 Å and C—H (CH2) = 0.97 Å. H atoms attached to nitrogen, H atoms of the water molecule and the H atom of the carboxylic acid fragment were located in difference Fourier maps, and were refined with Uiso values set to 1.5Ueq of the parent atom. Reflections (001) and (001) were omitted due to the large difference observed between Fo2 and Fc2.

Figures

Fig. 1.

Fig. 1.

An ellipsoid plot (50% probability) showing the asymmetric unit. Hydrogen bonds are represented as dashed lines. Symmetry codes: (i) x–1, y, z; (ii) x + 1, y, z; (iii) x, y + 1, z.

Fig. 2.

Fig. 2.

Packing of molecules along the [100] direction through intermolecular hydrogen bonds, represented with dashed lines. Some hydrogen atoms were omitted for clarity.

Crystal data

C17H18Cl3NO5·H2O F(000) = 228
Mr = 440.69 Dx = 1.461 Mg m3
Triclinic, P1 Melting point: 393 K
a = 5.6684 (16) Å Mo Kα radiation, λ = 0.71073 Å
b = 8.601 (3) Å Cell parameters from 3866 reflections
c = 10.336 (3) Å θ = 3.0–25.5°
α = 87.720 (19)° µ = 0.49 mm1
β = 85.696 (17)° T = 296 K
γ = 85.649 (17)° Blade, colorless
V = 500.8 (2) Å3 0.98 × 0.30 × 0.12 mm
Z = 1

Data collection

Bruker APEXII CCD diffractometer 6020 independent reflections
Radiation source: fine-focus sealed tube 4784 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.024
φ and ω scans θmax = 30.7°, θmin = 2.4°
Absorption correction: gaussian (XPREP; Bruker, 2006) h = −8→8
Tmin = 0.881, Tmax = 1 k = −12→12
13424 measured reflections l = −14→14

Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.040 w = 1/[σ2(Fo2) + (0.0502P)2 + 0.0376P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.105 (Δ/σ)max < 0.001
S = 1.04 Δρmax = 0.41 e Å3
6020 reflections Δρmin = −0.32 e Å3
256 parameters Absolute structure: Flack parameter determined using 1984 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
3 restraints Absolute structure parameter: 0.04 (2)

Special details

Experimental. Absorption correction: XPREP (Bruker, 2006) was used to perform the Gaussian absorption correction based on the face-indexed crystal size.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O33 0.4813 (5) 1.0147 (3) 0.9230 (3) 0.0554 (6)
H33B 0.629 (11) 0.977 (6) 0.919 (5) 0.083*
H41 0.147 (9) 0.465 (6) 0.794 (5) 0.083*
H33A 0.458 (10) 1.092 (7) 0.887 (5) 0.083*
H92 0.352 (9) 0.869 (6) 0.864 (5) 0.083*
Cl1 0.75049 (16) 0.24572 (10) 0.42096 (9) 0.0652 (3)
Cl2 0.50084 (18) 0.01516 (11) 0.57338 (11) 0.0759 (3)
Cl3 0.88358 (15) 0.16349 (14) 0.67617 (11) 0.0742 (3)
N41 0.1053 (4) 0.5403 (3) 0.7462 (2) 0.0403 (5)
C1 0.6395 (5) 0.1924 (3) 0.5785 (3) 0.0432 (6)
C7 −0.1436 (5) 0.7761 (4) 0.3642 (3) 0.0424 (6)
C9 0.0625 (5) 0.7901 (3) 0.8625 (3) 0.0439 (6)
C3 0.3699 (5) 0.4434 (3) 0.5739 (3) 0.0412 (6)
H3 0.4282 0.4569 0.4880 0.049*
C10 −0.0576 (5) 0.6530 (3) 0.8145 (3) 0.0402 (6)
H10 −0.1704 0.6956 0.7526 0.048*
C5 0.1234 (5) 0.6912 (3) 0.5398 (3) 0.0414 (6)
H5A 0.2526 0.7135 0.4764 0.050*
H5B 0.0854 0.7828 0.5913 0.050*
C111 −0.0514 (5) 0.4758 (4) 1.0193 (3) 0.0455 (6)
C2 0.4540 (5) 0.3128 (3) 0.6460 (3) 0.0386 (5)
C6 −0.0917 (6) 0.6567 (4) 0.4700 (3) 0.0472 (7)
H6A −0.0645 0.5545 0.4328 0.057*
H6B −0.2285 0.6543 0.5321 0.057*
C11 −0.2023 (5) 0.5712 (4) 0.9264 (3) 0.0475 (7)
H11A −0.3005 0.6496 0.9745 0.057*
H11B −0.3071 0.5033 0.8897 0.057*
C112 0.0981 (7) 0.5453 (4) 1.0959 (3) 0.0584 (8)
H112 0.1040 0.6532 1.0916 0.070*
C8 −0.4279 (7) 0.8699 (5) 0.2188 (4) 0.0649 (10)
H8A −0.5833 0.8501 0.1953 0.097*
H8B −0.3165 0.8573 0.1446 0.097*
H8C −0.4299 0.9745 0.2481 0.097*
C116 −0.0616 (8) 0.3156 (4) 1.0306 (4) 0.0638 (9)
H116 −0.1627 0.2664 0.9813 0.077*
C115 0.0793 (10) 0.2279 (5) 1.1156 (4) 0.0792 (13)
H115 0.0718 0.1202 1.1222 0.095*
C113 0.2391 (9) 0.4563 (6) 1.1789 (4) 0.0734 (11)
H113 0.3422 0.5039 1.2280 0.088*
C114 0.2259 (9) 0.2964 (6) 1.1884 (4) 0.0774 (13)
H114 0.3183 0.2363 1.2450 0.093*
O72 −0.3587 (4) 0.7608 (3) 0.3218 (2) 0.0535 (5)
O92 0.2915 (4) 0.7852 (3) 0.8366 (3) 0.0554 (5)
O91 −0.0517 (4) 0.8944 (3) 0.9190 (3) 0.0591 (6)
O71 −0.0124 (5) 0.8698 (3) 0.3220 (3) 0.0637 (7)
C4 0.2004 (5) 0.5547 (3) 0.6269 (3) 0.0370 (5)
O21 0.3934 (4) 0.2806 (2) 0.7613 (2) 0.0473 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O33 0.0494 (13) 0.0492 (13) 0.0673 (15) −0.0017 (11) −0.0076 (11) 0.0051 (11)
Cl1 0.0759 (6) 0.0560 (5) 0.0586 (5) 0.0031 (4) 0.0241 (4) −0.0061 (4)
Cl2 0.0741 (6) 0.0476 (4) 0.1050 (8) −0.0204 (4) 0.0308 (5) −0.0288 (5)
Cl3 0.0413 (4) 0.0946 (7) 0.0838 (6) 0.0154 (4) −0.0058 (4) −0.0032 (5)
N41 0.0439 (13) 0.0350 (11) 0.0398 (12) 0.0079 (10) −0.0005 (9) 0.0012 (9)
C1 0.0375 (14) 0.0379 (14) 0.0531 (16) −0.0024 (11) 0.0056 (11) −0.0056 (11)
C7 0.0410 (14) 0.0435 (15) 0.0412 (14) 0.0029 (12) −0.0024 (11) 0.0028 (11)
C9 0.0441 (14) 0.0397 (14) 0.0459 (15) 0.0077 (11) −0.0048 (11) 0.0056 (12)
C3 0.0417 (14) 0.0403 (14) 0.0398 (13) 0.0013 (11) 0.0024 (10) 0.0017 (11)
C10 0.0375 (13) 0.0376 (13) 0.0444 (14) 0.0073 (11) −0.0052 (11) −0.0035 (11)
C5 0.0419 (14) 0.0338 (13) 0.0481 (15) −0.0020 (10) −0.0039 (11) 0.0043 (11)
C111 0.0480 (15) 0.0477 (16) 0.0385 (13) 0.0000 (13) 0.0078 (12) −0.0018 (12)
C2 0.0349 (12) 0.0363 (13) 0.0440 (14) 0.0022 (10) −0.0012 (10) −0.0049 (10)
C6 0.0478 (16) 0.0414 (15) 0.0532 (16) −0.0051 (12) −0.0114 (13) 0.0081 (13)
C11 0.0387 (14) 0.0508 (17) 0.0516 (16) 0.0032 (12) 0.0001 (12) −0.0028 (13)
C112 0.075 (2) 0.0510 (19) 0.0489 (17) −0.0038 (17) −0.0081 (16) 0.0032 (14)
C8 0.063 (2) 0.081 (3) 0.0495 (18) 0.0133 (19) −0.0149 (15) 0.0064 (17)
C116 0.082 (3) 0.0495 (19) 0.059 (2) −0.0072 (17) 0.0021 (18) −0.0027 (15)
C115 0.115 (4) 0.049 (2) 0.069 (3) 0.007 (2) 0.006 (3) 0.0063 (18)
C113 0.084 (3) 0.085 (3) 0.052 (2) −0.004 (2) −0.0171 (19) 0.0069 (19)
C114 0.093 (3) 0.078 (3) 0.055 (2) 0.026 (2) −0.002 (2) 0.013 (2)
O72 0.0482 (12) 0.0614 (14) 0.0511 (12) −0.0012 (10) −0.0121 (9) 0.0063 (10)
O92 0.0449 (12) 0.0501 (13) 0.0709 (14) −0.0013 (10) −0.0017 (10) −0.0073 (11)
O91 0.0540 (13) 0.0445 (12) 0.0778 (16) 0.0107 (10) −0.0050 (11) −0.0166 (11)
O71 0.0538 (14) 0.0628 (15) 0.0738 (16) −0.0076 (11) −0.0098 (12) 0.0244 (12)
C4 0.0379 (12) 0.0331 (13) 0.0400 (13) −0.0025 (10) −0.0037 (10) 0.0014 (10)
O21 0.0524 (12) 0.0423 (11) 0.0432 (11) 0.0133 (9) 0.0038 (8) 0.0029 (9)

Geometric parameters (Å, º)

O33—H33B 0.87 (6) C5—H5B 0.9700
O33—H33A 0.76 (6) C111—C116 1.384 (5)
Cl1—C1 1.757 (3) C111—C112 1.385 (5)
Cl2—C1 1.772 (3) C111—C11 1.510 (4)
Cl3—C1 1.770 (3) C2—O21 1.241 (4)
N41—C4 1.314 (4) C6—H6A 0.9700
N41—C10 1.453 (3) C6—H6B 0.9700
N41—H41 0.83 (5) C11—H11A 0.9700
C1—C2 1.564 (4) C11—H11B 0.9700
C7—O71 1.186 (4) C112—C113 1.385 (5)
C7—O72 1.343 (4) C112—H112 0.9300
C7—C6 1.500 (4) C8—O72 1.448 (4)
C9—O91 1.209 (4) C8—H8A 0.9600
C9—O92 1.303 (4) C8—H8B 0.9600
C9—C10 1.523 (4) C8—H8C 0.9600
C3—C2 1.397 (4) C116—C115 1.393 (6)
C3—C4 1.401 (4) C116—H116 0.9300
C3—H3 0.9300 C115—C114 1.344 (7)
C10—C11 1.545 (4) C115—H115 0.9300
C10—H10 0.9800 C113—C114 1.382 (7)
C5—C4 1.509 (4) C113—H113 0.9300
C5—C6 1.517 (4) C114—H114 0.9300
C5—H5A 0.9700 O92—H92 0.89 (5)
H33B—O33—H33A 115 (6) C7—C6—H6A 109.2
C4—N41—C10 126.9 (2) C5—C6—H6A 109.2
C4—N41—H41 121 (4) C7—C6—H6B 109.2
C10—N41—H41 112 (4) C5—C6—H6B 109.2
C2—C1—Cl1 116.0 (2) H6A—C6—H6B 107.9
C2—C1—Cl3 107.9 (2) C111—C11—C10 113.8 (2)
Cl1—C1—Cl3 107.55 (16) C111—C11—H11A 108.8
C2—C1—Cl2 107.0 (2) C10—C11—H11A 108.8
Cl1—C1—Cl2 109.06 (17) C111—C11—H11B 108.8
Cl3—C1—Cl2 109.22 (17) C10—C11—H11B 108.8
O71—C7—O72 124.4 (3) H11A—C11—H11B 107.7
O71—C7—C6 125.1 (3) C111—C112—C113 120.9 (4)
O72—C7—C6 110.5 (2) C111—C112—H112 119.6
O91—C9—O92 124.1 (3) C113—C112—H112 119.6
O91—C9—C10 121.0 (3) O72—C8—H8A 109.5
O92—C9—C10 114.9 (3) O72—C8—H8B 109.5
C2—C3—C4 122.1 (3) H8A—C8—H8B 109.5
C2—C3—H3 119.0 O72—C8—H8C 109.5
C4—C3—H3 119.0 H8A—C8—H8C 109.5
N41—C10—C9 113.6 (2) H8B—C8—H8C 109.5
N41—C10—C11 110.4 (2) C111—C116—C115 120.1 (4)
C9—C10—C11 111.3 (2) C111—C116—H116 119.9
N41—C10—H10 107.1 C115—C116—H116 119.9
C9—C10—H10 107.1 C114—C115—C116 121.0 (4)
C11—C10—H10 107.1 C114—C115—H115 119.5
C4—C5—C6 110.9 (2) C116—C115—H115 119.5
C4—C5—H5A 109.5 C114—C113—C112 119.7 (4)
C6—C5—H5A 109.5 C114—C113—H113 120.1
C4—C5—H5B 109.5 C112—C113—H113 120.1
C6—C5—H5B 109.5 C115—C114—C113 119.9 (4)
H5A—C5—H5B 108.0 C115—C114—H114 120.1
C116—C111—C112 118.3 (3) C113—C114—H114 120.1
C116—C111—C11 120.3 (3) C7—O72—C8 115.5 (3)
C112—C111—C11 121.4 (3) C9—O92—H92 111 (3)
O21—C2—C3 125.9 (3) N41—C4—C3 122.1 (2)
O21—C2—C1 115.3 (2) N41—C4—C5 120.6 (2)
C3—C2—C1 118.7 (3) C3—C4—C5 117.4 (2)
C7—C6—C5 112.0 (2)
C4—N41—C10—C9 −76.6 (4) N41—C10—C11—C111 54.1 (3)
C4—N41—C10—C11 157.5 (3) C9—C10—C11—C111 −73.0 (3)
O91—C9—C10—N41 178.7 (3) C116—C111—C112—C113 1.9 (6)
O92—C9—C10—N41 −0.6 (4) C11—C111—C112—C113 −178.7 (4)
O91—C9—C10—C11 −56.0 (3) C112—C111—C116—C115 −1.1 (5)
O92—C9—C10—C11 124.7 (3) C11—C111—C116—C115 179.5 (4)
C4—C3—C2—O21 −0.5 (5) C111—C116—C115—C114 0.3 (7)
C4—C3—C2—C1 178.8 (3) C111—C112—C113—C114 −1.9 (7)
Cl1—C1—C2—O21 −173.6 (2) C116—C115—C114—C113 −0.3 (7)
Cl3—C1—C2—O21 −53.0 (3) C112—C113—C114—C115 1.0 (7)
Cl2—C1—C2—O21 64.5 (3) O71—C7—O72—C8 −0.8 (5)
Cl1—C1—C2—C3 7.0 (4) C6—C7—O72—C8 −179.7 (3)
Cl3—C1—C2—C3 127.7 (3) C10—N41—C4—C3 175.1 (3)
Cl2—C1—C2—C3 −114.9 (3) C10—N41—C4—C5 −7.0 (4)
O71—C7—C6—C5 13.3 (5) C2—C3—C4—N41 −2.2 (5)
O72—C7—C6—C5 −167.8 (3) C2—C3—C4—C5 179.8 (3)
C4—C5—C6—C7 −168.9 (3) C6—C5—C4—N41 −86.6 (3)
C116—C111—C11—C10 −115.5 (3) C6—C5—C4—C3 91.4 (3)
C112—C111—C11—C10 65.1 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C6—H6A···Cl1i 0.97 2.94 3.774 (3) 145
O33—H33B···O91ii 0.87 (6) 1.89 (6) 2.766 (4) 177 (5)
N41—H41···O21 0.83 (5) 2.05 (6) 2.672 (3) 131 (5)
O33—H33A···O21iii 0.76 (6) 2.06 (6) 2.815 (3) 171 (6)
O92—H92···O33 0.89 (5) 1.66 (5) 2.542 (4) 175 (5)
C3—H3···Cl1 0.93 2.55 3.031 (3) 112

Symmetry codes: (i) x−1, y, z; (ii) x+1, y, z; (iii) x, y+1, z.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: PK2509).

References

  1. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2006). XPREP Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2009). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Costa, D. P. da, Nobre, S. M., Lisboa, B. G., Vicenti, J. R. de M. & Back, D. F. (2013). Acta Cryst. E69, o201. [DOI] [PMC free article] [PubMed]
  5. Flores, A. F. C., Flores, D. C., Oliveira, G., Pizzuti, L., Silva, R. M. S., Martins, M. A. P. & Bonacorso, H. G. (2008). J. Braz. Chem. Soc. 19, 184–193.
  6. Flores, A. F. C., Malavolta, J. L., Souto, A. A., Goularte, R. B., Flores, D. C. & Piovesan, L. A. (2013). J. Braz. Chem. Soc. 24, 580–584.
  7. Hachuła, B., Polasz, A., Dzida, M., Nowak, M. & Kusz, J. (2013). Acta Cryst. E69, o1406. [DOI] [PMC free article] [PubMed]
  8. Lo, K. M. & Ng, S. W. (2008). Acta Cryst. E64, m722–m723. [DOI] [PMC free article] [PubMed]
  9. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  10. Pojarová, M., Fejfarová, K. & Makrlík, E. (2010). Acta Cryst. E66, o3341–o3342. [DOI] [PMC free article] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814000154/pk2509sup1.cif

e-70-0o169-sup1.cif (414.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814000154/pk2509Isup2.hkl

e-70-0o169-Isup2.hkl (329.9KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814000154/pk2509Isup3.cml

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES