Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Feb 22;70(Pt 3):o346–o347. doi: 10.1107/S1600536814003845

(4,9-Dimethyl-9H-carbazol-3-yl)meth­anol

Serkan Öncüoğlu a, Nefise Dilek b, Yavuz Ergün a, Tuncer Hökelek c,*
PMCID: PMC3998416  PMID: 24765037

Abstract

In the title compound, C15H15NO, the carbazole skeleton includes a methanol group at the 3-position. The indole ring system is almost planar [maximum deviation = 0.045 (2) Å]. In the crystal, O—H⋯O hydrogen bonds link the mol­ecules into zigzag chains along the b-axis direction. There are weak C—H⋯π inter­actions within the chains and linking neighbouring chains forming sheets lying parallel to (001).

Related literature  

For biological activity of carbazole alkaloids, see: Chakraborty (1977). For anti­biotic, anti­fungal and cytotoxic properties of carbazole alkaloids, see: Chakraborty et al. (1965); Chakraborty et al. (1978). For the use of carbazole derivatives as precursor compounds for the syntheses of pyridocarbazole alkaloids, see: Karmakar et al. (1991). For related structures, see: Hökelek et al. (1994); Patır et al. (1997); Öncüoğlu et al. (2014). For bond-length data, see: Allen et al. (1987).graphic file with name e-70-0o346-scheme1.jpg

Experimental  

Crystal data  

  • C15H15NO

  • M r = 225.28

  • Monoclinic, Inline graphic

  • a = 14.4728 (4) Å

  • b = 5.4554 (3) Å

  • c = 15.0906 (4) Å

  • β = 95.453 (4)°

  • V = 1186.08 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.45 × 0.36 × 0.13 mm

Data collection  

  • Bruker SMART BREEZE CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007) T min = 0.965, T max = 0.990

  • 11615 measured reflections

  • 11615 independent reflections

  • 9784 reflections with I > 2σ(I)

  • R int = 0.032

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.079

  • wR(F 2) = 0.214

  • S = 1.16

  • 11615 reflections

  • 161 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536814003845/su2701sup1.cif

e-70-0o346-sup1.cif (22.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814003845/su2701Isup2.hkl

e-70-0o346-Isup2.hkl (556.5KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814003845/su2701Isup3.cml

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of rings 9a/C1-C4/C4a/ and C5a/C5-C8/C8a, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O1i 0.88 (3) 2.13 (3) 2.919 (2) 149 (3)
C10—H10ACg2ii 0.96 2.85 3.697 (2) 148
C10—H10BCg1iii 0.96 2.64 3.531 (2) 154
C11—H11ACg2iv 0.96 2.77 3.617 (2) 147

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

The authors acknowledge the Aksaray University, Science and Technology Application and Research Center, Aksaray, Turkey, for the use of the Bruker SMART BREEZE CCD diffractometer (purchased under grant No. 2010K120480 of the State of Planning Organization).

supplementary crystallographic information

1. Comment

Carbazole alkaloids, which have their richest source in species of the genus Murraya, are of great interest because of their unique structures and important biological activities (Chakraborty, 1977). They also exhibits antibiotic, antifungal and cytotoxic properties (Chakraborty et al., 1965; Chakraborty et al., 1978). Carbazole derivatives are also used as precursor compounds for the syntheses of pyridocarbazole alkaloids (Karmakar et al., 1991). The present study was undertaken to ascertain the crystal structure of the title compound which was first synthesized by (Karmakar et al., 1991).

The molecule of the title compound contains a carbazole skeleton with a methanol group at the 3 position, Fig. 1. The bond lengths are close to standard values (Allen et al., 1987) and generally agree with those in previously reported compounds (Hökelek et al., 1994; Patır et al., 1997; Öncüoğlu et al., 2014). In all structures atom N9 is substituted.

An examination of the deviations from the mean planes through individual rings shows that rings A (C1—C4/C4a/c9a), B (C4a/C5a/C8a/N9/C9a) and C (C5a/C5—C8/C8a) are nearly coplanar [with a maximum deviation of 0.045 (2) Å for atom C7] with dihedral angles of A/B = 0.76 (5), A/C = 2.33 (4) and B/C = 1.57 (5) °. Atoms C10, C11 and C12 are displaced by 0.070 (2), 0.004 (2) and -0.025 (2) Å from the adjacent ring planes.

In the crystal, O—H···O hydrogen bonds link the molecules into zigzag chains along the b-axis direction (Table 1 and Fig. 2). There are weak C—H···π interactions within the chains and linking neighbouring chains forming two-dimensional networks lying parallel to (001); see Table 1.

2. Experimental

The title compound was synthesized according to the literature method (Karmakar et al., 1991). A solution of ethyl 4,9-dimethyl-9H-carbazole-3 -carboxylate (4.00 g, 15 mmol) in anhydrous tetrahydrofurane (50 ml) was added drop wise to a stirred solution of lithium aluminium hydride (1.20 g, 31 mmol) in tetrahydrofurane at room temperature. The reaction mixture was refluxed for 5 h under a nitrogen atmosphere, and then cooled and the excess of lithium aluminium hydride was destroyed with water and extracted with ethyl acetate. The organic phase was dried with anhydrous magnesium sulfate, and the solvent was evaporated. The crude product was recrystallized from ether (Yield; 95%, M.p. 475 K), giving block-like colourless crystals suitable for X-ray diffraction analysis.

3. Refinement

Atom H1A (for OH) was located in a difference Fourier map and freely refined. The C-bound H-atoms were positioned geometrically with C—H = 0.93, 0.97 and 0.96 Å, for aromatic, methylene and methyl H-atoms, respectively, and constrained to ride on their parent atoms with Uiso(H) = 1.5Ueq(C-methyl) and = 1.2Ueq(C) for other H-atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A view of the crystal packing of the title compound with the O-H···O hydrogen bonds shown as dashed lines (see Table 1 for details; H atoms not involved in hydrogen bonding have been omitted for clarity].

Crystal data

C15H15NO F(000) = 480
Mr = 225.28 Dx = 1.262 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 6741 reflections
a = 14.4728 (4) Å θ = 2.7–28.2°
b = 5.4554 (3) Å µ = 0.08 mm1
c = 15.0906 (4) Å T = 296 K
β = 95.453 (4)° Block, colourless
V = 1186.08 (8) Å3 0.45 × 0.36 × 0.13 mm
Z = 4

Data collection

Bruker SMART BREEZE CCD diffractometer 11615 independent reflections
Radiation source: fine-focus sealed tube 9784 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.032
φ and ω scans θmax = 26.4°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2007) h = −18→17
Tmin = 0.965, Tmax = 0.990 k = −6→6
11615 measured reflections l = −18→18

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.079 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.214 H atoms treated by a mixture of independent and constrained refinement
S = 1.16 w = 1/[σ2(Fo2) + (0.0293P)2 + 3.1387P] where P = (Fo2 + 2Fc2)/3
11615 reflections (Δ/σ)max < 0.001
161 parameters Δρmax = 0.30 e Å3
0 restraints Δρmin = −0.27 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 1.23676 (10) 1.1637 (3) 0.78082 (11) 0.0647 (4)
H1A 1.262 (2) 1.285 (6) 0.7532 (18) 0.115 (11)*
C1 1.00323 (13) 0.7254 (3) 0.89293 (11) 0.0435 (4)
H1 0.9915 0.6531 0.9465 0.052*
C2 1.06557 (13) 0.9145 (3) 0.89012 (11) 0.0449 (4)
H2 1.0966 0.9690 0.9433 0.054*
C3 1.08440 (12) 1.0289 (3) 0.81060 (11) 0.0416 (4)
C4 1.03968 (12) 0.9504 (3) 0.72954 (11) 0.0379 (4)
C4A 0.97556 (12) 0.7560 (3) 0.73093 (10) 0.0361 (4)
C5 0.90173 (14) 0.6439 (4) 0.56991 (11) 0.0503 (5)
H5 0.9309 0.7656 0.5396 0.060*
C5A 0.91717 (12) 0.6257 (3) 0.66236 (10) 0.0377 (4)
C6 0.84282 (16) 0.4795 (4) 0.52398 (13) 0.0604 (6)
H6 0.8332 0.4883 0.4622 0.072*
C7 0.79780 (15) 0.3012 (4) 0.56927 (13) 0.0612 (6)
H7 0.7582 0.1924 0.5370 0.073*
C8 0.80997 (14) 0.2801 (3) 0.66092 (13) 0.0510 (5)
H8 0.7793 0.1603 0.6908 0.061*
C8A 0.86991 (12) 0.4451 (3) 0.70644 (11) 0.0381 (4)
N9 0.89428 (10) 0.4597 (3) 0.79697 (9) 0.0404 (4)
C9A 0.95842 (12) 0.6465 (3) 0.81262 (10) 0.0368 (4)
C10 0.86281 (14) 0.2951 (3) 0.86346 (12) 0.0506 (5)
H10B 0.9017 0.1524 0.8682 0.076*
H10A 0.7999 0.2470 0.8462 0.076*
H10C 0.8660 0.3772 0.9199 0.076*
C11 1.05756 (14) 1.0659 (3) 0.64152 (11) 0.0507 (5)
H11B 1.0828 0.9451 0.6043 0.076*
H11C 1.1009 1.1984 0.6519 0.076*
H11A 1.0003 1.1273 0.6125 0.076*
C12 1.15214 (14) 1.2370 (3) 0.81458 (13) 0.0532 (5)
H12A 1.1254 1.3734 0.7798 0.064*
H12B 1.1648 1.2913 0.8757 0.064*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0439 (9) 0.0484 (9) 0.1046 (12) −0.0001 (7) 0.0218 (8) −0.0003 (8)
C1 0.0526 (12) 0.0403 (10) 0.0373 (9) 0.0063 (9) 0.0031 (8) 0.0124 (7)
C2 0.0461 (11) 0.0471 (11) 0.0405 (10) 0.0013 (9) −0.0008 (8) 0.0021 (7)
C3 0.0398 (11) 0.0368 (10) 0.0490 (10) 0.0027 (8) 0.0091 (8) 0.0026 (7)
C4 0.0374 (10) 0.0329 (9) 0.0441 (9) 0.0073 (7) 0.0081 (7) 0.0061 (7)
C4A 0.0376 (10) 0.0352 (9) 0.0360 (8) 0.0067 (7) 0.0059 (7) 0.0068 (6)
C5 0.0604 (13) 0.0480 (11) 0.0433 (10) 0.0013 (10) 0.0085 (9) 0.0067 (8)
C5A 0.0364 (10) 0.0342 (9) 0.0431 (9) 0.0068 (7) 0.0063 (7) 0.0037 (7)
C6 0.0760 (16) 0.0627 (14) 0.0408 (10) −0.0055 (12) −0.0029 (10) −0.0011 (9)
C7 0.0618 (14) 0.0605 (14) 0.0599 (13) −0.0065 (11) −0.0013 (10) −0.0118 (10)
C8 0.0517 (13) 0.0423 (11) 0.0597 (12) −0.0045 (9) 0.0100 (9) 0.0060 (8)
C8A 0.0349 (10) 0.0352 (9) 0.0445 (9) 0.0034 (7) 0.0064 (7) 0.0042 (7)
N9 0.0416 (9) 0.0389 (8) 0.0417 (8) 0.0001 (7) 0.0086 (6) 0.0118 (6)
C9A 0.0387 (10) 0.0335 (9) 0.0394 (9) 0.0071 (8) 0.0097 (7) 0.0085 (7)
C10 0.0524 (12) 0.0474 (11) 0.0537 (11) 0.0000 (9) 0.0136 (9) 0.0207 (8)
C11 0.0563 (13) 0.0472 (11) 0.0502 (11) −0.0036 (9) 0.0135 (9) 0.0081 (8)
C12 0.0525 (13) 0.0382 (11) 0.0697 (13) −0.0006 (9) 0.0107 (10) −0.0037 (9)

Geometric parameters (Å, º)

O1—C12 1.427 (2) C7—H7 0.9300
O1—H1A 0.88 (3) C8—C7 1.382 (3)
C1—C2 1.374 (3) C8—H8 0.9300
C1—H1 0.9300 C8A—C8 1.386 (3)
C2—C3 1.402 (2) N9—C8A 1.380 (2)
C2—H2 0.9300 N9—C9A 1.383 (2)
C3—C12 1.497 (3) N9—C10 1.4517 (19)
C4—C3 1.396 (2) C9A—C1 1.387 (2)
C4—C4A 1.411 (2) C9A—C4A 1.413 (2)
C4—C11 1.514 (2) C10—H10A 0.9600
C5—C6 1.378 (3) C10—H10B 0.9600
C5—H5 0.9300 C10—H10C 0.9600
C5A—C4A 1.457 (2) C11—H11A 0.9600
C5A—C5 1.395 (2) C11—H11B 0.9600
C5A—C8A 1.403 (2) C11—H11C 0.9600
C6—C7 1.387 (3) C12—H12A 0.9700
C6—H6 0.9300 C12—H12B 0.9700
C12—O1—H1A 111.3 (19) C7—C8—H8 121.4
C2—C1—C9A 117.38 (15) C8A—C8—H8 121.4
C2—C1—H1 121.3 N9—C8A—C8 128.11 (15)
C9A—C1—H1 121.3 N9—C8A—C5A 109.77 (15)
C1—C2—C3 122.84 (16) C8—C8A—C5A 122.11 (16)
C1—C2—H2 118.6 C8A—N9—C9A 108.42 (12)
C3—C2—H2 118.6 C8A—N9—C10 125.50 (15)
C2—C3—C12 118.88 (17) C9A—N9—C10 125.95 (14)
C4—C3—C2 120.12 (16) N9—C9A—C1 128.90 (14)
C4—C3—C12 121.00 (15) N9—C9A—C4A 109.46 (14)
C3—C4—C4A 117.94 (14) C1—C9A—C4A 121.64 (16)
C3—C4—C11 122.51 (16) N9—C10—H10A 109.5
C4A—C4—C11 119.55 (15) N9—C10—H10B 109.5
C4—C4A—C5A 133.96 (14) N9—C10—H10C 109.5
C4—C4A—C9A 120.08 (15) H10A—C10—H10C 109.5
C9A—C4A—C5A 105.96 (15) H10B—C10—H10A 109.5
C5A—C5—H5 120.4 H10B—C10—H10C 109.5
C6—C5—C5A 119.29 (18) C4—C11—H11A 109.5
C6—C5—H5 120.4 C4—C11—H11B 109.5
C5—C5A—C4A 134.60 (16) C4—C11—H11C 109.5
C5—C5A—C8A 119.02 (16) H11B—C11—H11A 109.5
C8A—C5A—C4A 106.38 (14) H11B—C11—H11C 109.5
C5—C6—C7 120.39 (18) H11C—C11—H11A 109.5
C5—C6—H6 119.8 O1—C12—C3 110.74 (15)
C7—C6—H6 119.8 O1—C12—H12A 109.5
C6—C7—H7 119.0 O1—C12—H12B 109.5
C8—C7—C6 122.03 (19) C3—C12—H12A 109.5
C8—C7—H7 119.0 C3—C12—H12B 109.5
C7—C8—C8A 117.13 (17) H12A—C12—H12B 108.1
C9A—C1—C2—C3 0.5 (3) C4A—C5A—C8A—C8 −177.86 (16)
C1—C2—C3—C4 −0.6 (3) C5—C5A—C8A—N9 −179.48 (15)
C1—C2—C3—C12 178.80 (17) C5—C5A—C8A—C8 1.6 (3)
C2—C3—C12—O1 107.98 (19) C5—C6—C7—C8 −0.2 (3)
C4—C3—C12—O1 −72.7 (2) C8A—C8—C7—C6 −0.3 (3)
C4A—C4—C3—C2 0.4 (2) N9—C8A—C8—C7 −179.16 (17)
C4A—C4—C3—C12 −178.98 (16) C5A—C8A—C8—C7 −0.4 (3)
C11—C4—C3—C2 −179.65 (16) C9A—N9—C8A—C5A −0.94 (18)
C11—C4—C3—C12 1.0 (3) C9A—N9—C8A—C8 177.93 (18)
C3—C4—C4A—C5A −179.64 (17) C10—N9—C8A—C5A −176.86 (16)
C3—C4—C4A—C9A −0.1 (2) C10—N9—C8A—C8 2.0 (3)
C11—C4—C4A—C5A 0.4 (3) C8A—N9—C9A—C1 −178.98 (17)
C11—C4—C4A—C9A 179.87 (15) C8A—N9—C9A—C4A 0.39 (18)
C5A—C5—C6—C7 1.4 (3) C10—N9—C9A—C1 −3.1 (3)
C5—C5A—C4A—C4 −0.6 (3) C10—N9—C9A—C4A 176.28 (15)
C5—C5A—C4A—C9A 179.88 (19) N9—C9A—C1—C2 179.05 (17)
C8A—C5A—C4A—C4 178.71 (17) C4A—C9A—C1—C2 −0.2 (3)
C8A—C5A—C4A—C9A −0.83 (18) N9—C9A—C4A—C4 −179.33 (14)
C4A—C5A—C5—C6 177.21 (19) N9—C9A—C4A—C5A 0.29 (18)
C8A—C5A—C5—C6 −2.0 (3) C1—C9A—C4A—C4 0.1 (2)
C4A—C5A—C8A—N9 1.10 (18) C1—C9A—C4A—C5A 179.70 (15)

Hydrogen-bond geometry (Å, º)

Cg1 and Cg2 are the centroids of rings 9a/C1-C4/C4a/ and C5a/C5-C8/C8a, respectively.

D—H···A D—H H···A D···A D—H···A
O1—H1A···O1i 0.88 (3) 2.13 (3) 2.919 (2) 149 (3)
C10—H10A···Cg2ii 0.96 2.85 3.697 (2) 148
C10—H10B···Cg1iii 0.96 2.64 3.531 (2) 154
C11—H11A···Cg2iv 0.96 2.77 3.617 (2) 147

Symmetry codes: (i) −x+5/2, y+1/2, −z+3/2; (ii) −x+1/2, y+1/2, −z+1/2; (iii) x, y+1, z; (iv) x, y−1, z.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: SU2701).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bruker (2007). APEX2, SAINT and SADABS Bruker AXS Inc. Madison, Wisconsin, USA.
  3. Chakraborty, D. P. (1977). Progress in the Chemistry of Organic Natural Products, edited by W. Herz, H. Grisebach, G. W. Kirby & C. Tamm, Vol. 34, pp. 299–371. Wien: Springer.
  4. Chakraborty, D. P., Barman, B. K. & Bose, P. K. (1965). Tetrahedron, 21, 681–685.
  5. Chakraborty, D. P., Bhattacharyya, P., Roy, S., Bhattacharyya, S. P. & Biswas, A. K. (1978). Phytochemistry, 17, 834–835.
  6. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  7. Hökelek, T., Patır, S., Gülce, A. & Okay, G. (1994). Acta Cryst. C50, 450–453.
  8. Karmakar, A. C., Gandhi, K. K. & Jayanta, K. R. (1991). J. Chem. Soc. Perkin Trans. 1, pp. 1997–2002.
  9. Öncüoğlu, S., Dilek, N., Çaylak Delibaş, N., Ergün, Y. & Hökelek, T. (2014). Acta Cryst. E70, o240. [DOI] [PMC free article] [PubMed]
  10. Patır, S., Okay, G., Gülce, A., Salih, B. & Hökelek, T. (1997). J. Heterocycl. Chem. 34, 1239–1242.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536814003845/su2701sup1.cif

e-70-0o346-sup1.cif (22.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814003845/su2701Isup2.hkl

e-70-0o346-Isup2.hkl (556.5KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814003845/su2701Isup3.cml

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES