Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Jan 31;70(Pt 2):o229. doi: 10.1107/S1600536814001792

1-Do­decyl­indoline-2,3-dione

Fatima-Zahrae Qachchachi a,*, Fouad Ouazzani Chahdi a, Houria Misbahi b, Michael Bodensteiner c, Lahcen El Ammari d
PMCID: PMC3998367  PMID: 24764928

Abstract

The structure of the title compound, C20H29NO2, is isotypic to that of its homologue 1-octylindoline-2,3-dione. The indoline ring and the two carbonyl-group O atoms are approximately coplanar, the largest deviation from the mean plane being 0.0760 (10) Å. The mean plane through the fused-ring system is nearly perpendicular to the mean plane passing through the 1-dodecyl chain [dihedral angle = 77.69 (5)°]. All C atoms of the dodecyl group are in an anti­periplanar arrangement. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds, forming a three-dimensional network.

Related literature  

For biological activity of indoline derivatives, see: Bhrigu et al. (2010); Malhotra et al. (2011); Da Silva et al. (2001); Ramachandran (2011); Smitha et al. (2008). For similar compounds see: Qachchachi et al. (2013).graphic file with name e-70-0o229-scheme1.jpg

Experimental  

Crystal data  

  • C20H29NO2

  • M r = 315.44

  • Monoclinic, Inline graphic

  • a = 25.2013 (7) Å

  • b = 4.66818 (9) Å

  • c = 15.7013 (4) Å

  • β = 104.926 (3)°

  • V = 1784.84 (7) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.58 mm−1

  • T = 123 K

  • 0.12 × 0.11 × 0.04 mm

Data collection  

  • Oxford Diffraction SuperNova (single source at offset, Atlas) diffractometer

  • Absorption correction: analytical [CrysAlis PRO (Oxford Diffraction, 2012); analytical numeric absorption correction using a multi-faceted crystal model (Clark & Reid, 1995)] T min = 0.942, T max = 0.979

  • 12640 measured reflections

  • 3493 independent reflections

  • 3039 reflections with I > 2σ(I)

  • R int = 0.021

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.100

  • S = 1.02

  • 3493 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2012); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814001792/rz5103sup1.cif

e-70-0o229-sup1.cif (25.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814001792/rz5103Isup2.hkl

e-70-0o229-Isup2.hkl (171.3KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814001792/rz5103Isup3.cml

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O1i 0.95 2.47 3.1423 (14) 127
C6—H6⋯O2ii 0.95 2.55 3.2360 (13) 130
C8—H8⋯O2iii 0.95 2.52 3.4598 (13) 169

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

supplementary crystallographic information

1. Comment

Isatin (1H-indoline-2,3-dione) and derivatives possess a broad range of biological and pharmacological properties and are widely used as starting materials for the synthesis of heterocyclic compounds and as substrates for drug synthesis relevant to application as insecticides and fungicides. These compounds find applications also in a broad range of therapies as anticancer drugs, antibiotics and antidepressants (Bhrigu et al., 2010; Malhotra et al., 2011; Da Silva et al., 2001; Ramachandran, 2011; Smitha et al., 2008). In our work, we are interested in developing a new isatin derivative with the addition of an alkyl halide to explore other potential applications.

The molecule of title compound is build up from a fused five- and six-membered ring system linked to a 1-dodecyl chain and to two ketone O atoms as shown in Fig. 1. The indoline ring and the two carbonyl-group O atoms are nearly coplanar, the largest deviation from the mean plane being 0.0760 (10) Å for atom O1. The plane of the fused ring system is nearly perpendicular to the mean plane passing through the 1-dodecyl chain as indicated by the dihedral angle of 77.69 (5)°. The dodecyl substituent has all carbon atoms in an antiperiplanar conformation. The structure of the title compound is similar to that of its homologue 1-octylindoline-2,3-dione (Qachchachi et al., 2013).

In the crystal, the molecules are linked by C6–H6···O1, C6–H6···O2 and C8–H8···O2 hydrogen bonds in the way to build a three-dimensional network as shown in Fig. 2 and Table 2.

2. Experimental

To a solution of isatin (0.5 g, 3.4 mmol) dissolved in DMF (30 ml) was added potassium carbonate (0.61 g, 4.4 mmol), a catalytic quantity of tetra-n-butylammonium bromide (0.1 g, 0.4 mmol) and 1-bromododecane (0.9 ml, 3.7 mmol). The mixture was stirred for 48 h and the reaction monitored by thin layer chromatography. The mixture was filtered and the solvent removed under vacuum. The solid obtained was recrystallized from ethanol to afford the title compound as orange crystals in 86% yield (m. p. 321 K).

3. Refinement

All H atoms could be located in a difference Fourier map. However, they were placed in calculated positions with C—H = 0.95 Å (aromatic), C—H = 0.99 Å (methylene) and C—H = 0.97 Å (methyl) and refined as riding on their parent atoms with Uiso(H) = 1.2 Ueq (C) or Uiso(H) = 1.5 Ueq(C) for methyl H atoms.

Figures

Fig. 1.

Fig. 1.

Molecular plot of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are represented as small circles.

Fig. 2.

Fig. 2.

Intermolecular hydrogen interactions in the title compound. Hydrogen bonds are shown as dashed lines.

Crystal data

C20H29NO2 F(000) = 688
Mr = 315.44 Dx = 1.174 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybc Cell parameters from 6237 reflections
a = 25.2013 (7) Å θ = 5.4–73.8°
b = 4.66818 (9) Å µ = 0.58 mm1
c = 15.7013 (4) Å T = 123 K
β = 104.926 (3)° Plate, clear light orange
V = 1784.84 (7) Å3 0.12 × 0.11 × 0.04 mm
Z = 4

Data collection

Oxford Diffraction SuperNova (single source at offset, Atlas) diffractometer 3493 independent reflections
Radiation source: SuperNova (Cu) X-ray Source 3039 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.021
Detector resolution: 10.3546 pixels mm-1 θmax = 73.6°, θmin = 3.6°
ω scans h = −31→30
Absorption correction: analytical [CrysAlis PRO (Oxford Diffraction, 2012); analytical numeric absorption correction using a multi-faceted crystal model (Clark & Reid, 1995)] k = −5→5
Tmin = 0.942, Tmax = 0.979 l = −19→18
12640 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0528P)2 + 0.4135P] where P = (Fo2 + 2Fc2)/3
3493 reflections (Δ/σ)max = 0.001
208 parameters Δρmax = 0.29 e Å3
0 restraints Δρmin = −0.20 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.11717 (4) 0.3582 (2) 0.56405 (7) 0.0263 (2)
C2 0.07145 (4) 0.5831 (2) 0.52742 (7) 0.0256 (2)
C3 0.07308 (4) 0.6313 (2) 0.43624 (7) 0.0221 (2)
C4 0.11376 (4) 0.4511 (2) 0.41950 (7) 0.0207 (2)
C5 0.12551 (4) 0.4485 (2) 0.33845 (7) 0.0243 (2)
H5 0.1527 0.3249 0.3268 0.029*
C6 0.09572 (4) 0.6350 (2) 0.27432 (7) 0.0264 (2)
H6 0.1030 0.6382 0.2179 0.032*
C7 0.05561 (4) 0.8162 (2) 0.29048 (7) 0.0280 (2)
H7 0.0363 0.9419 0.2455 0.034*
C8 0.04351 (4) 0.8149 (2) 0.37185 (7) 0.0258 (2)
H8 0.0158 0.9361 0.3831 0.031*
C9 0.18532 (4) 0.0978 (2) 0.50360 (8) 0.0262 (2)
H9A 0.1802 −0.0161 0.4489 0.031*
H9B 0.1870 −0.0370 0.5529 0.031*
C10 0.23949 (4) 0.2615 (2) 0.52023 (8) 0.0264 (2)
H10A 0.2396 0.3770 0.4674 0.032*
H10B 0.2421 0.3951 0.5701 0.032*
C11 0.28944 (4) 0.0655 (2) 0.54105 (8) 0.0261 (2)
H11A 0.2866 −0.0697 0.4915 0.031*
H11B 0.2896 −0.0483 0.5943 0.031*
C12 0.34340 (4) 0.2303 (2) 0.55654 (8) 0.0269 (2)
H12A 0.3441 0.3339 0.5018 0.032*
H12B 0.3448 0.3748 0.6032 0.032*
C13 0.39431 (4) 0.0414 (3) 0.58348 (8) 0.0275 (2)
H13A 0.3930 −0.1032 0.5369 0.033*
H13B 0.3938 −0.0620 0.6383 0.033*
C14 0.44783 (4) 0.2094 (3) 0.59858 (8) 0.0283 (3)
H14A 0.4485 0.3105 0.5434 0.034*
H14B 0.4487 0.3563 0.6444 0.034*
C15 0.49914 (4) 0.0237 (3) 0.62696 (8) 0.0285 (3)
H15A 0.4984 −0.1232 0.5812 0.034*
H15B 0.4986 −0.0771 0.6822 0.034*
C16 0.55241 (4) 0.1948 (3) 0.64174 (8) 0.0290 (3)
H16A 0.5528 0.2957 0.5865 0.035*
H16B 0.5531 0.3416 0.6875 0.035*
C17 0.60399 (4) 0.0110 (3) 0.67010 (8) 0.0290 (3)
H17A 0.6033 −0.1358 0.6243 0.035*
H17B 0.6036 −0.0900 0.7254 0.035*
C18 0.65705 (4) 0.1830 (3) 0.68478 (8) 0.0287 (3)
H18A 0.6574 0.2838 0.6294 0.034*
H18B 0.6576 0.3302 0.7304 0.034*
C19 0.70879 (4) 0.0017 (3) 0.71327 (8) 0.0319 (3)
H19A 0.7083 −0.1461 0.6678 0.038*
H19B 0.7087 −0.0981 0.7689 0.038*
C20 0.76140 (5) 0.1765 (3) 0.72716 (9) 0.0383 (3)
H20A 0.7626 0.3204 0.7731 0.046*
H20B 0.7622 0.2724 0.6720 0.046*
H20C 0.7932 0.0491 0.7453 0.046*
N1 0.13859 (4) 0.2877 (2) 0.49531 (6) 0.0237 (2)
O1 0.13183 (4) 0.2676 (2) 0.63893 (5) 0.0368 (2)
O2 0.04303 (3) 0.6876 (2) 0.57083 (5) 0.0350 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0228 (5) 0.0325 (6) 0.0234 (5) −0.0083 (4) 0.0058 (4) −0.0017 (5)
C2 0.0203 (5) 0.0317 (6) 0.0250 (5) −0.0069 (4) 0.0063 (4) −0.0076 (5)
C3 0.0169 (4) 0.0255 (5) 0.0240 (5) −0.0034 (4) 0.0056 (4) −0.0056 (4)
C4 0.0168 (4) 0.0231 (5) 0.0212 (5) −0.0028 (4) 0.0029 (4) −0.0021 (4)
C5 0.0201 (5) 0.0290 (5) 0.0248 (5) 0.0006 (4) 0.0077 (4) −0.0035 (4)
C6 0.0262 (5) 0.0324 (6) 0.0206 (5) −0.0028 (5) 0.0063 (4) −0.0013 (4)
C7 0.0248 (5) 0.0290 (6) 0.0274 (6) 0.0008 (4) 0.0017 (4) 0.0018 (5)
C8 0.0192 (5) 0.0263 (5) 0.0308 (6) 0.0010 (4) 0.0044 (4) −0.0040 (5)
C9 0.0192 (5) 0.0256 (5) 0.0320 (6) 0.0005 (4) 0.0034 (4) 0.0025 (5)
C10 0.0192 (5) 0.0257 (5) 0.0322 (6) −0.0005 (4) 0.0031 (4) 0.0015 (5)
C11 0.0188 (5) 0.0277 (5) 0.0297 (6) 0.0002 (4) 0.0025 (4) 0.0019 (5)
C12 0.0193 (5) 0.0294 (6) 0.0308 (6) −0.0003 (4) 0.0042 (4) 0.0016 (5)
C13 0.0188 (5) 0.0316 (6) 0.0308 (6) 0.0004 (4) 0.0038 (4) 0.0014 (5)
C14 0.0189 (5) 0.0336 (6) 0.0315 (6) 0.0002 (4) 0.0046 (4) 0.0015 (5)
C15 0.0188 (5) 0.0342 (6) 0.0315 (6) 0.0005 (4) 0.0043 (4) 0.0023 (5)
C16 0.0191 (5) 0.0345 (6) 0.0323 (6) 0.0000 (4) 0.0048 (4) 0.0004 (5)
C17 0.0194 (5) 0.0357 (6) 0.0308 (6) 0.0012 (5) 0.0047 (4) 0.0034 (5)
C18 0.0194 (5) 0.0355 (6) 0.0300 (6) 0.0003 (4) 0.0041 (4) 0.0005 (5)
C19 0.0217 (5) 0.0403 (6) 0.0326 (6) 0.0029 (5) 0.0052 (5) 0.0050 (5)
C20 0.0193 (5) 0.0507 (8) 0.0428 (7) 0.0010 (5) 0.0044 (5) 0.0007 (6)
N1 0.0187 (4) 0.0286 (5) 0.0232 (5) −0.0001 (4) 0.0042 (3) 0.0013 (4)
O1 0.0369 (5) 0.0487 (5) 0.0239 (4) −0.0068 (4) 0.0060 (3) 0.0062 (4)
O2 0.0287 (4) 0.0505 (5) 0.0288 (4) −0.0021 (4) 0.0127 (3) −0.0127 (4)

Geometric parameters (Å, º)

C1—O1 1.2142 (14) C12—H12A 0.9900
C1—N1 1.3656 (14) C12—H12B 0.9900
C1—C2 1.5552 (16) C13—C14 1.5252 (14)
C2—O2 1.2113 (13) C13—H13A 0.9900
C2—C3 1.4601 (14) C13—H13B 0.9900
C3—C8 1.3869 (16) C14—C15 1.5251 (15)
C3—C4 1.4027 (14) C14—H14A 0.9900
C4—C5 1.3789 (14) C14—H14B 0.9900
C4—N1 1.4163 (14) C15—C16 1.5275 (14)
C5—C6 1.3950 (16) C15—H15A 0.9900
C5—H5 0.9500 C15—H15B 0.9900
C6—C7 1.3909 (16) C16—C17 1.5250 (15)
C6—H6 0.9500 C16—H16A 0.9900
C7—C8 1.3878 (15) C16—H16B 0.9900
C7—H7 0.9500 C17—C18 1.5257 (15)
C8—H8 0.9500 C17—H17A 0.9900
C9—N1 1.4528 (13) C17—H17B 0.9900
C9—C10 1.5270 (14) C18—C19 1.5220 (15)
C9—H9A 0.9900 C18—H18A 0.9900
C9—H9B 0.9900 C18—H18B 0.9900
C10—C11 1.5222 (14) C19—C20 1.5239 (16)
C10—H10A 0.9900 C19—H19A 0.9900
C10—H10B 0.9900 C19—H19B 0.9900
C11—C12 1.5265 (14) C20—H20A 0.9800
C11—H11A 0.9900 C20—H20B 0.9800
C11—H11B 0.9900 C20—H20C 0.9800
C12—C13 1.5238 (14)
O1—C1—N1 126.70 (11) C14—C13—H13A 108.9
O1—C1—C2 127.24 (10) C12—C13—H13B 108.9
N1—C1—C2 106.04 (9) C14—C13—H13B 108.9
O2—C2—C3 131.26 (11) H13A—C13—H13B 107.8
O2—C2—C1 123.57 (10) C15—C14—C13 113.73 (10)
C3—C2—C1 105.16 (8) C15—C14—H14A 108.8
C8—C3—C4 121.03 (10) C13—C14—H14A 108.8
C8—C3—C2 131.64 (10) C15—C14—H14B 108.8
C4—C3—C2 107.32 (9) C13—C14—H14B 108.8
C5—C4—C3 121.28 (10) H14A—C14—H14B 107.7
C5—C4—N1 128.13 (9) C14—C15—C16 113.14 (10)
C3—C4—N1 110.58 (9) C14—C15—H15A 109.0
C4—C5—C6 117.21 (9) C16—C15—H15A 109.0
C4—C5—H5 121.4 C14—C15—H15B 109.0
C6—C5—H5 121.4 C16—C15—H15B 109.0
C7—C6—C5 121.95 (10) H15A—C15—H15B 107.8
C7—C6—H6 119.0 C17—C16—C15 113.57 (10)
C5—C6—H6 119.0 C17—C16—H16A 108.9
C8—C7—C6 120.51 (10) C15—C16—H16A 108.9
C8—C7—H7 119.7 C17—C16—H16B 108.9
C6—C7—H7 119.7 C15—C16—H16B 108.9
C3—C8—C7 118.01 (10) H16A—C16—H16B 107.7
C3—C8—H8 121.0 C16—C17—C18 113.33 (10)
C7—C8—H8 121.0 C16—C17—H17A 108.9
N1—C9—C10 112.22 (9) C18—C17—H17A 108.9
N1—C9—H9A 109.2 C16—C17—H17B 108.9
C10—C9—H9A 109.2 C18—C17—H17B 108.9
N1—C9—H9B 109.2 H17A—C17—H17B 107.7
C10—C9—H9B 109.2 C19—C18—C17 113.75 (10)
H9A—C9—H9B 107.9 C19—C18—H18A 108.8
C11—C10—C9 112.92 (9) C17—C18—H18A 108.8
C11—C10—H10A 109.0 C19—C18—H18B 108.8
C9—C10—H10A 109.0 C17—C18—H18B 108.8
C11—C10—H10B 109.0 H18A—C18—H18B 107.7
C9—C10—H10B 109.0 C18—C19—C20 113.08 (11)
H10A—C10—H10B 107.8 C18—C19—H19A 109.0
C10—C11—C12 112.63 (9) C20—C19—H19A 109.0
C10—C11—H11A 109.1 C18—C19—H19B 109.0
C12—C11—H11A 109.1 C20—C19—H19B 109.0
C10—C11—H11B 109.1 H19A—C19—H19B 107.8
C12—C11—H11B 109.1 C19—C20—H20A 109.5
H11A—C11—H11B 107.8 C19—C20—H20B 109.5
C13—C12—C11 113.86 (9) H20A—C20—H20B 109.5
C13—C12—H12A 108.8 C19—C20—H20C 109.5
C11—C12—H12A 108.8 H20A—C20—H20C 109.5
C13—C12—H12B 108.8 H20B—C20—H20C 109.5
C11—C12—H12B 108.8 C1—N1—C4 110.82 (9)
H12A—C12—H12B 107.7 C1—N1—C9 123.54 (9)
C12—C13—C14 113.16 (9) C4—N1—C9 125.19 (9)
C12—C13—H13A 108.9

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C6—H6···O1i 0.95 2.47 3.1423 (14) 127
C6—H6···O2ii 0.95 2.55 3.2360 (13) 130
C8—H8···O2iii 0.95 2.52 3.4598 (13) 169

Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) x, −y+3/2, z−1/2; (iii) −x, −y+2, −z+1.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: RZ5103).

References

  1. Bhrigu, B., Pathak, D., Siddiqui, N., Alam, M. S. & Ahsan, W. (2010). Int. J. Pharm. Sci. Drug Res. 2, 229–235.
  2. Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.
  3. Da Silva, J. F. M., Garden, S. J. & Pinto, A. C. (2001). J. Braz. Chem. Soc. 12, 273–324.
  4. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  5. Malhotra, S., Balwani, S., Dhawan, A., Singh, B. K., Kumar, S., Thimmulappa, R., Biswal, S., Olsen, C. E., Van der Eycken, E., Prasad, A. K., Ghosh, B. & Parmar, V. S. (2011). Med. Chem. Commun. 2, 743–751.
  6. Oxford Diffraction (2012). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.
  7. Qachchachi, F.-Z., Kandri Rodi, Y., Essassi, E. M., Kunz, W. & El Ammari, L. (2013). Acta Cryst. E69, o1801. [DOI] [PMC free article] [PubMed]
  8. Ramachandran, S. (2011). Int. J. Res. Pharm. Chem. 1, 289–294.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Smitha, S., Pandeya, S. N., Stables, J. P. & Ganapathy, S. (2008). Sci. Pharm. 76, 621–636.
  11. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814001792/rz5103sup1.cif

e-70-0o229-sup1.cif (25.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814001792/rz5103Isup2.hkl

e-70-0o229-Isup2.hkl (171.3KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814001792/rz5103Isup3.cml

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES