Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Jan 31;70(Pt 2):o228. doi: 10.1107/S1600536814001755

2-Meth­oxy-4,6-di­phenyl­nicotino­nitrile

Joel T Mague a,*, Alaa A-M Abdel-Aziz b,c,, Adel S El-Azab b,c, Ibrahim A Al-Swaidan b
PMCID: PMC3998366  PMID: 24764927

Abstract

In the title compound, C19H14N2O, the phenyl rings form dihedral angles of 10.90 (10) and 42.14 (6)° with pyridine ring and an angle of 35.7 (2)° with each other. The orientation of the meth­oxy group is defined by the C—O—C—N torsion angle of 4.9 (2)°.

Related literature  

For synthesis and drug-discovery studies of pyridine derivatives, see: Abdel-Aziz (2007); Abdel-Aziz et al. (2005); Cook et al. (2004); Upton et al. (2000); Al-Arab (1989); Perez-Medina et al. (1947). For related structures, see: Alvarez-Larena et al. (1994); Cao et al. (2009); Lv & Huang (2008); Mohamed et al. (2012); Patel et al. (2002).graphic file with name e-70-0o228-scheme1.jpg

Experimental  

Crystal data  

  • C19H14N2O

  • M r = 286.32

  • Orthorhombic, Inline graphic

  • a = 15.0686 (16) Å

  • b = 24.327 (3) Å

  • c = 3.8986 (4) Å

  • V = 1429.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.22 × 0.11 × 0.06 mm

Data collection  

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2009) T min = 0.982, T max = 0.995

  • 12356 measured reflections

  • 3344 independent reflections

  • 2983 reflections with I > 2σ(I)

  • R int = 0.047

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.093

  • S = 1.04

  • 3344 reflections

  • 200 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536814001755/lh5683sup1.cif

e-70-0o228-sup1.cif (375.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814001755/lh5683Isup2.hkl

e-70-0o228-Isup2.hkl (164KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814001755/lh5683Isup3.cml

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the Deanship of Scientific Research and the Research Center of the College of Pharmacy, King Saud University, for support. JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.

supplementary crystallographic information

1. Comment

Compounds containing the pyridine nucleus are known to exhibit a large number of important biological properties (Perez-Medina et al., 1947; Upton et al., 2000; Cook et al., 2004). As part of our ongoing program of drug discovery and design we report the structure of the title compound. The molecular structure of the title compound is shown in Fig. 1. The pendant phenyl rings (C8-C13) and (C14-C19) form dihedral angles of 10.90 (10) and 42.14 (6)°, respectively, with the central pyridine ring and a dihedral angle of 35.7 (2)° with each other. There are no significant intermolecular interactions which contrasts with the structure of the ethoxy analog where C—H···π and π—π stacking interactions are proposed (Patel et al., 2002). The methoxy group is almost coplanar with the pyridine ring as indicated by the C6—O1—C5—N1 torsion angle of 4.9 (2)°. The conformations of related 2,4-diphenylpyridine derivatives differ from that of the title compound in the orientations of the pendant phenyl groups relative to the pyridine ring (Alvarez-Larena, et al., 1994; Cao et al., 2009; Lv & Huang, 2008; Mohamed et al., 2012; Patel et al., 2002).

2. Experimental

The title compound was prepared by the literature method (Al-Arab, 1989) and crystallized from acetone as slender, colourless plates.

3. Refinement

H-atoms were placed in calculated positions (C—H = 0.95 - 0.98 Å) and included as riding contributions with isotropic displacement parameters 1.2–1.5 times those of the attached carbon atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Crystal data

C19H14N2O F(000) = 600
Mr = 286.32 Dx = 1.331 Mg m3
Orthorhombic, P21212 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2 2ab Cell parameters from 7963 reflections
a = 15.0686 (16) Å θ = 2.7–28.4°
b = 24.327 (3) Å µ = 0.08 mm1
c = 3.8986 (4) Å T = 100 K
V = 1429.1 (3) Å3 Plate, colourless
Z = 4 0.22 × 0.11 × 0.06 mm

Data collection

Bruker SMART APEXII CCD diffractometer 3344 independent reflections
Radiation source: fine-focus sealed tube 2983 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.047
φ and ω scans θmax = 28.5°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 2009) h = −19→20
Tmin = 0.982, Tmax = 0.995 k = −31→31
12356 measured reflections l = −5→5

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0325P)2 + 0.477P] where P = (Fo2 + 2Fc2)/3
3344 reflections (Δ/σ)max < 0.001
200 parameters Δρmax = 0.20 e Å3
0 restraints Δρmin = −0.21 e Å3

Special details

Experimental. The diffraction data were collected in three sets of 606 frames (0.3° width in ω) at φ = 0, 120 and 240°. A scan time of 40 sec/frame was used.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms were placed in calculated positions (C—H = 0.95 - 0.98 Å) and included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached carbon atoms. 1280 Friedel pairs were left unmerged but the absolute structure could not be reliably determined.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.43017 (8) 0.12053 (5) 0.0589 (4) 0.0260 (3)
N1 0.57518 (9) 0.11317 (5) 0.2415 (4) 0.0213 (3)
N2 0.38885 (10) 0.24495 (6) −0.3038 (4) 0.0283 (3)
C1 0.65658 (10) 0.13660 (6) 0.2753 (4) 0.0189 (3)
C2 0.67269 (11) 0.19050 (6) 0.1762 (4) 0.0194 (3)
H2 0.7302 0.2058 0.2047 0.023*
C3 0.60488 (11) 0.22245 (7) 0.0350 (4) 0.0189 (3)
C4 0.52180 (11) 0.19767 (7) −0.0084 (5) 0.0198 (4)
C5 0.51198 (11) 0.14286 (7) 0.1036 (5) 0.0208 (4)
C6 0.41763 (12) 0.06623 (7) 0.1956 (6) 0.0310 (4)
H6A 0.4557 0.0403 0.0720 0.046*
H6B 0.3554 0.0554 0.1683 0.046*
H6C 0.4332 0.0660 0.4396 0.046*
C7 0.44794 (11) 0.22442 (7) −0.1697 (5) 0.0215 (3)
C8 0.72680 (11) 0.10115 (7) 0.4250 (4) 0.0194 (3)
C9 0.70457 (11) 0.05036 (7) 0.5689 (5) 0.0226 (4)
H9 0.6442 0.0392 0.5762 0.027*
C10 0.76945 (11) 0.01607 (7) 0.7011 (5) 0.0250 (4)
H10 0.7534 −0.0184 0.7976 0.030*
C11 0.85806 (12) 0.03196 (7) 0.6928 (5) 0.0256 (4)
H11 0.9028 0.0085 0.7821 0.031*
C12 0.88043 (12) 0.08248 (7) 0.5528 (5) 0.0263 (4)
H12 0.9409 0.0936 0.5473 0.032*
C13 0.81601 (11) 0.11685 (7) 0.4214 (5) 0.0234 (4)
H13 0.8324 0.1514 0.3277 0.028*
C14 0.62283 (11) 0.28047 (7) −0.0627 (4) 0.0190 (3)
C15 0.56225 (11) 0.32239 (7) 0.0117 (4) 0.0218 (4)
H15 0.5077 0.3140 0.1223 0.026*
C16 0.58217 (11) 0.37627 (7) −0.0770 (5) 0.0237 (4)
H16 0.5413 0.4048 −0.0245 0.028*
C17 0.66093 (12) 0.38876 (7) −0.2411 (5) 0.0257 (4)
H17 0.6737 0.4257 −0.3029 0.031*
C18 0.72141 (11) 0.34755 (7) −0.3158 (5) 0.0241 (4)
H18 0.7753 0.3561 −0.4305 0.029*
C19 0.70285 (11) 0.29378 (7) −0.2222 (4) 0.0213 (3)
H19 0.7451 0.2657 −0.2672 0.026*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0191 (6) 0.0201 (6) 0.0388 (7) −0.0036 (5) −0.0033 (6) 0.0000 (5)
N1 0.0203 (7) 0.0194 (6) 0.0241 (8) −0.0007 (5) 0.0008 (6) −0.0018 (6)
N2 0.0236 (7) 0.0269 (7) 0.0345 (8) 0.0006 (6) −0.0047 (7) −0.0002 (7)
C1 0.0193 (7) 0.0201 (7) 0.0172 (8) 0.0011 (6) 0.0013 (6) −0.0032 (6)
C2 0.0183 (7) 0.0201 (8) 0.0197 (8) −0.0004 (6) −0.0003 (7) −0.0032 (6)
C3 0.0208 (8) 0.0199 (7) 0.0160 (8) 0.0012 (6) 0.0020 (7) −0.0024 (6)
C4 0.0184 (8) 0.0199 (8) 0.0210 (9) 0.0019 (6) −0.0003 (7) −0.0024 (7)
C5 0.0172 (8) 0.0213 (8) 0.0237 (9) −0.0016 (6) 0.0018 (7) −0.0037 (7)
C6 0.0254 (9) 0.0224 (9) 0.0451 (12) −0.0059 (7) −0.0031 (9) 0.0021 (8)
C7 0.0206 (8) 0.0198 (8) 0.0241 (9) −0.0017 (6) 0.0017 (7) −0.0013 (7)
C8 0.0207 (8) 0.0194 (8) 0.0182 (8) 0.0007 (6) −0.0002 (7) −0.0030 (6)
C9 0.0225 (8) 0.0214 (8) 0.0241 (9) −0.0007 (7) 0.0020 (8) −0.0010 (7)
C10 0.0296 (9) 0.0201 (8) 0.0254 (9) 0.0019 (7) 0.0021 (8) 0.0017 (7)
C11 0.0268 (9) 0.0252 (8) 0.0249 (9) 0.0056 (7) −0.0005 (8) 0.0019 (7)
C12 0.0226 (8) 0.0286 (9) 0.0277 (9) 0.0005 (7) −0.0037 (8) −0.0010 (7)
C13 0.0249 (8) 0.0194 (8) 0.0259 (9) −0.0015 (7) −0.0012 (7) 0.0003 (7)
C14 0.0207 (8) 0.0191 (7) 0.0172 (7) 0.0004 (6) −0.0031 (7) −0.0009 (6)
C15 0.0209 (8) 0.0224 (8) 0.0222 (9) −0.0006 (7) −0.0005 (7) −0.0016 (7)
C16 0.0264 (9) 0.0201 (8) 0.0245 (9) 0.0024 (7) −0.0033 (7) −0.0013 (7)
C17 0.0331 (9) 0.0202 (8) 0.0238 (9) −0.0042 (7) −0.0055 (8) 0.0020 (7)
C18 0.0233 (8) 0.0268 (9) 0.0222 (8) −0.0045 (7) −0.0009 (7) 0.0008 (7)
C19 0.0211 (8) 0.0225 (8) 0.0203 (8) 0.0009 (6) −0.0013 (7) −0.0032 (7)

Geometric parameters (Å, º)

O1—C5 1.3583 (19) C9—H9 0.9500
O1—C6 1.437 (2) C10—C11 1.390 (2)
N1—C5 1.311 (2) C10—H10 0.9500
N1—C1 1.359 (2) C11—C12 1.386 (2)
N2—C7 1.147 (2) C11—H11 0.9500
C1—C2 1.388 (2) C12—C13 1.380 (2)
C1—C8 1.485 (2) C12—H12 0.9500
C2—C3 1.397 (2) C13—H13 0.9500
C2—H2 0.9500 C14—C19 1.395 (2)
C3—C4 1.400 (2) C14—C15 1.399 (2)
C3—C14 1.487 (2) C15—C16 1.388 (2)
C4—C5 1.411 (2) C15—H15 0.9500
C4—C7 1.435 (2) C16—C17 1.382 (2)
C6—H6A 0.9800 C16—H16 0.9500
C6—H6B 0.9800 C17—C18 1.386 (2)
C6—H6C 0.9800 C17—H17 0.9500
C8—C13 1.397 (2) C18—C19 1.386 (2)
C8—C9 1.398 (2) C18—H18 0.9500
C9—C10 1.385 (2) C19—H19 0.9500
C5—O1—C6 116.07 (13) C9—C10—C11 120.12 (16)
C5—N1—C1 117.68 (14) C9—C10—H10 119.9
N1—C1—C2 121.80 (15) C11—C10—H10 119.9
N1—C1—C8 115.97 (14) C12—C11—C10 119.29 (16)
C2—C1—C8 122.23 (14) C12—C11—H11 120.4
C1—C2—C3 120.49 (15) C10—C11—H11 120.4
C1—C2—H2 119.8 C13—C12—C11 120.81 (17)
C3—C2—H2 119.8 C13—C12—H12 119.6
C2—C3—C4 117.52 (15) C11—C12—H12 119.6
C2—C3—C14 119.74 (15) C12—C13—C8 120.49 (16)
C4—C3—C14 122.74 (15) C12—C13—H13 119.8
C3—C4—C5 117.62 (15) C8—C13—H13 119.8
C3—C4—C7 123.46 (15) C19—C14—C15 119.15 (15)
C5—C4—C7 118.89 (15) C19—C14—C3 119.47 (14)
N1—C5—O1 119.45 (15) C15—C14—C3 121.35 (15)
N1—C5—C4 124.86 (15) C16—C15—C14 119.70 (16)
O1—C5—C4 115.69 (14) C16—C15—H15 120.1
O1—C6—H6A 109.5 C14—C15—H15 120.1
O1—C6—H6B 109.5 C17—C16—C15 120.56 (16)
H6A—C6—H6B 109.5 C17—C16—H16 119.7
O1—C6—H6C 109.5 C15—C16—H16 119.7
H6A—C6—H6C 109.5 C16—C17—C18 120.19 (15)
H6B—C6—H6C 109.5 C16—C17—H17 119.9
N2—C7—C4 178.56 (19) C18—C17—H17 119.9
C13—C8—C9 118.44 (15) C17—C18—C19 119.64 (16)
C13—C8—C1 121.52 (15) C17—C18—H18 120.2
C9—C8—C1 120.03 (14) C19—C18—H18 120.2
C10—C9—C8 120.84 (16) C18—C19—C14 120.72 (15)
C10—C9—H9 119.6 C18—C19—H19 119.6
C8—C9—H9 119.6 C14—C19—H19 119.6
C5—N1—C1—C2 1.6 (2) C2—C1—C8—C9 170.16 (16)
C5—N1—C1—C8 −178.59 (15) C13—C8—C9—C10 −0.8 (3)
N1—C1—C2—C3 −0.4 (2) C1—C8—C9—C10 178.17 (16)
C8—C1—C2—C3 179.74 (15) C8—C9—C10—C11 0.2 (3)
C1—C2—C3—C4 −1.4 (2) C9—C10—C11—C12 0.3 (3)
C1—C2—C3—C14 178.68 (15) C10—C11—C12—C13 −0.2 (3)
C2—C3—C4—C5 1.9 (2) C11—C12—C13—C8 −0.4 (3)
C14—C3—C4—C5 −178.09 (15) C9—C8—C13—C12 0.9 (3)
C2—C3—C4—C7 −175.93 (16) C1—C8—C13—C12 −178.03 (16)
C14—C3—C4—C7 4.0 (3) C2—C3—C14—C19 40.9 (2)
C1—N1—C5—O1 178.65 (15) C4—C3—C14—C19 −139.07 (17)
C1—N1—C5—C4 −0.9 (3) C2—C3—C14—C15 −137.09 (17)
C6—O1—C5—N1 4.9 (2) C4—C3—C14—C15 42.9 (2)
C6—O1—C5—C4 −175.45 (16) C19—C14—C15—C16 0.6 (2)
C3—C4—C5—N1 −0.9 (3) C3—C14—C15—C16 178.63 (15)
C7—C4—C5—N1 177.11 (17) C14—C15—C16—C17 0.6 (3)
C3—C4—C5—O1 179.55 (15) C15—C16—C17—C18 −0.7 (3)
C7—C4—C5—O1 −2.5 (2) C16—C17—C18—C19 −0.6 (3)
N1—C1—C8—C13 169.24 (16) C17—C18—C19—C14 1.9 (3)
C2—C1—C8—C13 −10.9 (2) C15—C14—C19—C18 −1.9 (2)
N1—C1—C8—C9 −9.7 (2) C3—C14—C19—C18 −179.94 (16)

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: LH5683).

References

  1. Abdel-Aziz, A. A.-M. (2007). Tetrahedron Lett. 48, 2861–2865.
  2. Abdel-Aziz, A. A.-M., El-Subbagh, H. I. & Kunieda, T. (2005). Bioorg. Med. Chem. 13, 4929–4935. [DOI] [PubMed]
  3. Al-Arab, M. M. (1989). J. Heterocycl. Chem. 26, 1665–1673.
  4. Alvarez-Larena, A., Piniella, J. F., Victory, P., Borrell, J. I. & Vidal-Ferran, A. (1994). Z. Kristallogr. 209, 773–774.
  5. Brandenburg, K. & Putz, H. (2012). DIAMOND Crystal Impact GbR, Bonn, Germany.
  6. Bruker (2009). SAINT, Bruker AXS Inc., Madison, Wisconson, USA.
  7. Bruker (2010). APEX2, Bruker AXS Inc., Madison, Wisconson, USA.
  8. Cao, Q., Xie, Y., Jia, J. & Hong, X.-W. (2009). Acta Cryst. E65, o3182. [DOI] [PMC free article] [PubMed]
  9. Cook, C. E., Sloan, C. D., Thomas, B. F. & Navarro, H. A. (2004). Chem. Abstr. 141, 157039 861.
  10. Lv, L. L. & Huang, X.-Q. (2008). Acta Cryst. E64, o186. [DOI] [PMC free article] [PubMed]
  11. Mohamed, S. K., Akkurt, M., Abdelhamid, A. A., Singh, K. & El-Remaily, M. A. A. (2012). Acta Cryst. E68, o2495–o2496. [DOI] [PMC free article] [PubMed]
  12. Patel, U. H., Dave, C. G., Jotani, M. M. & Shah, H. C. (2002). Acta Cryst. C58, o697–o699. [DOI] [PubMed]
  13. Perez-Medina, L. A., Merriella, R. P. & McElvain, S. M. (1947). J. Am. Chem. Soc. 69, 2574–2579.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Sheldrick, G. M. (2009). SADABS University of Göttingen, Germany.
  16. Upton, C., Osborne, R. H. & Jaffar, M. (2000). Bioorg. Med. Chem. Lett. 10, 1277–1279. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536814001755/lh5683sup1.cif

e-70-0o228-sup1.cif (375.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814001755/lh5683Isup2.hkl

e-70-0o228-Isup2.hkl (164KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814001755/lh5683Isup3.cml

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES