Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Jan 22;70(Pt 2):o182–o183. doi: 10.1107/S1600536814000713

(±)-trans-6,6′-Dieth­oxy-2,2′-[cyclo­hexane-1,2-diylbis(nitrilo­methanylyl­idene)]diphenol monohydrate

Nithya Mohan a, S S Sreejith a, M Sithambaresan b,*, M R Prathapachandra Kurup a
PMCID: PMC3998335  PMID: 24764896

Abstract

In the title hydrate, C24H30N2O4·H2O, the organic mol­ecule adopts an E conformation with respect to the azomethine double bonds. The cyclo­hexane ring is in a chair conformation. The dihedral angle between benzene rings is 79.6 (2)°. Two intra­molecular O—H⋯N hydrogen bonds are present. In the crystal, the components are linked by O–H⋯O hydrogen bonds and weak C—H⋯π inter­actions, generating a three-dimensional supramolecular architecture.

Related literature  

For applications of Schiff bases, see: Franceschi et al. (1999); Hwang et al. (1998); Popović et al. (2002); Jones et al. (1979). For a related structure, see: Ambili et al. (2012). For the synthesis of Schiff bases, see: Tümer (2000). For ring puckering analysis, see: Cremer & Pople (1975).graphic file with name e-70-0o182-scheme1.jpg

Experimental  

Crystal data  

  • C24H30N2O4·H2O

  • M r = 428.52

  • Monoclinic, Inline graphic

  • a = 9.8241 (18) Å

  • b = 11.6975 (19) Å

  • c = 21.881 (4) Å

  • β = 111.144 (8)°

  • V = 2345.2 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.40 × 0.20 × 0.20 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004) T min = 0.977, T max = 0.980

  • 16141 measured reflections

  • 5586 independent reflections

  • 2701 reflections with I > 2σ(I)

  • R int = 0.048

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.068

  • wR(F 2) = 0.190

  • S = 1.01

  • 5586 reflections

  • 299 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536814000713/fj2654sup1.cif

e-70-0o182-sup1.cif (30.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814000713/fj2654Isup2.hkl

e-70-0o182-Isup2.hkl (273.5KB, hkl)

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C15–C20 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3′⋯N2 0.85 (1) 1.77 (3) 2.550 (4) 152 (3)
O2—H2′⋯N1 0.84 (1) 1.85 (2) 2.584 (3) 144 (4)
O1W—H1B⋯O3 0.86 (5) 2.34 (7) 3.005 (5) 134 (8)
O1W—H1B⋯O4 0.86 (5) 2.38 (8) 3.052 (5) 135 (6)
C21—H21BCg 0.97 2.92 3.810 (4) 153

Acknowledgments

We thank the Sophisticated Analytical Instruments Facility, Cochin University of Science and Technology, for the diffraction measurements. MRPK, NM and SSS thank the Defence Research Development Organization, New Delhi, India, for financial support.

supplementary crystallographic information

1. Comment

Schiff bases are an important class of ligands in molecular design devoted to energy storage such as molecular batteries (Franceschi, et al. 1999) and also in transition metal catalysis (Hwang, et al. 1998). Schiff base having intramolecular hydrogen bonding shows photophysical properties such as thermochromism and photochromism (Popović, et al. 2002). Schiff bases also have an ability to reversibly bind oxygen (Jones, et al.1979).

The title compound crystallizes in the monoclinic, P21/c space group. The bond lengths and the bond angles agree with the related structure (Ambili, et al., 2012). The torsional angle, 177.9 (3)° of the azomethine linkage, C9—N2—C14—C15 reveals that the title compound adopts E conformation (Fig. 1). The mean plane deviation calculations show that the molecule as a whole is non-planar. Ring puckering analysis (Cremer & Pople, 1975) and least square plane calculations show that the cyclohexyl ring adopts a chair conformation (QT = 0.565 (4) Å) with the equatorial substitution at C9 for N2 and axial substitution at C8 for N1.

Crystal system consists of intramolecular hydrogen bonds of lengths 1.79 (3) Å and 1.85 (3) Å which exists between the azomethine N atom and the neighbouring phenolic O atom leading to the formation of two six membered rings comprising of atoms C14—C15—C20—O3—H3'···N2 and C7—C6—C5—O2—H2'···N1 (Fig. 2). A C—H···π interaction between one of the hydrogen attached at C21 and the aromatic ring (C15—C20) with H···Cg distance of 2.92 Å (Fig. 3) dominates the packing of molecules in the lattice. Fig. 4 shows the packing diagram of the title compound along a axis.

2. Experimental

The title compound was prepared by following the reported procedure (Tümer, 2000). 3-Ethoxy-2-hydroxybenzaldehyde (0.166 g,1 mmol) was dissolved in ethanol and an ethanolic solution of 1, 2-diaminocyclohexane (0.044 g, 0.5 mmol) was added to it. The mixture was refluxed for 5 h. Slow evaporation of the solution yielded 0.183 g (95%) yellow block type crystals of (±)-trans-6,6'-Diethoxy-2,2'-[cyclohexane-1,2-diylbis(nitrilomethanylylidene)]diphenol monohydrate. The compound melts at 115 °C.

IR (KBr, \v in cm-1): 1626, 3530, 2930, 1468, 1249 1H NMR (400 MHz, CDCl3, δ in p.p.m.): 13.871 (s, 2H), 8.231 (s, 2H), 4.093–4.041 (q, 4H), 1.442–1.477 (t, 6H), 6.679–6.686 (m, 6H), 1.589–1.953 (m, 10H)

3. Refinement

All H atoms on C were placed in calculated positions, guided by difference maps, with C—H bond distances 0.93–0.97 Å. H atoms were assigned as Uiso=1.2Ueq (1.5 for Me). The O bound H atoms were located in a difference Fourier map and their Uiso values tied to 1.5 times of O5 atom. The O–H distances of water molecule are restrained by DFIX and DANG instructions. The phenolic O–H distances, O2–H2' and O3–H3' were restrained to 0.084±0.001 Å. Omitting owing to bad disagreement were the reflections (0 0 2), (1 1 0) and (1 1 1).

Figures

Fig. 1.

Fig. 1.

ORTEP diagram of the unique part of the compound, drawn with 50% probability displacement ellipsoids for the non-H atoms.

Fig. 2.

Fig. 2.

Intramolecular hydrogen bonds present in the compound.

Fig. 3.

Fig. 3.

C—H···π interactions found in the title compound.

Fig. 4.

Fig. 4.

Packing diagram of the compound viewed along a axis.

Crystal data

C24H30N2O4·H2O F(000) = 920
Mr = 428.52 Dx = 1.214 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3026 reflections
a = 9.8241 (18) Å θ = 2.8–23.5°
b = 11.6975 (19) Å µ = 0.09 mm1
c = 21.881 (4) Å T = 293 K
β = 111.144 (8)° Block, yellow
V = 2345.2 (7) Å3 0.40 × 0.20 × 0.20 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer 5586 independent reflections
Radiation source: fine-focus sealed tube 2701 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.048
Detector resolution: 8.33 pixels mm-1 θmax = 28.0°, θmin = 2.4°
ω and φ scan h = −12→12
Absorption correction: multi-scan (SADABS; Bruker, 2004) k = −15→15
Tmin = 0.977, Tmax = 0.980 l = −28→28
16141 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.068 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.190 w = 1/[σ2(Fo2) + (0.0561P)2 + 1.8063P] where P = (Fo2 + 2Fc2)/3
S = 1.01 (Δ/σ)max < 0.001
5586 reflections Δρmax = 0.24 e Å3
299 parameters Δρmin = −0.21 e Å3
5 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0022 (8)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.7073 (2) 0.08906 (17) 0.34718 (12) 0.0591 (6)
O2 0.8516 (2) 0.28131 (19) 0.35839 (14) 0.0629 (7)
O3 0.7204 (3) 0.4164 (2) 0.18225 (11) 0.0538 (6)
O4 0.5589 (2) 0.32967 (18) 0.06864 (10) 0.0547 (6)
N1 0.8533 (3) 0.5022 (2) 0.35838 (12) 0.0449 (6)
N2 0.9286 (3) 0.5466 (2) 0.24970 (12) 0.0466 (6)
C1 0.4960 (3) 0.3961 (3) 0.34503 (16) 0.0508 (8)
H1 0.4499 0.4658 0.3442 0.061*
C2 0.4199 (4) 0.2961 (3) 0.34086 (17) 0.0574 (9)
H2 0.3232 0.2984 0.3380 0.069*
C3 0.4869 (3) 0.1916 (3) 0.34092 (15) 0.0496 (8)
H3 0.4339 0.1243 0.3369 0.060*
C4 0.6311 (3) 0.1869 (2) 0.34687 (14) 0.0420 (7)
C5 0.7104 (3) 0.2888 (2) 0.35266 (14) 0.0400 (7)
C6 0.6415 (3) 0.3937 (2) 0.35044 (13) 0.0382 (7)
C7 0.7186 (3) 0.5000 (2) 0.35060 (14) 0.0424 (7)
H7A 0.6677 0.5686 0.3448 0.051*
C8 0.9215 (3) 0.6119 (2) 0.35447 (16) 0.0471 (8)
H8 0.8450 0.6678 0.3328 0.056*
C9 1.0171 (3) 0.5952 (3) 0.31316 (15) 0.0462 (8)
H9 1.0533 0.6701 0.3058 0.055*
C10 1.1468 (3) 0.5191 (3) 0.34789 (16) 0.0539 (8)
H10A 1.2077 0.5135 0.3217 0.065*
H10B 1.1125 0.4430 0.3524 0.065*
C11 1.2369 (4) 0.5653 (3) 0.41526 (18) 0.0676 (10)
H11A 1.2790 0.6384 0.4106 0.081*
H11B 1.3162 0.5129 0.4369 0.081*
C12 1.1432 (4) 0.5804 (3) 0.45706 (18) 0.0711 (11)
H12A 1.1098 0.5063 0.4657 0.085*
H12B 1.2013 0.6145 0.4987 0.085*
C13 1.0126 (4) 0.6560 (3) 0.42242 (18) 0.0642 (10)
H13A 1.0466 0.7326 0.4185 0.077*
H13B 0.9517 0.6606 0.4487 0.077*
C14 0.9536 (3) 0.5704 (3) 0.19771 (16) 0.0497 (8)
H14 1.0277 0.6217 0.2002 0.060*
C15 0.8699 (3) 0.5199 (3) 0.13530 (14) 0.0426 (7)
C16 0.9044 (4) 0.5437 (3) 0.07977 (17) 0.0597 (9)
H16 0.9810 0.5929 0.0830 0.072*
C17 0.8259 (4) 0.4948 (3) 0.02104 (17) 0.0640 (10)
H17 0.8501 0.5100 −0.0155 0.077*
C18 0.7098 (4) 0.4224 (3) 0.01536 (15) 0.0535 (8)
H18 0.6567 0.3899 −0.0250 0.064*
C19 0.6726 (3) 0.3985 (2) 0.06895 (15) 0.0419 (7)
C20 0.7557 (3) 0.4444 (2) 0.13042 (14) 0.0403 (7)
C21 0.4662 (4) 0.2842 (3) 0.00700 (16) 0.0575 (9)
H21A 0.5221 0.2365 −0.0117 0.069*
H21B 0.4222 0.3458 −0.0235 0.069*
C22 0.3504 (4) 0.2149 (3) 0.0195 (2) 0.0823 (12)
H22A 0.2975 0.2627 0.0389 0.124*
H22B 0.3951 0.1532 0.0487 0.124*
H22C 0.2844 0.1846 −0.0212 0.124*
C23 0.7313 (5) −0.1081 (3) 0.3322 (2) 0.0803 (12)
H23A 0.8103 −0.1114 0.3737 0.120*
H23B 0.7691 −0.0918 0.2983 0.120*
H23C 0.6814 −0.1803 0.3234 0.120*
C24 0.6272 (4) −0.0162 (3) 0.33377 (19) 0.0616 (9)
H24A 0.5469 −0.0118 0.2920 0.074*
H24B 0.5878 −0.0319 0.3677 0.074*
O1W 0.5867 (5) 0.1883 (3) 0.1898 (2) 0.1125 (13)
H3' 0.786 (3) 0.447 (3) 0.2150 (13) 0.108 (17)*
H2' 0.890 (4) 0.3467 (17) 0.362 (2) 0.091 (14)*
H1A 0.635 (10) 0.203 (8) 0.2306 (13) 0.32 (6)*
H1B 0.573 (11) 0.255 (3) 0.172 (4) 0.31 (5)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0575 (15) 0.0360 (12) 0.0902 (17) 0.0028 (11) 0.0343 (13) −0.0022 (11)
O2 0.0410 (13) 0.0402 (14) 0.118 (2) 0.0047 (11) 0.0407 (14) −0.0023 (14)
O3 0.0549 (14) 0.0642 (15) 0.0469 (13) −0.0202 (12) 0.0240 (12) −0.0055 (12)
O4 0.0559 (14) 0.0564 (14) 0.0502 (13) −0.0196 (11) 0.0172 (11) −0.0078 (11)
N1 0.0388 (15) 0.0399 (14) 0.0600 (16) 0.0007 (12) 0.0225 (13) −0.0034 (12)
N2 0.0411 (15) 0.0477 (15) 0.0517 (16) −0.0072 (12) 0.0175 (13) −0.0053 (12)
C1 0.0396 (18) 0.0480 (18) 0.071 (2) 0.0099 (15) 0.0274 (17) 0.0086 (16)
C2 0.0392 (18) 0.062 (2) 0.078 (2) 0.0021 (17) 0.0295 (17) 0.0112 (18)
C3 0.0453 (19) 0.0455 (18) 0.062 (2) −0.0063 (15) 0.0246 (16) 0.0087 (15)
C4 0.0448 (18) 0.0382 (16) 0.0466 (17) 0.0036 (14) 0.0207 (14) 0.0044 (13)
C5 0.0339 (16) 0.0414 (16) 0.0485 (17) 0.0059 (13) 0.0193 (14) 0.0030 (14)
C6 0.0351 (16) 0.0401 (16) 0.0422 (16) 0.0070 (13) 0.0173 (13) 0.0034 (13)
C7 0.0432 (18) 0.0379 (16) 0.0493 (18) 0.0074 (14) 0.0204 (15) −0.0012 (14)
C8 0.0428 (18) 0.0366 (16) 0.063 (2) −0.0031 (14) 0.0207 (16) −0.0086 (15)
C9 0.0417 (18) 0.0417 (17) 0.0575 (19) −0.0112 (14) 0.0206 (15) −0.0078 (15)
C10 0.0363 (18) 0.060 (2) 0.068 (2) −0.0026 (16) 0.0219 (16) −0.0094 (17)
C11 0.045 (2) 0.079 (3) 0.071 (2) −0.0057 (19) 0.0107 (18) 0.000 (2)
C12 0.069 (3) 0.080 (3) 0.060 (2) −0.015 (2) 0.017 (2) −0.009 (2)
C13 0.071 (2) 0.056 (2) 0.074 (2) −0.0132 (19) 0.036 (2) −0.0205 (19)
C14 0.0391 (18) 0.0450 (18) 0.068 (2) −0.0075 (14) 0.0234 (16) 0.0032 (16)
C15 0.0343 (16) 0.0479 (17) 0.0481 (18) −0.0030 (14) 0.0178 (14) −0.0008 (14)
C16 0.051 (2) 0.073 (2) 0.062 (2) −0.0134 (18) 0.0286 (18) 0.0062 (18)
C17 0.061 (2) 0.086 (3) 0.054 (2) −0.009 (2) 0.0308 (19) 0.005 (2)
C18 0.053 (2) 0.064 (2) 0.0451 (18) 0.0004 (17) 0.0188 (16) −0.0038 (16)
C19 0.0383 (17) 0.0400 (16) 0.0498 (18) 0.0002 (14) 0.0187 (14) −0.0014 (14)
C20 0.0406 (17) 0.0381 (16) 0.0467 (17) 0.0015 (13) 0.0209 (14) 0.0029 (13)
C21 0.059 (2) 0.053 (2) 0.056 (2) −0.0073 (17) 0.0149 (17) −0.0087 (17)
C22 0.080 (3) 0.074 (3) 0.086 (3) −0.036 (2) 0.020 (2) −0.016 (2)
C23 0.098 (3) 0.047 (2) 0.101 (3) 0.008 (2) 0.042 (3) −0.010 (2)
C24 0.068 (2) 0.0397 (18) 0.078 (2) −0.0062 (17) 0.028 (2) −0.0051 (17)
O1W 0.177 (4) 0.085 (2) 0.090 (2) −0.048 (2) 0.066 (3) −0.0119 (18)

Geometric parameters (Å, º)

O1—C4 1.366 (3) C11—H11A 0.9700
O1—C24 1.433 (4) C11—H11B 0.9700
O2—C5 1.350 (3) C12—C13 1.517 (5)
O2—H2' 0.846 (10) C12—H12A 0.9700
O3—C20 1.341 (3) C12—H12B 0.9700
O3—H3' 0.850 (10) C13—H13A 0.9700
O4—C19 1.375 (3) C13—H13B 0.9700
O4—C21 1.430 (4) C14—C15 1.442 (4)
N1—C7 1.272 (3) C14—H14 0.9300
N1—C8 1.465 (4) C15—C20 1.401 (4)
N2—C14 1.278 (4) C15—C16 1.402 (4)
N2—C9 1.461 (4) C16—C17 1.363 (5)
C1—C2 1.373 (4) C16—H16 0.9300
C1—C6 1.392 (4) C17—C18 1.389 (5)
C1—H1 0.9300 C17—H17 0.9300
C2—C3 1.388 (4) C18—C19 1.377 (4)
C2—H2 0.9300 C18—H18 0.9300
C3—C4 1.377 (4) C19—C20 1.404 (4)
C3—H3 0.9300 C21—C22 1.501 (5)
C4—C5 1.405 (4) C21—H21A 0.9700
C5—C6 1.394 (4) C21—H21B 0.9700
C6—C7 1.455 (4) C22—H22A 0.9600
C7—H7A 0.9300 C22—H22B 0.9600
C8—C13 1.522 (5) C22—H22C 0.9600
C8—C9 1.533 (4) C23—C24 1.493 (5)
C8—H8 0.9800 C23—H23A 0.9600
C9—C10 1.514 (4) C23—H23B 0.9600
C9—H9 0.9800 C23—H23C 0.9600
C10—C11 1.519 (4) C24—H24A 0.9700
C10—H10A 0.9700 C24—H24B 0.9700
C10—H10B 0.9700 O1W—H1A 0.864 (10)
C11—C12 1.524 (5) O1W—H1B 0.866 (10)
C4—O1—C24 117.3 (2) C11—C12—H12B 109.5
C5—O2—H2' 111 (3) H12A—C12—H12B 108.1
C20—O3—H3' 105 (3) C12—C13—C8 112.6 (3)
C19—O4—C21 117.5 (2) C12—C13—H13A 109.1
C7—N1—C8 119.0 (2) C8—C13—H13A 109.1
C14—N2—C9 121.5 (3) C12—C13—H13B 109.1
C2—C1—C6 120.5 (3) C8—C13—H13B 109.1
C2—C1—H1 119.8 H13A—C13—H13B 107.8
C6—C1—H1 119.8 N2—C14—C15 121.8 (3)
C1—C2—C3 120.2 (3) N2—C14—H14 119.1
C1—C2—H2 119.9 C15—C14—H14 119.1
C3—C2—H2 119.9 C20—C15—C16 119.7 (3)
C4—C3—C2 120.4 (3) C20—C15—C14 119.8 (3)
C4—C3—H3 119.8 C16—C15—C14 120.4 (3)
C2—C3—H3 119.8 C17—C16—C15 120.2 (3)
O1—C4—C3 125.2 (3) C17—C16—H16 119.9
O1—C4—C5 115.2 (2) C15—C16—H16 119.9
C3—C4—C5 119.6 (3) C16—C17—C18 120.5 (3)
O2—C5—C6 122.0 (3) C16—C17—H17 119.8
O2—C5—C4 118.1 (2) C18—C17—H17 119.8
C6—C5—C4 119.8 (2) C19—C18—C17 120.6 (3)
C1—C6—C5 119.4 (3) C19—C18—H18 119.7
C1—C6—C7 120.1 (3) C17—C18—H18 119.7
C5—C6—C7 120.4 (2) O4—C19—C18 125.4 (3)
N1—C7—C6 122.2 (3) O4—C19—C20 114.8 (2)
N1—C7—H7A 118.9 C18—C19—C20 119.8 (3)
C6—C7—H7A 118.9 O3—C20—C15 122.3 (3)
N1—C8—C13 111.1 (3) O3—C20—C19 118.6 (3)
N1—C8—C9 108.2 (2) C15—C20—C19 119.1 (3)
C13—C8—C9 110.5 (3) O4—C21—C22 107.2 (3)
N1—C8—H8 109.0 O4—C21—H21A 110.3
C13—C8—H8 109.0 C22—C21—H21A 110.3
C9—C8—H8 109.0 O4—C21—H21B 110.3
N2—C9—C10 110.7 (2) C22—C21—H21B 110.3
N2—C9—C8 109.2 (2) H21A—C21—H21B 108.5
C10—C9—C8 111.3 (3) C21—C22—H22A 109.5
N2—C9—H9 108.6 C21—C22—H22B 109.5
C10—C9—H9 108.6 H22A—C22—H22B 109.5
C8—C9—H9 108.6 C21—C22—H22C 109.5
C9—C10—C11 111.6 (3) H22A—C22—H22C 109.5
C9—C10—H10A 109.3 H22B—C22—H22C 109.5
C11—C10—H10A 109.3 C24—C23—H23A 109.5
C9—C10—H10B 109.3 C24—C23—H23B 109.5
C11—C10—H10B 109.3 H23A—C23—H23B 109.5
H10A—C10—H10B 108.0 C24—C23—H23C 109.5
C10—C11—C12 110.9 (3) H23A—C23—H23C 109.5
C10—C11—H11A 109.5 H23B—C23—H23C 109.5
C12—C11—H11A 109.5 O1—C24—C23 107.1 (3)
C10—C11—H11B 109.5 O1—C24—H24A 110.3
C12—C11—H11B 109.5 C23—C24—H24A 110.3
H11A—C11—H11B 108.0 O1—C24—H24B 110.3
C13—C12—C11 110.6 (3) C23—C24—H24B 110.3
C13—C12—H12A 109.5 H24A—C24—H24B 108.6
C11—C12—H12A 109.5 H1A—O1W—H1B 103 (2)
C13—C12—H12B 109.5
C6—C1—C2—C3 −1.1 (5) C8—C9—C10—C11 −56.0 (3)
C1—C2—C3—C4 1.7 (5) C9—C10—C11—C12 56.5 (4)
C24—O1—C4—C3 6.5 (4) C10—C11—C12—C13 −55.5 (4)
C24—O1—C4—C5 −172.9 (3) C11—C12—C13—C8 55.4 (4)
C2—C3—C4—O1 −179.7 (3) N1—C8—C13—C12 65.6 (3)
C2—C3—C4—C5 −0.2 (5) C9—C8—C13—C12 −54.6 (4)
O1—C4—C5—O2 −0.5 (4) C9—N2—C14—C15 177.9 (3)
C3—C4—C5—O2 −180.0 (3) N2—C14—C15—C20 1.4 (5)
O1—C4—C5—C6 177.6 (3) N2—C14—C15—C16 −177.0 (3)
C3—C4—C5—C6 −1.9 (4) C20—C15—C16—C17 0.9 (5)
C2—C1—C6—C5 −1.0 (5) C14—C15—C16—C17 179.3 (3)
C2—C1—C6—C7 176.1 (3) C15—C16—C17—C18 0.9 (6)
O2—C5—C6—C1 −179.5 (3) C16—C17—C18—C19 −0.3 (5)
C4—C5—C6—C1 2.5 (4) C21—O4—C19—C18 −3.8 (4)
O2—C5—C6—C7 3.5 (4) C21—O4—C19—C20 177.3 (3)
C4—C5—C6—C7 −174.6 (3) C17—C18—C19—O4 179.0 (3)
C8—N1—C7—C6 176.8 (3) C17—C18—C19—C20 −2.2 (5)
C1—C6—C7—N1 176.8 (3) C16—C15—C20—O3 178.3 (3)
C5—C6—C7—N1 −6.2 (4) C14—C15—C20—O3 −0.1 (4)
C7—N1—C8—C13 102.7 (3) C16—C15—C20—C19 −3.3 (4)
C7—N1—C8—C9 −135.8 (3) C14—C15—C20—C19 178.2 (3)
C14—N2—C9—C10 −89.5 (3) O4—C19—C20—O3 1.4 (4)
C14—N2—C9—C8 147.7 (3) C18—C19—C20—O3 −177.6 (3)
N1—C8—C9—N2 54.9 (3) O4—C19—C20—C15 −177.1 (2)
C13—C8—C9—N2 176.7 (3) C18—C19—C20—C15 4.0 (4)
N1—C8—C9—C10 −67.5 (3) C19—O4—C21—C22 −178.9 (3)
C13—C8—C9—C10 54.3 (3) C4—O1—C24—C23 176.0 (3)
N2—C9—C10—C11 −177.6 (3)

Hydrogen-bond geometry (Å, º)

Cg is the centroid of the C15–C20 ring.

D—H···A D—H H···A D···A D—H···A
O3—H3′···N2 0.85 (1) 1.77 (3) 2.550 (4) 152 (3)
O2—H2′···N1 0.84 (1) 1.85 (2) 2.584 (3) 144 (4)
O1W—H1B···O3 0.86 (5) 2.34 (7) 3.005 (5) 134 (8)
O1W—H1B···O4 0.86 (5) 2.38 (8) 3.052 (5) 135 (6)
C21—H21B···Cg 0.97 2.92 3.810 (4) 153

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: FJ2654).

References

  1. Ambili, K. U., Sreejith, S. S., Jacob, J. M., Sithambaresan, M. & Kurup, M. R. P. (2012). Acta Cryst. E68, o2482. [DOI] [PMC free article] [PubMed]
  2. Brandenburg, K. (2010). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Bruker (2004). SADABS, APEX2, XPREP and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  5. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  6. Franceschi, F., Solari, E., Floriani, C., Rosi, M., -Villa, A. C. & Rizzoli, C. (1999). Chem. Eur. J. 5, 708–721.
  7. Hwang, C.-D., Hwang, D.-R. & Uang, B.-J. (1998). J. Org. Chem. 63, 6762–6763. [DOI] [PubMed]
  8. Jones, R. D., Summerville, D. A. & Basolo, F. (1979). Chem. Rev. 79, 139–179.
  9. Popović, Z., Pavlović, G., Calogović, D. M., Roje, V. & Leban, I. (2002). J. Mol. Struct. 615, 23–31.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Tümer, M. (2000). Synth. React. Inorg. Met. Org. Chem. 30, 1139–1158.
  12. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536814000713/fj2654sup1.cif

e-70-0o182-sup1.cif (30.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814000713/fj2654Isup2.hkl

e-70-0o182-Isup2.hkl (273.5KB, hkl)

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES