Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Feb 15;70(Pt 3):o309. doi: 10.1107/S160053681400316X

3-(3-Bromo­phenyl­sulfin­yl)-5-cyclo­hexyl-2-methyl-1-benzo­furan

Hong Dae Choi a, Pil Ja Seo a, Uk Lee b,*
PMCID: PMC3998404  PMID: 24765010

Abstract

In the title compound, C21H21BrO2S, the cyclo­hexyl ring adopts a chair conformation. The dihedral angle between the mean plane [r.m.s. deviation = 0.178 (2) Å] of the benzo­furan ring system and the mean plane of the 3-bromo­phenyl ring is 86.52 (6)°. In the crystal, mol­ecules are linked by weak C—H⋯O and C—H⋯π hydrogen bonds, and by a slipped π–π inter­action between the furan rings of neighbouring mol­ecules [centroid–centroid distance = 3.518 (3) Å, inter­planar distance = 3.471 (3) Å and slippage = 0.573 (3) Å], resulting in a three-dimensional network.

Related literature  

For background information and the crystal structures of related compounds, see: Choi et al. (2011, 2012a ,b ).graphic file with name e-70-0o309-scheme1.jpg

Experimental  

Crystal data  

  • C21H21BrO2S

  • M r = 417.35

  • Monoclinic, Inline graphic

  • a = 17.6432 (9) Å

  • b = 8.9425 (5) Å

  • c = 12.4776 (7) Å

  • β = 108.277 (3)°

  • V = 1869.33 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.32 mm−1

  • T = 173 K

  • 0.33 × 0.25 × 0.18 mm

Data collection  

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.482, T max = 0.746

  • 13952 measured reflections

  • 3290 independent reflections

  • 2635 reflections with I > 2σ(I)

  • R int = 0.035

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.031

  • wR(F 2) = 0.081

  • S = 1.02

  • 3290 reflections

  • 227 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.35 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S160053681400316X/gk2602sup1.cif

e-70-0o309-sup1.cif (26.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681400316X/gk2602Isup2.hkl

e-70-0o309-Isup2.hkl (161.4KB, hkl)

Supporting information file. DOI: 10.1107/S160053681400316X/gk2602Isup3.cml

CCDC reference: 986408

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C2–C7 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15A⋯O1i 0.98 2.58 3.358 (3) 136
C21—H21⋯O2ii 0.95 2.45 3.306 (3) 151
C15—H15CCg1iii 0.98 2.82 3.502 (3) 127

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

supplementary crystallographic information

1. Comment

As a part of our continuing study of 5-cyclohexyl-2-methyl-1-benzofuran derivatives containing 4-fluorophenylsulfinyl (Choi et al., 2011), 4-bromophenylsulfinyl (Choi et al., 2012a) and 4-methylphenylsulfinyl (Choi et al., 2012b) substituents in 3-position, we report herein the crystal structure of the title compound.

In the title molecule (Fig. 1), the cyclohexyl ring has a chair conformation. The benzofuran ring system is essentially planar, with a mean deviation of 0.178 (2) Å from the least-squares plane defined by the nine constituent atoms. The 3-bromophenyl ring is essentially planar, with a mean deviation of 0.005 (2) Å from the least-squares plane defined by the six constituent atoms. The dihedral angle formed by the benzofuran ring system and the 3-bromophenyl ring is 86.52 (6)°. In the crystal structure (Fig. 2), molecules are connected by C—H···O and C—H···π hydrogen bonds (Table 1, Cg1 is the centroid of the C2–C7 benzene ring). The crystal packing (Fig. 2) also exhibits a slipped π···π interaction between the furan rings of neighbouring molecules, with a Cg2···Cg2iii distance of 3.518 (3) Å and an interplanar distance of 3.471 (3) Å resulting in a slippage of 0.573 (3) Å (Cg2 is the centroid of the C1/C2/C7/O1/C8 furan ring).

2. Experimental

3-Chloroperoxybenzoic acid (77%, 224 mg, 1.0 mmol) was added in small portions to a stirred solution of 3-(3-bromophenylsulfanyl)-5-cyclohexyl-2-methyl-1-benzofuran(361 mg, 0.9 mmol) in dichloromethane (40 mL) at 273 K. After being stirred at room temperature for 4h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane–ethyl acetate, 2:1 v/v) to afford the title compound as a colorless solid [yield 71%, m.p. 415–416 K; Rf = 0.47 (hexane–ethyl acetate, 2:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in ethyl acetate at room temperature.

3. Refinement

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aryl, 1.00 Å for methine, 0.99 Å for methylene and 0.98 Å for methyl H atoms, respectively. Uiso (H) = 1.2Ueq (C) for aryl, methine and methylene, and 1.5Ueq (C) for methyl H atoms. The positions of methyl hydrogens were optimized rotationally.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

A view of the C—H···O, C—H···π and π···π interactions (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen bonding were omitted for clarity. [Symmetry codes : (i) - x + 1, y - 1/2, - z + 1/2 ; (ii) x, - y + 1/2, z - 1/2; (iii) - x + 1, - y + 1, - z + 1; (iv) - x + 1, y + 1/2, - z + 1/2; (v) x, - y + 1/2, z + 1/2.]

Crystal data

C21H21BrO2S F(000) = 856
Mr = 417.35 Dx = 1.483 Mg m3
Monoclinic, P21/c Melting point = 415–416 K
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71073 Å
a = 17.6432 (9) Å Cell parameters from 5628 reflections
b = 8.9425 (5) Å θ = 2.4–27.9°
c = 12.4776 (7) Å µ = 2.32 mm1
β = 108.277 (3)° T = 173 K
V = 1869.33 (18) Å3 Block, colourless
Z = 4 0.33 × 0.25 × 0.18 mm

Data collection

Bruker SMART APEXII CCD diffractometer 3290 independent reflections
Radiation source: rotating anode 2635 reflections with I > 2σ(I)
Graphite multilayer monochromator Rint = 0.035
Detector resolution: 10.0 pixels mm-1 θmax = 25.0°, θmin = 2.4°
φ and ω scans h = −20→20
Absorption correction: multi-scan (SADABS; Bruker, 2009) k = −9→10
Tmin = 0.482, Tmax = 0.746 l = −14→14
13952 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031 Hydrogen site location: difference Fourier map
wR(F2) = 0.081 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0334P)2 + 1.1209P] where P = (Fo2 + 2Fc2)/3
3290 reflections (Δ/σ)max = 0.001
227 parameters Δρmax = 0.33 e Å3
0 restraints Δρmin = −0.35 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.957798 (17) 0.38271 (5) 0.67946 (3) 0.07366 (16)
S1 0.63694 (3) 0.26562 (6) 0.46130 (5) 0.03447 (16)
O1 0.53393 (8) 0.66112 (17) 0.40386 (12) 0.0319 (4)
O2 0.64909 (10) 0.19977 (18) 0.57522 (14) 0.0427 (4)
C1 0.60397 (12) 0.4510 (2) 0.46411 (18) 0.0282 (5)
C2 0.63088 (12) 0.5613 (2) 0.55301 (17) 0.0256 (5)
C3 0.68650 (12) 0.5662 (2) 0.66079 (18) 0.0273 (5)
H3 0.7173 0.4802 0.6915 0.033*
C4 0.69659 (12) 0.6982 (2) 0.72299 (18) 0.0280 (5)
C5 0.64951 (13) 0.8227 (3) 0.67603 (19) 0.0319 (5)
H5 0.6567 0.9126 0.7186 0.038*
C6 0.59308 (13) 0.8197 (3) 0.57033 (19) 0.0336 (5)
H6 0.5612 0.9046 0.5399 0.040*
C7 0.58539 (12) 0.6878 (2) 0.51138 (18) 0.0274 (5)
C8 0.54640 (12) 0.5152 (3) 0.37802 (18) 0.0296 (5)
C9 0.75683 (13) 0.7056 (3) 0.84023 (18) 0.0316 (5)
H9 0.7543 0.8085 0.8704 0.038*
C10 0.73622 (14) 0.5948 (3) 0.92025 (19) 0.0380 (6)
H10A 0.6824 0.6180 0.9245 0.046*
H10B 0.7348 0.4924 0.8895 0.046*
C11 0.79601 (17) 0.5999 (3) 1.0382 (2) 0.0499 (7)
H11A 0.7937 0.6990 1.0723 0.060*
H11B 0.7820 0.5231 1.0860 0.060*
C12 0.87977 (16) 0.5719 (3) 1.0348 (2) 0.0515 (7)
H12A 0.8834 0.4687 1.0081 0.062*
H12B 0.9179 0.5810 1.1120 0.062*
C13 0.90249 (16) 0.6819 (4) 0.9573 (2) 0.0512 (7)
H13A 0.9560 0.6560 0.9528 0.061*
H13B 0.9054 0.7839 0.9892 0.061*
C14 0.84220 (14) 0.6799 (3) 0.8393 (2) 0.0433 (6)
H14A 0.8451 0.5822 0.8035 0.052*
H14B 0.8564 0.7586 0.7931 0.052*
C15 0.49706 (14) 0.4623 (3) 0.26513 (19) 0.0373 (6)
H15A 0.5103 0.3578 0.2551 0.056*
H15B 0.5078 0.5241 0.2067 0.056*
H15C 0.4404 0.4699 0.2589 0.056*
C16 0.73449 (14) 0.3121 (2) 0.45342 (18) 0.0319 (5)
C17 0.79756 (14) 0.3239 (3) 0.55204 (19) 0.0353 (5)
H17 0.7903 0.3067 0.6233 0.042*
C18 0.87176 (15) 0.3615 (3) 0.5440 (2) 0.0418 (6)
C19 0.88362 (16) 0.3840 (3) 0.4411 (2) 0.0451 (6)
H19 0.9350 0.4092 0.4373 0.054*
C20 0.81998 (17) 0.3694 (3) 0.3439 (2) 0.0446 (7)
H20 0.8278 0.3846 0.2727 0.054*
C21 0.74495 (16) 0.3330 (3) 0.34816 (19) 0.0378 (6)
H21 0.7013 0.3224 0.2808 0.045*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.03672 (18) 0.1296 (4) 0.0485 (2) 0.00172 (17) 0.00453 (14) −0.02246 (18)
S1 0.0418 (3) 0.0248 (3) 0.0302 (3) −0.0027 (2) 0.0018 (3) −0.0026 (2)
O1 0.0302 (8) 0.0323 (10) 0.0295 (8) 0.0027 (7) 0.0040 (7) 0.0072 (7)
O2 0.0528 (10) 0.0314 (10) 0.0403 (10) 0.0006 (8) 0.0097 (8) 0.0081 (8)
C1 0.0291 (11) 0.0263 (13) 0.0268 (11) −0.0029 (9) 0.0054 (9) 0.0020 (10)
C2 0.0262 (11) 0.0219 (12) 0.0287 (12) −0.0036 (9) 0.0085 (9) 0.0008 (9)
C3 0.0277 (11) 0.0225 (12) 0.0288 (12) 0.0012 (9) 0.0046 (9) 0.0028 (9)
C4 0.0283 (11) 0.0252 (13) 0.0309 (12) −0.0043 (9) 0.0099 (10) −0.0016 (10)
C5 0.0370 (12) 0.0217 (12) 0.0380 (13) 0.0002 (10) 0.0132 (11) −0.0040 (10)
C6 0.0335 (12) 0.0271 (13) 0.0392 (13) 0.0071 (10) 0.0100 (11) 0.0060 (11)
C7 0.0249 (11) 0.0282 (13) 0.0279 (11) 0.0000 (9) 0.0065 (9) 0.0047 (10)
C8 0.0288 (11) 0.0300 (13) 0.0289 (12) −0.0053 (10) 0.0074 (10) 0.0030 (10)
C9 0.0367 (12) 0.0239 (13) 0.0297 (12) −0.0019 (10) 0.0039 (10) −0.0051 (10)
C10 0.0412 (14) 0.0461 (16) 0.0284 (12) −0.0063 (11) 0.0133 (11) −0.0051 (11)
C11 0.0648 (18) 0.0553 (19) 0.0289 (13) −0.0076 (14) 0.0135 (13) −0.0022 (12)
C12 0.0511 (16) 0.0556 (18) 0.0351 (14) −0.0001 (13) −0.0049 (13) 0.0036 (13)
C13 0.0372 (14) 0.0610 (19) 0.0454 (16) −0.0093 (13) −0.0016 (12) 0.0001 (14)
C14 0.0335 (13) 0.0559 (17) 0.0375 (14) −0.0107 (12) 0.0067 (11) 0.0049 (12)
C15 0.0336 (12) 0.0450 (16) 0.0275 (12) −0.0061 (11) 0.0012 (10) 0.0021 (11)
C16 0.0426 (13) 0.0197 (12) 0.0293 (12) 0.0048 (10) 0.0054 (10) −0.0030 (9)
C17 0.0420 (14) 0.0350 (14) 0.0266 (12) 0.0079 (11) 0.0073 (11) −0.0029 (10)
C18 0.0408 (14) 0.0444 (16) 0.0372 (14) 0.0054 (11) 0.0078 (11) −0.0099 (12)
C19 0.0492 (15) 0.0421 (16) 0.0476 (16) 0.0020 (12) 0.0205 (13) −0.0061 (12)
C20 0.0670 (18) 0.0348 (15) 0.0366 (14) 0.0071 (13) 0.0226 (14) 0.0012 (11)
C21 0.0556 (16) 0.0256 (13) 0.0267 (12) 0.0084 (11) 0.0050 (11) −0.0009 (10)

Geometric parameters (Å, º)

Br1—C18 1.894 (2) C11—C12 1.512 (4)
S1—O2 1.4907 (17) C11—H11A 0.9900
S1—C1 1.761 (2) C11—H11B 0.9900
S1—C16 1.803 (2) C12—C13 1.519 (4)
O1—C8 1.378 (3) C12—H12A 0.9900
O1—C7 1.385 (3) C12—H12B 0.9900
C1—C8 1.353 (3) C13—C14 1.522 (3)
C1—C2 1.449 (3) C13—H13A 0.9900
C2—C7 1.390 (3) C13—H13B 0.9900
C2—C3 1.395 (3) C14—H14A 0.9900
C3—C4 1.393 (3) C14—H14B 0.9900
C3—H3 0.9500 C15—H15A 0.9800
C4—C5 1.402 (3) C15—H15B 0.9800
C4—C9 1.516 (3) C15—H15C 0.9800
C5—C6 1.381 (3) C16—C17 1.380 (3)
C5—H5 0.9500 C16—C21 1.395 (3)
C6—C7 1.374 (3) C17—C18 1.386 (4)
C6—H6 0.9500 C17—H17 0.9500
C8—C15 1.482 (3) C18—C19 1.379 (4)
C9—C14 1.527 (3) C19—C20 1.376 (4)
C9—C10 1.529 (3) C19—H19 0.9500
C9—H9 1.0000 C20—C21 1.380 (4)
C10—C11 1.519 (3) C20—H20 0.9500
C10—H10A 0.9900 C21—H21 0.9500
C10—H10B 0.9900
O2—S1—C1 107.61 (10) C10—C11—H11B 109.5
O2—S1—C16 106.78 (10) H11A—C11—H11B 108.1
C1—S1—C16 96.38 (10) C11—C12—C13 111.5 (2)
C8—O1—C7 106.61 (16) C11—C12—H12A 109.3
C8—C1—C2 107.62 (19) C13—C12—H12A 109.3
C8—C1—S1 123.66 (17) C11—C12—H12B 109.3
C2—C1—S1 128.71 (16) C13—C12—H12B 109.3
C7—C2—C3 118.9 (2) H12A—C12—H12B 108.0
C7—C2—C1 104.83 (18) C12—C13—C14 111.4 (2)
C3—C2—C1 136.2 (2) C12—C13—H13A 109.3
C4—C3—C2 119.5 (2) C14—C13—H13A 109.3
C4—C3—H3 120.3 C12—C13—H13B 109.3
C2—C3—H3 120.3 C14—C13—H13B 109.3
C3—C4—C5 119.0 (2) H13A—C13—H13B 108.0
C3—C4—C9 120.2 (2) C13—C14—C9 112.5 (2)
C5—C4—C9 120.8 (2) C13—C14—H14A 109.1
C6—C5—C4 122.6 (2) C9—C14—H14A 109.1
C6—C5—H5 118.7 C13—C14—H14B 109.1
C4—C5—H5 118.7 C9—C14—H14B 109.1
C7—C6—C5 116.6 (2) H14A—C14—H14B 107.8
C7—C6—H6 121.7 C8—C15—H15A 109.5
C5—C6—H6 121.7 C8—C15—H15B 109.5
C6—C7—O1 126.27 (19) H15A—C15—H15B 109.5
C6—C7—C2 123.4 (2) C8—C15—H15C 109.5
O1—C7—C2 110.36 (19) H15A—C15—H15C 109.5
C1—C8—O1 110.57 (19) H15B—C15—H15C 109.5
C1—C8—C15 133.6 (2) C17—C16—C21 121.4 (2)
O1—C8—C15 115.83 (19) C17—C16—S1 119.04 (18)
C4—C9—C14 112.37 (19) C21—C16—S1 119.52 (18)
C4—C9—C10 111.31 (18) C16—C17—C18 118.0 (2)
C14—C9—C10 110.16 (19) C16—C17—H17 121.0
C4—C9—H9 107.6 C18—C17—H17 121.0
C14—C9—H9 107.6 C19—C18—C17 121.7 (2)
C10—C9—H9 107.6 C19—C18—Br1 120.2 (2)
C11—C10—C9 112.2 (2) C17—C18—Br1 118.06 (19)
C11—C10—H10A 109.2 C20—C19—C18 119.1 (2)
C9—C10—H10A 109.2 C20—C19—H19 120.4
C11—C10—H10B 109.2 C18—C19—H19 120.4
C9—C10—H10B 109.2 C19—C20—C21 121.0 (2)
H10A—C10—H10B 107.9 C19—C20—H20 119.5
C12—C11—C10 110.8 (2) C21—C20—H20 119.5
C12—C11—H11A 109.5 C20—C21—C16 118.7 (2)
C10—C11—H11A 109.5 C20—C21—H21 120.7
C12—C11—H11B 109.5 C16—C21—H21 120.7
O2—S1—C1—C8 −139.65 (19) C7—O1—C8—C15 −179.84 (18)
C16—S1—C1—C8 110.4 (2) C3—C4—C9—C14 62.5 (3)
O2—S1—C1—C2 40.6 (2) C5—C4—C9—C14 −118.4 (2)
C16—S1—C1—C2 −69.3 (2) C3—C4—C9—C10 −61.6 (3)
C8—C1—C2—C7 0.1 (2) C5—C4—C9—C10 117.5 (2)
S1—C1—C2—C7 179.85 (17) C4—C9—C10—C11 179.8 (2)
C8—C1—C2—C3 179.3 (2) C14—C9—C10—C11 54.5 (3)
S1—C1—C2—C3 −0.9 (4) C9—C10—C11—C12 −56.3 (3)
C7—C2—C3—C4 −1.6 (3) C10—C11—C12—C13 56.0 (3)
C1—C2—C3—C4 179.3 (2) C11—C12—C13—C14 −55.0 (3)
C2—C3—C4—C5 0.9 (3) C12—C13—C14—C9 54.1 (3)
C2—C3—C4—C9 −179.93 (19) C4—C9—C14—C13 −178.0 (2)
C3—C4—C5—C6 0.2 (3) C10—C9—C14—C13 −53.3 (3)
C9—C4—C5—C6 −178.9 (2) O2—S1—C16—C17 −18.3 (2)
C4—C5—C6—C7 −0.7 (3) C1—S1—C16—C17 92.32 (19)
C5—C6—C7—O1 −178.7 (2) O2—S1—C16—C21 160.74 (18)
C5—C6—C7—C2 0.0 (3) C1—S1—C16—C21 −88.7 (2)
C8—O1—C7—C6 179.7 (2) C21—C16—C17—C18 1.8 (3)
C8—O1—C7—C2 0.8 (2) S1—C16—C17—C18 −179.20 (18)
C3—C2—C7—C6 1.1 (3) C16—C17—C18—C19 −1.3 (4)
C1—C2—C7—C6 −179.5 (2) C16—C17—C18—Br1 178.45 (18)
C3—C2—C7—O1 −179.96 (18) C17—C18—C19—C20 0.3 (4)
C1—C2—C7—O1 −0.5 (2) Br1—C18—C19—C20 −179.37 (19)
C2—C1—C8—O1 0.5 (2) C18—C19—C20—C21 0.1 (4)
S1—C1—C8—O1 −179.36 (14) C19—C20—C21—C16 0.4 (4)
C2—C1—C8—C15 179.3 (2) C17—C16—C21—C20 −1.4 (3)
S1—C1—C8—C15 −0.5 (4) S1—C16—C21—C20 179.61 (18)
C7—O1—C8—C1 −0.8 (2)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the C2–C7 benzene ring.

D—H···A D—H H···A D···A D—H···A
C15—H15A···O1i 0.98 2.58 3.358 (3) 136
C21—H21···O2ii 0.95 2.45 3.306 (3) 151
C15—H15C···Cg1iii 0.98 2.82 3.502 (3) 127

Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) x, −y+1/2, z−1/2; (iii) −x+1, −y+1, −z+1.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: GK2602).

References

  1. Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2009). APEX2, SADABS and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Choi, H. D., Seo, P. J. & Lee, U. (2012a). Acta Cryst. E68, o205. [DOI] [PMC free article] [PubMed]
  4. Choi, H. D., Seo, P. J. & Lee, U. (2012b). Acta Cryst. E68, o947. [DOI] [PMC free article] [PubMed]
  5. Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2011). Acta Cryst. E67, o768. [DOI] [PMC free article] [PubMed]
  6. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S160053681400316X/gk2602sup1.cif

e-70-0o309-sup1.cif (26.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681400316X/gk2602Isup2.hkl

e-70-0o309-Isup2.hkl (161.4KB, hkl)

Supporting information file. DOI: 10.1107/S160053681400316X/gk2602Isup3.cml

CCDC reference: 986408

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES