Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Feb 19;70(Pt 3):o318–o319. doi: 10.1107/S1600536814003146

3-(1H-Imidazol-1-yl)propanaminium 2-carb­oxy-4,6-di­nitro­phenolate

Thammarse S Yamuna a, Manpreet Kaur a, Brian J Anderson b, Jerry P Jasinski b,*, HS Yathirajan a
PMCID: PMC3998440  PMID: 24765018

Abstract

In the title salt, C6H12N3 +·C7H3N2O7 , the imidazole ring is planar, with a maximum deviation of 0.0013 (14) Å for the N attached to the propanaminium group. In the anion, a single intra­molecular O—H⋯O hydrogen bond is observed. The mean planes of the nitro groups in the anion are twisted from the benzene ring mean plane making dihedral angles of 24.7 (9) and 3.9 (6)°. In the crystal, the ammonium H atoms form N—H⋯N and N—H⋯O hydrogen bonds, resulting in an infinite chain along [111]. In addition to the classical hydrogen bonds, weak C—H⋯O and π–π [centroid–centroid distance = 3.7124 (9) Å] inter­actions are also observed, which lead to the formation a three-dimensional supramolecular structure that links the chains into layers along the bc plane.

Related literature  

For general background and the pharmacological properties of imidazole compounds, see: ten Have et al. (1997); Lombardino & Wiseman (1974); Jackson et al. (2000); Krezel (1998); Maier et al. (1989). For the related structures of substituted imidazoles, see: Dayananda et al. (2012); Hemamalini & Fun (2010); Jasinski et al. (2011); Wei et al. (2012); Yamuna et al. (2013).graphic file with name e-70-0o318-scheme1.jpg

Experimental  

Crystal data  

  • C6H12N3 +·C7H3N2O7

  • M r = 353.30

  • Triclinic, Inline graphic

  • a = 7.0109 (4) Å

  • b = 10.6617 (8) Å

  • c = 10.7454 (7) Å

  • α = 93.075 (6)°

  • β = 95.863 (5)°

  • γ = 104.944 (6)°

  • V = 769.30 (9) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 1.09 mm−1

  • T = 173 K

  • 0.22 × 0.14 × 0.12 mm

Data collection  

  • Agilent Xcalibur (Eos, Gemini) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012) T min = 0.925, T max = 1.000

  • 4664 measured reflections

  • 2953 independent reflections

  • 2582 reflections with I > 2σ(I)

  • R int = 0.026

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.122

  • S = 1.04

  • 2953 reflections

  • 229 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814003146/fj2659sup1.cif

e-70-0o318-sup1.cif (25.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814003146/fj2659Isup2.hkl

e-70-0o318-Isup2.hkl (162.1KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814003146/fj2659Isup3.cml

CCDC reference: 986378

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2B—H2B⋯O1B 0.84 1.66 2.4484 (15) 155
N3A—H3AA⋯N1A i 0.91 1.92 2.7987 (19) 162
N3A—H3AB⋯O1B ii 0.91 2.03 2.8153 (17) 144
N3A—H3AC⋯O3B iii 0.91 2.07 2.9546 (17) 165
C4A—H4AB⋯O4B iv 0.99 2.53 3.3572 (19) 142

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

TSY thanks the University of Mysore for research facilities and is also grateful to the Principal, Maharani’s Science College for Women, Mysore, for giving permission to undertake research. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

supplementary crystallographic information

1. Comment

Imidazole rings appear frequently in biologically active compounds, both natural and man-made (ten Have et al., 1997). Compounds with an imidazole ring system have many pharmacological properties and play important roles in biochemical processes (Lombardino & Wiseman, 1974). Most of the imidazole compounds are known as inhibitors of fungicides and herbicides, plant growth regulators and therapeutic agents (Maier et al., 1989), anticancer agents (Krezel, 1998) and bactericidal effects (Jackson et al., 2000). The crystal structures of some related compounds, viz ; 2-amino-5-methylpyridinium 2-hydroxy-3,5-dinitrobenzoate (Hemamalini et al., 2010); Cinnarizinium 3,5-dinitrosalicylate (Dayananda et al., 2012); Enrofloxacinium picrate (Jasinski et al., 2011); 3-(1H-imidazol-1-yl)propanaminium picrate (Yamuna et al., 2013); 3,5-dimethylpyrazolium 3,5-dinitrosalicylate (Wei et al., 2012), have been reported. In view of the importance of substituted imidazoles and organic acid–base adducts based on hydrogen bonding and receiving great attention in recent years, this paper reports the crystal structure of the title salt, (I), C6H12N3+.C7H3N2O7-.

The title salt, (I), C6H12N3+.C7H3N2O7-, crystallizes with one independent monocation (A) and monoanion (B) in the asymmetric unit (Fig. 1). In the cation the protonated imidazol-1-ium ring is planar (maximum deviation = 0.0013 (14)Å for N2A). In the anion, a single O—H···O intramolecular hydrogen bond is observed. Bond lengths are in normal ranges. The mean planes of the nitro groups in the anion are twisted from the phenyl ring mean plane with maximun angles of 24.7 (9)° and 3.9 (6)°, respectively. The hydrogen atoms on the terminal N atom of the cation form N—H···N and N—H···O intermolecular hydrogen bonds resulting in an infinite 1D chain along [1 1 1]. In the crystal, in addition to the classical hydrogen bonds, weak C—H···O (Table 1) and Cg1—Cg2 π—π intermolecular interactions are observed with an intercentroid distance of 3.7125 (9)Å (symmetry operation -x,1-y,-z; Cg1 and Cg2 are the centroids of the C1B–C6B and N1A/C1A/N2A/C3A/C2A rings) which contribute to crystal packing stability (Fig. 2).

2. Experimental

Commercially available 1-(3-aminopropyl)imidazole (0.5 g, 3.99 mmol) and 3,5 dinitrosalicylic acid (0.909 g, 3.99 mmol) were dissolved in 10 ml of methanol and stirred for 15 minutes at 308 K. X-ray quality crystals were formed on slow evaporation of methanol. (m.p.: 468- 475K).

3. Refinement

All of the H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.95Å (CH); 0.99Å (CH2); 0.84Å (OH) or 0.91Å (NH3) . Isotropic displacement parameters for these atoms were set to 1.2 (CH, CH2, NH3) or 1.5 (OH) times Ueq of the parent atom. Idealised ammonium and tetrahedral OH were refined as rotating groups.

Figures

Fig. 1.

Fig. 1.

ORTEP drawing of (I) ( C6H12N3+.C7H3N2O7-) showing the labeling scheme with 30% probability displacement ellipsoids. Dashed lines indicate a O2B—H2B···O1B intramolecular hydrogen bond in the anion within the asymmetric unit.

Fig. 2.

Fig. 2.

Molecular packing for (I) viewed along the a axis. Dashed lines indicate N—H···O, N—H···N intermolecular hydrogen bonds and weak C—H···O intermolecular interactions. H atoms not involved in hydrogen bonding have been removed for clarity.

Crystal data

C6H12N3+·C7H3N2O7 Z = 2
Mr = 353.30 F(000) = 368
Triclinic, P1 Dx = 1.525 Mg m3
a = 7.0109 (4) Å Cu Kα radiation, λ = 1.54184 Å
b = 10.6617 (8) Å Cell parameters from 2218 reflections
c = 10.7454 (7) Å θ = 4.2–72.3°
α = 93.075 (6)° µ = 1.09 mm1
β = 95.863 (5)° T = 173 K
γ = 104.944 (6)° Irregular, yellow
V = 769.30 (9) Å3 0.22 × 0.14 × 0.12 mm

Data collection

Agilent Xcalibur (Eos, Gemini) diffractometer 2953 independent reflections
Radiation source: Enhance (Cu) X-ray Source 2582 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.026
Detector resolution: 16.0416 pixels mm-1 θmax = 72.5°, θmin = 4.2°
ω scans h = −8→5
Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012) k = −12→13
Tmin = 0.925, Tmax = 1.000 l = −13→13
4664 measured reflections

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.042 w = 1/[σ2(Fo2) + (0.0682P)2 + 0.1101P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.122 (Δ/σ)max < 0.001
S = 1.04 Δρmax = 0.25 e Å3
2953 reflections Δρmin = −0.25 e Å3
229 parameters Extinction correction: SHELXL2012 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.0087 (12)
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1B −0.19166 (16) 0.67530 (11) 0.52669 (10) 0.0288 (3)
O2B −0.38294 (16) 0.47146 (11) 0.40815 (11) 0.0309 (3)
H2B −0.3493 0.5402 0.4563 0.046*
O3B −0.25490 (16) 0.37708 (11) 0.26154 (11) 0.0308 (3)
O4B 0.41267 (18) 0.58644 (12) 0.16868 (12) 0.0360 (3)
O5B 0.59770 (17) 0.75622 (12) 0.28233 (13) 0.0378 (3)
O6B 0.34447 (19) 0.93705 (13) 0.62652 (14) 0.0466 (4)
O7B 0.02866 (19) 0.91669 (12) 0.61489 (13) 0.0407 (3)
N1B 0.1720 (2) 0.88464 (13) 0.58134 (13) 0.0293 (3)
N2B 0.43937 (19) 0.67328 (13) 0.25380 (13) 0.0277 (3)
C1B −0.0459 (2) 0.68012 (14) 0.46271 (13) 0.0220 (3)
C2B −0.0571 (2) 0.57869 (14) 0.36592 (13) 0.0216 (3)
C3B 0.0986 (2) 0.57928 (14) 0.29803 (13) 0.0224 (3)
H3B 0.0860 0.5126 0.2331 0.027*
C4B 0.2742 (2) 0.67709 (15) 0.32417 (14) 0.0235 (3)
C5B 0.2969 (2) 0.77675 (14) 0.41652 (14) 0.0242 (3)
H5B 0.4187 0.8428 0.4339 0.029*
C6B 0.1396 (2) 0.77858 (15) 0.48287 (14) 0.0240 (3)
C7B −0.2410 (2) 0.46764 (15) 0.34003 (14) 0.0240 (3)
N1A −0.2236 (2) 0.05132 (13) −0.17302 (13) 0.0301 (3)
N2A −0.01482 (18) 0.22563 (12) −0.06974 (12) 0.0236 (3)
N3A 0.34673 (18) 0.20535 (12) 0.28180 (12) 0.0247 (3)
H3AA 0.3273 0.1193 0.2584 0.030*
H3AB 0.3097 0.2146 0.3598 0.030*
H3AC 0.4776 0.2474 0.2829 0.030*
C1A −0.0393 (2) 0.12597 (15) −0.15759 (15) 0.0267 (3)
H1A 0.0635 0.1112 −0.2029 0.032*
C2A −0.3211 (2) 0.10673 (16) −0.08994 (16) 0.0311 (4)
H2A −0.4575 0.0745 −0.0793 0.037*
C3A −0.1954 (2) 0.21366 (16) −0.02562 (15) 0.0290 (4)
H3A −0.2257 0.2692 0.0372 0.035*
C4A 0.1721 (2) 0.32486 (15) −0.02842 (14) 0.0265 (3)
H4AA 0.1419 0.4032 0.0094 0.032*
H4AB 0.2423 0.3502 −0.1023 0.032*
C5A 0.3076 (2) 0.27761 (16) 0.06655 (14) 0.0270 (3)
H5AA 0.3236 0.1929 0.0335 0.032*
H5AB 0.4405 0.3407 0.0792 0.032*
C6A 0.2253 (2) 0.26209 (16) 0.19094 (14) 0.0276 (3)
H6AA 0.2200 0.3483 0.2271 0.033*
H6AB 0.0877 0.2051 0.1769 0.033*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1B 0.0263 (6) 0.0300 (6) 0.0273 (6) 0.0012 (5) 0.0097 (4) −0.0047 (4)
O2B 0.0247 (6) 0.0304 (6) 0.0321 (6) −0.0027 (4) 0.0082 (5) −0.0070 (5)
O3B 0.0276 (6) 0.0282 (6) 0.0318 (6) 0.0003 (5) 0.0045 (5) −0.0081 (5)
O4B 0.0360 (6) 0.0319 (6) 0.0414 (7) 0.0081 (5) 0.0168 (5) −0.0040 (5)
O5B 0.0229 (6) 0.0376 (7) 0.0501 (8) 0.0011 (5) 0.0111 (5) 0.0012 (6)
O6B 0.0351 (7) 0.0402 (8) 0.0540 (8) −0.0004 (6) −0.0049 (6) −0.0192 (6)
O7B 0.0393 (7) 0.0324 (7) 0.0472 (8) 0.0026 (5) 0.0160 (6) −0.0121 (6)
N1B 0.0319 (7) 0.0233 (7) 0.0293 (7) 0.0012 (5) 0.0057 (6) −0.0025 (5)
N2B 0.0253 (7) 0.0258 (7) 0.0339 (7) 0.0072 (5) 0.0088 (5) 0.0060 (5)
C1B 0.0230 (7) 0.0232 (7) 0.0194 (7) 0.0049 (6) 0.0033 (5) 0.0023 (6)
C2B 0.0215 (7) 0.0215 (7) 0.0207 (7) 0.0035 (6) 0.0021 (5) 0.0028 (6)
C3B 0.0255 (7) 0.0216 (7) 0.0210 (7) 0.0072 (6) 0.0043 (6) 0.0016 (5)
C4B 0.0220 (7) 0.0248 (7) 0.0258 (7) 0.0076 (6) 0.0066 (6) 0.0059 (6)
C5B 0.0215 (7) 0.0221 (7) 0.0268 (7) 0.0017 (6) 0.0023 (6) 0.0051 (6)
C6B 0.0270 (8) 0.0208 (7) 0.0226 (7) 0.0041 (6) 0.0017 (6) 0.0002 (6)
C7B 0.0240 (7) 0.0253 (7) 0.0213 (7) 0.0047 (6) 0.0016 (5) 0.0001 (6)
N1A 0.0291 (7) 0.0246 (7) 0.0347 (7) 0.0050 (5) 0.0016 (6) −0.0005 (6)
N2A 0.0241 (6) 0.0230 (6) 0.0229 (6) 0.0049 (5) 0.0032 (5) 0.0002 (5)
N3A 0.0258 (6) 0.0224 (6) 0.0241 (6) 0.0041 (5) 0.0025 (5) −0.0028 (5)
C1A 0.0273 (8) 0.0256 (8) 0.0277 (8) 0.0078 (6) 0.0050 (6) −0.0019 (6)
C2A 0.0262 (8) 0.0311 (8) 0.0354 (9) 0.0045 (6) 0.0070 (6) 0.0059 (7)
C3A 0.0293 (8) 0.0308 (8) 0.0286 (8) 0.0093 (6) 0.0093 (6) 0.0013 (6)
C4A 0.0268 (8) 0.0245 (7) 0.0248 (7) 0.0007 (6) 0.0048 (6) −0.0001 (6)
C5A 0.0237 (7) 0.0293 (8) 0.0258 (8) 0.0029 (6) 0.0054 (6) −0.0020 (6)
C6A 0.0301 (8) 0.0301 (8) 0.0256 (8) 0.0124 (6) 0.0060 (6) 0.0017 (6)

Geometric parameters (Å, º)

O1B—C1B 1.2803 (18) N1A—C2A 1.375 (2)
O2B—H2B 0.8400 N2A—C1A 1.3472 (19)
O2B—C7B 1.3019 (18) N2A—C3A 1.3748 (19)
O3B—C7B 1.2249 (18) N2A—C4A 1.4660 (19)
O4B—N2B 1.2303 (18) N3A—H3AA 0.9100
O5B—N2B 1.2261 (18) N3A—H3AB 0.9100
O6B—N1B 1.2300 (18) N3A—H3AC 0.9100
O7B—N1B 1.2224 (18) N3A—C6A 1.4844 (19)
N1B—C6B 1.4629 (19) C1A—H1A 0.9500
N2B—C4B 1.4540 (18) C2A—H2A 0.9500
C1B—C2B 1.441 (2) C2A—C3A 1.352 (2)
C1B—C6B 1.433 (2) C3A—H3A 0.9500
C2B—C3B 1.373 (2) C4A—H4AA 0.9900
C2B—C7B 1.498 (2) C4A—H4AB 0.9900
C3B—H3B 0.9500 C4A—C5A 1.517 (2)
C3B—C4B 1.385 (2) C5A—H5AA 0.9900
C4B—C5B 1.381 (2) C5A—H5AB 0.9900
C5B—H5B 0.9500 C5A—C6A 1.510 (2)
C5B—C6B 1.377 (2) C6A—H6AA 0.9900
N1A—C1A 1.320 (2) C6A—H6AB 0.9900
C7B—O2B—H2B 109.5 H3AA—N3A—H3AC 109.5
O6B—N1B—C6B 117.54 (13) H3AB—N3A—H3AC 109.5
O7B—N1B—O6B 123.30 (14) C6A—N3A—H3AA 109.5
O7B—N1B—C6B 119.17 (13) C6A—N3A—H3AB 109.5
O4B—N2B—C4B 118.05 (13) C6A—N3A—H3AC 109.5
O5B—N2B—O4B 123.43 (13) N1A—C1A—N2A 111.69 (13)
O5B—N2B—C4B 118.52 (13) N1A—C1A—H1A 124.2
O1B—C1B—C2B 120.31 (13) N2A—C1A—H1A 124.2
O1B—C1B—C6B 124.78 (14) N1A—C2A—H2A 124.8
C6B—C1B—C2B 114.84 (13) C3A—C2A—N1A 110.33 (14)
C1B—C2B—C7B 119.59 (13) C3A—C2A—H2A 124.8
C3B—C2B—C1B 121.69 (14) N2A—C3A—H3A 127.0
C3B—C2B—C7B 118.70 (13) C2A—C3A—N2A 105.94 (14)
C2B—C3B—H3B 120.0 C2A—C3A—H3A 127.0
C2B—C3B—C4B 120.03 (14) N2A—C4A—H4AA 109.1
C4B—C3B—H3B 120.0 N2A—C4A—H4AB 109.1
C3B—C4B—N2B 119.02 (13) N2A—C4A—C5A 112.48 (12)
C5B—C4B—N2B 119.37 (13) H4AA—C4A—H4AB 107.8
C5B—C4B—C3B 121.60 (13) C5A—C4A—H4AA 109.1
C4B—C5B—H5B 120.7 C5A—C4A—H4AB 109.1
C6B—C5B—C4B 118.69 (14) C4A—C5A—H5AA 109.3
C6B—C5B—H5B 120.7 C4A—C5A—H5AB 109.3
C1B—C6B—N1B 120.14 (13) H5AA—C5A—H5AB 108.0
C5B—C6B—N1B 116.69 (13) C6A—C5A—C4A 111.50 (12)
C5B—C6B—C1B 123.12 (14) C6A—C5A—H5AA 109.3
O2B—C7B—C2B 116.03 (13) C6A—C5A—H5AB 109.3
O3B—C7B—O2B 121.99 (14) N3A—C6A—C5A 112.37 (12)
O3B—C7B—C2B 121.96 (13) N3A—C6A—H6AA 109.1
C1A—N1A—C2A 105.07 (13) N3A—C6A—H6AB 109.1
C1A—N2A—C3A 106.97 (13) C5A—C6A—H6AA 109.1
C1A—N2A—C4A 125.58 (13) C5A—C6A—H6AB 109.1
C3A—N2A—C4A 127.43 (13) H6AA—C6A—H6AB 107.9
H3AA—N3A—H3AB 109.5
O1B—C1B—C2B—C3B −178.23 (13) C3B—C2B—C7B—O2B 179.26 (13)
O1B—C1B—C2B—C7B 0.3 (2) C3B—C2B—C7B—O3B 1.0 (2)
O1B—C1B—C6B—N1B −0.9 (2) C3B—C4B—C5B—C6B −0.6 (2)
O1B—C1B—C6B—C5B 176.43 (14) C4B—C5B—C6B—N1B 178.87 (13)
O4B—N2B—C4B—C3B 3.8 (2) C4B—C5B—C6B—C1B 1.5 (2)
O4B—N2B—C4B—C5B −177.14 (13) C6B—C1B—C2B—C3B −0.9 (2)
O5B—N2B—C4B—C3B −176.02 (14) C6B—C1B—C2B—C7B 177.58 (12)
O5B—N2B—C4B—C5B 3.0 (2) C7B—C2B—C3B—C4B −176.73 (13)
O6B—N1B—C6B—C1B 154.04 (15) N1A—C2A—C3A—N2A 0.13 (18)
O6B—N1B—C6B—C5B −23.4 (2) N2A—C4A—C5A—C6A −69.71 (16)
O7B—N1B—C6B—C1B −25.8 (2) C1A—N1A—C2A—C3A 0.02 (18)
O7B—N1B—C6B—C5B 156.73 (14) C1A—N2A—C3A—C2A −0.23 (17)
N2B—C4B—C5B—C6B −179.60 (13) C1A—N2A—C4A—C5A −80.85 (18)
C1B—C2B—C3B—C4B 1.8 (2) C2A—N1A—C1A—N2A −0.17 (18)
C1B—C2B—C7B—O2B 0.7 (2) C3A—N2A—C1A—N1A 0.26 (18)
C1B—C2B—C7B—O3B −177.60 (13) C3A—N2A—C4A—C5A 97.42 (17)
C2B—C1B—C6B—N1B −178.03 (12) C4A—N2A—C1A—N1A 178.83 (13)
C2B—C1B—C6B—C5B −0.7 (2) C4A—N2A—C3A—C2A −178.77 (14)
C2B—C3B—C4B—N2B 177.99 (13) C4A—C5A—C6A—N3A 175.16 (12)
C2B—C3B—C4B—C5B −1.0 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O2B—H2B···O1B 0.84 1.66 2.4484 (15) 155
N3A—H3AA···N1Ai 0.91 1.92 2.7987 (19) 162
N3A—H3AB···O1Bii 0.91 2.03 2.8153 (17) 144
N3A—H3AC···O3Biii 0.91 2.07 2.9546 (17) 165
C4A—H4AB···O4Biv 0.99 2.53 3.3572 (19) 142

Symmetry codes: (i) −x, −y, −z; (ii) −x, −y+1, −z+1; (iii) x+1, y, z; (iv) −x+1, −y+1, −z.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: FJ2659).

References

  1. Agilent (2012). CrysAlis PRO and CrysAlis RED Agilent Technologies, Yarnton, England.
  2. Dayananda, A. S., Yathirajan, H. S., Gerber, T., Hosten, E. & Betz, R. (2012). Acta Cryst. E68, o1165–o1166. [DOI] [PMC free article] [PubMed]
  3. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  4. Have, R. ten, Huisman, M., Meetsma, A. & van Leusen, A. M. (1997). Tetrahedron, 53, 11355–11368.
  5. Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o1194–o1195. [DOI] [PMC free article] [PubMed]
  6. Jackson, C. J., Lamb, D. C., Kelly, D. E. & Kelly, S. L. (2000). FEMS Microbiol. Lett. 192, 159–162. [DOI] [PubMed]
  7. Jasinski, J. P., Butcher, R. J., Siddegowda, M. S., Yathirajan, H. S. & Siddaraju, B. P. (2011). Acta Cryst. E67, o432–o433. [DOI] [PMC free article] [PubMed]
  8. Krezel, I. (1998). Il Farmaco, 53, 342–345. [DOI] [PubMed]
  9. Lombardino, J. G. & Wiseman, E. H. (1974). J. Med. Chem. 17, 1182–1188. [DOI] [PubMed]
  10. Maier, T., Schmierer, R., Bauer, K., Bieringer, H., Buerstell, H. & Sachse, B. (1989). US Patent No. 4 820 335.
  11. Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Wei, S., Jin, S., Hu, Z., Zhou, Y. & Zhou, Y. (2012). Acta Cryst. E68, o3117. [DOI] [PMC free article] [PubMed]
  14. Yamuna, T. S., Jasinski, J. P., Duff, C. E., Yathirajan, H. S. & Kaur, M. (2013). Acta Cryst. E69, o1572–o1573. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814003146/fj2659sup1.cif

e-70-0o318-sup1.cif (25.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814003146/fj2659Isup2.hkl

e-70-0o318-Isup2.hkl (162.1KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814003146/fj2659Isup3.cml

CCDC reference: 986378

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES