Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Feb 8;70(Pt 3):o265. doi: 10.1107/S1600536814002669

Fluoren-9-one oxime

Bernhard Bugenhagen a, Yosef Al Jasem b, Mariam Al-Azani c, Thies Thiemann c,*
PMCID: PMC3998413  PMID: 24764980

Abstract

In the title mol­ecule, C13H9NO, the fluorene system and the oxime group non-H atoms are essentially coplanar, with a maximum deviation from the fluorene mean plane of 0.079 (2) Å for the oxime O atom. A short intra­molecular C—H⋯O generates an S(6) ring. In the crystal, mol­ecules related by a twofold screw axis are connected by O—H⋯N hydrogen bonds, forming [100] chains Within these chains, mol­ecules related by a unit translation along [100] show π–π stacking inter­actions between their fluorene ring systems with an inter­planar distance of 3.347 (2) Å. The dihedral angle between the fluorene units of adjacent mol­ecules along the helix is 88.40 (2)°. There is a short C—H⋯π contact between the fluorene groups belonging to neighbouring chains.

Related literature  

For the original procedure for the preparation of the title compound, see: Moore & Huntress (1927). For the use of the title compound as a starting material for the synthesis of bioactive compounds, see: Amlaiky et al. (1983); Ni et al. (2009); Rad et al. (2012).graphic file with name e-70-0o265-scheme1.jpg

Experimental  

Crystal data  

  • C13H9NO

  • M r = 195.21

  • Orthorhombic, Inline graphic

  • a = 4.8009 (1) Å

  • b = 12.2309 (2) Å

  • c = 16.0247 (3) Å

  • V = 940.96 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.70 mm−1

  • T = 100 K

  • 0.16 × 0.13 × 0.13 mm

Data collection  

  • Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013) T min = 0.890, T max = 1.000

  • 7588 measured reflections

  • 1942 independent reflections

  • 1865 reflections with I > 2σ(I)

  • R int = 0.029

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.029

  • wR(F 2) = 0.075

  • S = 1.05

  • 1942 reflections

  • 140 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.18 e Å−3

  • Absolute structure: Flack parameter determined using 735 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013)

  • Absolute structure parameter: 0.16 (13)

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within OLEX2 (Dolomanov et al., 2009); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 and PLATON.

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814002669/gk2601sup1.cif

e-70-0o265-sup1.cif (20.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814002669/gk2601Isup2.hkl

e-70-0o265-Isup2.hkl (107KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814002669/gk2601Isup3.cml

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C2–C7 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯O1 0.95 2.38 2.898 (2) 114
O1—H1⋯N1i 0.98 (3) 1.80 (3) 2.7758 (18) 169 (3)
C5—H5⋯Cg1ii 0.95 3.08 3.873 142

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

supplementary crystallographic information

1. Comment

The title compound, which was prepared according to a known procedure (Moore & Huntress, 1927) has found extensive use as a starting material for preparation of medicinal active compounds such as novel cyclophilin A inhibitors (Ni et al., 2009), novel analogs of beta-adrenoceptor antagonists (Rad et al., 2012) and beta-blocker (Amlaiky et al., 1983).

The ring atoms, N and O atoms in the title compound molecule, are essentially coplanar with a maximum deviation of 0.079 (2) Å for the O atom from the averaged ring plane (13 carbon atoms). The molecule in the crystal exhibits a C12—H12···O1 intramolecular interaction (Table 1), (Figure 1). The molecules related by a twofold screw axis are connected by O1—H1···N1 hydrogen bonds (Table 1) within a helical bonding network extending along the a axis (Figure 2). Within one helical bonding network, the neighboring molecules related by a unit translation along [100] show π–π stacking interactions between their fluorene ring systems with the interplanar distance of 3.347 (2) Å (Figure 2). The neighboring helical bonding networks in parallel alignment are linked to each other by C5—H5··· π (Cg1) (Table 1) close contact between their fluorene groups (Figure 3). The dihedral angle between the fluorene units of adjacent molecules along the helix is 88.40 (2)°.

2. Experimental

To a solution of fluoren-9-one (1.8 g, 10 mmol) in EtOH (47 ml) was given a solution of hydroxylamine hydrochloride (NH2OH.HCl, 2.75 g, 39.6 mmol) in water (7 ml), and the resulting mixture was stirred at 70 oC for 5 h. Thereafter, the reaction mixture was cooled and given into water (150 ml). The colorless precipitate was extracted with CH2Cl2 (2 × 75 ml). The organic phase was dried over anhydrous MgSO4 and concentrated in vacuo to give fluoren-9-one oxime (1.79 g, 92%) as a colorless solid, mp. 471 – 472 K; νmax (KBr/cm-1) 3500 – 2800 (bs, OH), 1604 (w), 1602, 1450, 1405, 1317, 1156, 1089, 998, 937, 780, 732, 640; δH (400 MHz, CDCl3) 7.28 – 7.47 (4H, m), 7.62 (1H, d, 3J = 7.6 Hz), 7.66 (1H, d, 3J = 7.2 Hz), 7.77 (1H, d, 3J = 7.2 Hz), 8.42 (1H, d, 3J = 7.6 Hz); δC (100.5 MHz, CDCl3) 119.8 (CH), 119.9 (CH), 121.7 (CH), 128.0 (CH), 128.4 (CH), 129.7 (CH), 130.2 (CH), 130.3 (Cquat), 131.3 (CH), 135.1 (Cquat), 140.5 (Cquat), 141.4 (Cquat), 153.6 (Cquat). Single crystals were obtained from cold CH2Cl2.

3. Refinement

All carbon-bound hydrogen atoms, except the H of the OH group which was freely refined, were placed in calculated positions with C—H distance of 0.95 Å and refined as riding with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

A view of the title molecule with displacement ellipsoids shown at the 50% probability level, showing the intramolecular contact within the molecule.

Fig. 2.

Fig. 2.

Intermolecular interactions between molecules of the title compound, including the π–π stacking interactions (represented by arrows in yellow). [Symmetry codes: i: 1 + x,y,z; ii: 1/2 + x,1.5 - y,1 - z; iii: -1/2 + x,1.5 - y,1 - z; iv: x, y, z; v: -1/2 + x, 1/2 - y, 1 - z; vi: x, -1 + y, z]

Fig. 3.

Fig. 3.

The crystal packing diagram showing the O—H···N close contacts (colored in green) between adjacent molecules in each helical bonding network, C—H···π intermolecular interaction between molecules within different helices (colored in blue) and π–π stacking interactions (arrows in yellow).

Crystal data

C13H9NO Dx = 1.378 Mg m3
Mr = 195.21 Melting point = 471–472 K
Orthorhombic, P212121 Cu Kα radiation, λ = 1.5418 Å
a = 4.8009 (1) Å Cell parameters from 3850 reflections
b = 12.2309 (2) Å θ = 4.5–76.1°
c = 16.0247 (3) Å µ = 0.70 mm1
V = 940.96 (3) Å3 T = 100 K
Z = 4 Block, colourless
F(000) = 408 0.16 × 0.13 × 0.13 mm

Data collection

Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer 1942 independent reflections
Radiation source: SuperNova (Cu) X-ray Source 1865 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.029
Detector resolution: 10.4127 pixels mm-1 θmax = 76.3°, θmin = 4.6°
ω scans h = −6→5
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013) k = −14→15
Tmin = 0.890, Tmax = 1.000 l = −19→20
7588 measured reflections

Refinement

Refinement on F2 Hydrogen site location: difference Fourier map
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.029 w = 1/[σ2(Fo2) + (0.0384P)2 + 0.1723P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.075 (Δ/σ)max < 0.001
S = 1.05 Δρmax = 0.13 e Å3
1942 reflections Δρmin = −0.18 e Å3
140 parameters Absolute structure: Flack parameter determined using 735 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraints Absolute structure parameter: 0.16 (13)
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.5506 (4) 0.58330 (13) 0.40422 (10) 0.0189 (4)
C10 0.8197 (4) 0.44386 (15) 0.17647 (10) 0.0251 (4)
C11 0.9543 (4) 0.53953 (15) 0.20052 (10) 0.0242 (4)
C12 0.8830 (4) 0.59306 (14) 0.27456 (10) 0.0219 (4)
C13 0.6741 (4) 0.54803 (13) 0.32367 (10) 0.0196 (3)
C2 0.3367 (4) 0.50126 (13) 0.42679 (10) 0.0194 (3)
C3 0.1613 (4) 0.49391 (13) 0.49503 (10) 0.0209 (3)
C4 −0.0178 (4) 0.40413 (13) 0.50050 (11) 0.0228 (4)
C5 −0.0177 (4) 0.32387 (14) 0.43891 (11) 0.0246 (4)
C6 0.1590 (4) 0.33133 (14) 0.37017 (11) 0.0235 (4)
C7 0.3353 (4) 0.42037 (13) 0.36414 (10) 0.0195 (3)
C8 0.5403 (4) 0.45037 (13) 0.30001 (10) 0.0198 (4)
C9 0.6112 (4) 0.39797 (14) 0.22607 (11) 0.0239 (4)
H1 0.898 (6) 0.773 (2) 0.4668 (17) 0.068 (9)*
H10 0.8703 0.4093 0.1256 0.030*
H11 1.0969 0.5689 0.1661 0.029*
H12 0.9750 0.6584 0.2908 0.026*
H3 0.1626 0.5485 0.5372 0.025*
H4 −0.1408 0.3978 0.5467 0.027*
H5 −0.1399 0.2631 0.4438 0.029*
H6 0.1583 0.2764 0.3283 0.028*
H9 0.5200 0.3325 0.2097 0.029*
N1 0.6059 (3) 0.66488 (11) 0.45230 (8) 0.0202 (3)
O1 0.8178 (3) 0.73127 (10) 0.42014 (7) 0.0233 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0217 (9) 0.0194 (8) 0.0158 (7) 0.0029 (6) −0.0016 (6) 0.0013 (6)
C10 0.0300 (10) 0.0290 (8) 0.0164 (7) 0.0078 (8) −0.0003 (7) −0.0031 (7)
C11 0.0257 (9) 0.0289 (9) 0.0179 (8) 0.0060 (7) 0.0018 (7) 0.0038 (7)
C12 0.0266 (9) 0.0206 (7) 0.0186 (8) 0.0025 (7) −0.0013 (7) 0.0015 (6)
C13 0.0228 (9) 0.0204 (7) 0.0155 (7) 0.0050 (7) −0.0024 (7) −0.0007 (6)
C2 0.0216 (8) 0.0185 (7) 0.0181 (8) 0.0028 (7) −0.0048 (7) 0.0005 (6)
C3 0.0233 (8) 0.0219 (7) 0.0174 (7) 0.0043 (7) −0.0018 (7) 0.0005 (6)
C4 0.0223 (8) 0.0248 (8) 0.0214 (8) 0.0028 (6) 0.0007 (8) 0.0042 (7)
C5 0.0259 (9) 0.0210 (8) 0.0268 (9) −0.0024 (7) −0.0015 (7) 0.0030 (7)
C6 0.0277 (10) 0.0200 (7) 0.0228 (8) 0.0012 (7) −0.0040 (7) −0.0025 (6)
C7 0.0209 (8) 0.0200 (7) 0.0177 (7) 0.0037 (6) −0.0021 (6) −0.0002 (6)
C8 0.0212 (9) 0.0202 (7) 0.0181 (8) 0.0034 (7) −0.0032 (7) −0.0001 (6)
C9 0.0287 (10) 0.0220 (8) 0.0209 (8) 0.0030 (7) −0.0039 (7) −0.0034 (6)
N1 0.0236 (8) 0.0184 (6) 0.0185 (7) 0.0010 (6) −0.0008 (6) 0.0014 (5)
O1 0.0283 (6) 0.0217 (5) 0.0198 (6) −0.0058 (5) 0.0010 (5) −0.0023 (4)

Geometric parameters (Å, º)

C1—C13 1.484 (2) C4—H4 0.9500
C1—C2 1.481 (2) C5—C6 1.393 (2)
C10—C11 1.391 (3) C5—H5 0.9500
C10—H10 0.9500 C6—C7 1.383 (2)
C11—C12 1.398 (2) C6—H6 0.9500
C11—H11 0.9500 C7—C8 1.469 (2)
C12—C13 1.389 (2) C8—C13 1.408 (2)
C12—H12 0.9500 C8—C9 1.389 (2)
C2—C7 1.410 (2) C9—C10 1.396 (3)
C2—C3 1.383 (2) C9—H9 0.9500
C3—C4 1.397 (2) N1—C1 1.288 (2)
C3—H3 0.9500 O1—H1 0.98 (3)
C4—C5 1.392 (2) O1—N1 1.4000 (19)
N1—O1—H1 107.7 (17) C6—C7—C2 120.39 (16)
C1—N1—O1 112.25 (13) C6—C7—C8 130.96 (16)
N1—C1—C2 121.43 (15) C9—C8—C7 130.19 (16)
N1—C1—C13 131.53 (16) C9—C8—C13 120.61 (16)
C2—C1—C13 107.00 (14) C13—C8—C7 109.20 (14)
C3—C2—C1 131.26 (15) C8—C9—H9 120.8
C3—C2—C7 120.97 (15) C8—C9—C10 118.41 (16)
C7—C2—C1 107.75 (14) C10—C9—H9 120.8
C2—C3—H3 120.8 C9—C10—H10 119.6
C2—C3—C4 118.38 (15) C11—C10—C9 120.89 (16)
C4—C3—H3 120.8 C11—C10—H10 119.6
C3—C4—H4 119.7 C10—C11—H11 119.5
C5—C4—C3 120.63 (16) C10—C11—C12 121.04 (17)
C5—C4—H4 119.7 C12—C11—H11 119.5
C4—C5—H5 119.5 C11—C12—H12 120.9
C4—C5—C6 120.97 (17) C13—C12—C11 118.17 (17)
C6—C5—H5 119.5 C13—C12—H12 120.9
C5—C6—H6 120.7 C8—C13—C1 107.38 (15)
C7—C6—C5 118.66 (16) C12—C13—C1 131.75 (16)
C7—C6—H6 120.7 C12—C13—C8 120.87 (15)
C2—C7—C8 108.64 (14)
O1—N1—C1—C2 178.85 (14) C5—C6—C7—C2 0.5 (3)
O1—N1—C1—C13 1.2 (2) C5—C6—C7—C8 −179.68 (17)
N1—C1—C2—C3 1.5 (3) C6—C7—C8—C9 1.3 (3)
N1—C1—C2—C7 −177.14 (15) C6—C7—C8—C13 −178.35 (18)
N1—C1—C13—C8 177.82 (17) C7—C2—C3—C4 0.0 (2)
N1—C1—C13—C12 −1.4 (3) C7—C8—C9—C10 −178.93 (17)
C1—C2—C3—C4 −178.52 (16) C7—C8—C13—C1 −0.88 (18)
C1—C2—C7—C6 178.38 (15) C7—C8—C13—C12 178.46 (15)
C1—C2—C7—C8 −1.52 (18) C8—C9—C10—C11 0.3 (3)
C2—C1—C13—C8 −0.04 (18) C9—C8—C13—C1 179.46 (15)
C2—C1—C13—C12 −179.28 (17) C9—C8—C13—C12 −1.2 (2)
C2—C3—C4—C5 0.4 (2) C9—C10—C11—C12 −0.6 (3)
C2—C7—C8—C9 −178.86 (18) C10—C11—C12—C13 0.1 (3)
C2—C7—C8—C13 1.53 (18) C11—C12—C13—C1 179.97 (17)
C3—C2—C7—C6 −0.5 (2) C11—C12—C13—C8 0.8 (2)
C3—C2—C7—C8 179.64 (15) C13—C1—C2—C3 179.66 (16)
C3—C4—C5—C6 −0.4 (3) C13—C1—C2—C7 0.98 (18)
C4—C5—C6—C7 0.0 (3) C13—C8—C9—C10 0.6 (2)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the C2–C7 ring.

D—H···A D—H H···A D···A D—H···A
C12—H12···O1 0.95 2.38 2.898 (2) 114
O1—H1···N1i 0.98 (3) 1.80 (3) 2.7758 (18) 169 (3)
C5—H5···Cg1ii 0.95 3.08 3.873 142

Symmetry codes: (i) x+1/2, −y+3/2, −z+1; (ii) x−1/2, −y+1/2, −z+1.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: GK2601).

References

  1. Agilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.
  2. Amlaiky, N., Leclerc, G., Decker, N. & Schwartz, J. (1983). Eur. J. Med. Chem. 18, 437–439.
  3. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  4. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  5. Moore, F. J. & Huntress, E. H. (1927). J. Am. Chem. Soc. 49, 2618–, 2624.
  6. Ni, S., Yuan, Y., Huang, J., Mao, X., Lu, M., Zhu, J., Shen, X., Pei, J., Lai, L., Jiang, H. & Li, J. (2009). J. Med. Chem. 52, 5295–5298. [DOI] [PubMed]
  7. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  8. Rad, M. N. S., Behrouz, S., Karimitabar, F. & Khalafi-Nezhad, A. (2012). Helv. Chim. Acta, 95, 491–501.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814002669/gk2601sup1.cif

e-70-0o265-sup1.cif (20.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814002669/gk2601Isup2.hkl

e-70-0o265-Isup2.hkl (107KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814002669/gk2601Isup3.cml

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES