Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Feb 22;70(Pt 3):o335. doi: 10.1107/S1600536814003523

Methyl 3′-benzyl-4′-(2,4-di­chloro­phen­yl)-1′-methyl-2-oxo­spiro­[indoline-3,2′-pyrrolidine]-3′-carboxyl­ate

S Karthikeyan a, P Narayanan a, K Sethusankar a,*, Anthonisamy Devaraj b, Manickam Bakthadoss b
PMCID: PMC3998484  PMID: 24765030

Abstract

In the title compound, C27H24Cl2N2O3, the indole ring system is essentially planar, with a maximum deviation of 0.082 (2) Å for the carbonyl C atom. It makes a dihedral angle of 88.53 (6)° with the mean plane of the 4-methyl­pyrrolidine ring, which adopts an envelope conformation with the N atom at the flap position. The mol­ecular structure is stabilized by intra­molecular C—H⋯O hydrogen bonds, which generate S(6) and S(7) ring motifs, and an intra­molecular π–π inter­action involving the benzyl and di­chloro-substituted benzene rings [centroid–centroid distance = 3.6291 (11) Å]. In the crystal, mol­ecules are linked via N—H⋯O hydrogen bonds, forming C(7) chains running parallel to [10-1].

Related literature  

For the biological activity of spiro-oxindole derivatives, see: Hilton et al. (2000). For a related crystal structure, see: Karthikeyan et al. (2014). For puckering parameters, see: Cremer & Pople (1975). For graph-set motifs, see: Bernstein et al. (1995). For bond-length distortions in small rings, see: Allen (1981).graphic file with name e-70-0o335-scheme1.jpg

Experimental  

Crystal data  

  • C27H24Cl2N2O3

  • M r = 495.38

  • Monoclinic, Inline graphic

  • a = 12.7051 (5) Å

  • b = 14.1724 (6) Å

  • c = 14.0322 (6) Å

  • β = 109.424 (2)°

  • V = 2382.85 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 293 K

  • 0.30 × 0.28 × 0.25 mm

Data collection  

  • Bruker Kappa APEXII CCD diffractometer

  • 27865 measured reflections

  • 6466 independent reflections

  • 4356 reflections with I > 2σ(I)

  • R int = 0.028

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.124

  • S = 1.00

  • 6466 reflections

  • 309 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.49 e Å−3

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536814003523/su2699sup1.cif

e-70-0o335-sup1.cif (24.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814003523/su2699Isup2.hkl

e-70-0o335-Isup2.hkl (316.5KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814003523/su2699Isup3.cml

CCDC reference: 888482

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18B⋯O1 0.97 2.31 3.046 (2) 132
C24—H24⋯O3 0.93 2.52 3.155 (2) 126
N2—H2A⋯O2i 0.86 2.07 2.924 (2) 170

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the data collection.

supplementary crystallographic information

1. Comment

The derivatives of spiro-oxindole ring systems are used as antimicrobial, antitumor agents and as inhibitors of the human NKI receptor besides being found in a number of alkaloids like horsifiline, spirotryprostatin and (+)elacomine (Hilton et al., 2000).

The molecular structure of the title compound is illustrated in Fig 1. In the molecule, there are C—H···O hydrogen bonds forming S(6) and S(7) ring motifs (Bernstein et al., 1995), and a π···π interaction [Cg(1)···Cg(2) = 3.6291 (11) Å, where Cg1 and Cg2 are the centroids of rings C1—C6 and C19—C24, respectively]. The indole ring system is essentially planar with a maximum deviation of 0.082 (2) Å for atom C10. The mean plane of this indole ring system forms a dihedral angle of 88.53 (6)° with the 4-methylpyrrolidine ring mean plane. The latter forms a dihedral angle of 83.37 (9)° with the benzyl ring which shows that they are almost orthogonal. Atom O1 significantly deviates from the mean plane of the indole ring system by -0.2251 (15) Å. The molecular dimensions in the title compound are in excellent agreement with those reported for the 3-bromophenyl derivative (Karthikeyan et al., 2014).

The spiro-pyrrolidine ring (N1/C7-C9/C17) adopts an envelope conformation with atom N1 at the flap. The distance to the flap position from the mean plane of the four C atoms is 0.2476 (16) Å; the ring puckering parameters (Cremer & Pople, 1975) are Q2 = 0.3917 (18) Å and φ2 = 2.8 (3)°. The central spiro-pyrrolidine ring mean plane is perpendicular to the dichlorophenyl ring with a dihedral angle of 81.66 (9)°. The carbonyl group, C10═O2, and the benzyl ring (C18-C24) ring have an (+)anti-clinal conformation with torsion angle (C18—C17—C25—O2) of 146.81 (16)°.

In the benzene ring (C11—C16) of the indole ring system, the expansion of the ipso angles at C11, C13 and C14 [121.71 (19), 121.1 (2) and 120.8 (2)°, respectively] and contraction of the apical angles at C12, C15 and C16 [117.9 (2), 119.13 (18) and 119.43 (16)°, respectively] are caused by the fusion of the smaller pyrrole ring to the six-membered benzene ring and the strain is taken up by the angular distortion rather than by bond-length distortions (Allen, 1981). The carboxyl group and oxindole ring system are (-)anti-clinal to each other with torsion angle (C9—C17—C25—O2) of -92.85 (18)°.

In the crystal, molecules are linked via N-H···O hydrogen bonds forming C(7) chains running parallel to [1 0 -1]; see Fig. 2 and Table 1.

2. Experimental

A mixture of (E)-methyl 2-benzyl-3-(2,4-dichlorophenyl)acrylate (2 mmol), isatin (2 mmol) and sarcosine (2 mmol) in acetonitrile (8 ml) was refluxed for 12 h. After the completion of the reaction as indicated by TLC, the reaction mixture was concentrated. The resulting crude mass was diluted with water (10 ml) and extracted with ethyl acetate (3 × 10 ml). The combined organic layers were washed with brine (2 × 10 ml) and dried over anhydrous Na2SO4. The organic layer was concentrated and the residue purified by column chromatography on silica gel (Acme 100–200 mesh), using ethyl acetate:hexanes (2:8) to afford the title compound as a colourless solid in (65%) yield. Block-like colourless crystals were obtained by slow evaporation of a solution in CHCl3.

3. Refinement

The H atoms could all be located in difference electron-density maps. In the final cycles of refinement they were treated as riding atoms and their distances were geometrically constrained: N-H = 0.86 Å, C—H = 0.93 - 0.98 Å with Uiso(H) = 1.5 Ueq(C– methyl) and = 1.2Ueq(N/C) for other H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule, with atom labelling. Displacement ellipsoids are drawn at 30% probability level.

Fig. 2.

Fig. 2.

A partial view of the crystal packing of the title compound, showing the formation of infinite C(7) chains. The dashed lines indicate N—H···O hydrogen bonds - see Table 1 for details.

Crystal data

C27H24Cl2N2O3 F(000) = 1032
Mr = 495.38 Dx = 1.381 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -p 2yn Cell parameters from 6466 reflections
a = 12.7051 (5) Å θ = 2.1–29.3°
b = 14.1724 (6) Å µ = 0.31 mm1
c = 14.0322 (6) Å T = 293 K
β = 109.424 (2)° Block, colorless
V = 2382.85 (17) Å3 0.30 × 0.28 × 0.25 mm
Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer 4356 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.028
Graphite monochromator θmax = 29.3°, θmin = 2.1°
ω scans h = −16→17
27865 measured reflections k = −19→13
6466 independent reflections l = −18→19

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0537P)2 + 0.8129P] where P = (Fo2 + 2Fc2)/3
6466 reflections (Δ/σ)max < 0.001
309 parameters Δρmax = 0.41 e Å3
0 restraints Δρmin = −0.49 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.58285 (14) 0.31080 (12) 0.42423 (13) 0.0422 (4)
C2 0.66005 (15) 0.33021 (13) 0.37693 (14) 0.0483 (4)
H2 0.7301 0.3019 0.3985 0.058*
C3 0.63062 (15) 0.39240 (13) 0.29724 (15) 0.0484 (4)
C4 0.52940 (16) 0.43704 (13) 0.26718 (15) 0.0507 (5)
H4 0.5118 0.4809 0.2149 0.061*
C5 0.45350 (15) 0.41603 (13) 0.31561 (14) 0.0459 (4)
H5 0.3848 0.4465 0.2951 0.055*
C6 0.47685 (13) 0.35069 (12) 0.39402 (12) 0.0393 (4)
C7 0.39119 (14) 0.32433 (12) 0.44254 (12) 0.0389 (4)
H7 0.4320 0.2961 0.5082 0.047*
C8 0.32681 (16) 0.40830 (13) 0.46311 (15) 0.0502 (4)
H8A 0.3672 0.4374 0.5275 0.060*
H8B 0.3137 0.4553 0.4102 0.060*
C9 0.18556 (13) 0.30092 (11) 0.38043 (11) 0.0346 (3)
C10 0.12965 (15) 0.34886 (13) 0.27525 (12) 0.0426 (4)
C11 0.00156 (14) 0.24664 (13) 0.29794 (14) 0.0449 (4)
C12 −0.09784 (16) 0.19937 (16) 0.28444 (19) 0.0649 (6)
H12 −0.1569 0.2036 0.2239 0.078*
C13 −0.10630 (18) 0.14611 (16) 0.3634 (2) 0.0670 (6)
H13 −0.1722 0.1139 0.3562 0.080*
C14 −0.01904 (18) 0.13971 (14) 0.45262 (18) 0.0581 (5)
H14 −0.0266 0.1033 0.5051 0.070*
C15 0.08044 (15) 0.18687 (13) 0.46545 (14) 0.0446 (4)
H15 0.1391 0.1829 0.5263 0.054*
C16 0.09119 (13) 0.23953 (12) 0.38709 (12) 0.0373 (4)
C17 0.29931 (12) 0.25062 (11) 0.38356 (11) 0.0311 (3)
C18 0.29733 (13) 0.22452 (11) 0.27577 (11) 0.0339 (3)
H18A 0.2346 0.1824 0.2471 0.041*
H18B 0.2812 0.2819 0.2358 0.041*
C19 0.39826 (12) 0.17915 (11) 0.25989 (11) 0.0334 (3)
C20 0.42743 (15) 0.21109 (13) 0.17845 (13) 0.0447 (4)
H20 0.3863 0.2595 0.1384 0.054*
C21 0.51556 (17) 0.17291 (15) 0.15552 (16) 0.0561 (5)
H21 0.5334 0.1958 0.1007 0.067*
C22 0.57727 (16) 0.10121 (14) 0.21310 (15) 0.0522 (5)
H22 0.6376 0.0759 0.1983 0.063*
C23 0.54893 (15) 0.06731 (13) 0.29259 (14) 0.0464 (4)
H23 0.5897 0.0180 0.3313 0.056*
C24 0.46040 (14) 0.10554 (12) 0.31595 (12) 0.0401 (4)
H24 0.4423 0.0814 0.3702 0.048*
C25 0.30887 (12) 0.16134 (11) 0.44713 (11) 0.0331 (3)
C26 0.25651 (17) 0.00191 (13) 0.44542 (15) 0.0532 (5)
H26A 0.3325 −0.0180 0.4765 0.080*
H26B 0.2161 −0.0455 0.3986 0.080*
H26C 0.2226 0.0109 0.4965 0.080*
C27 0.13946 (19) 0.43922 (15) 0.46547 (17) 0.0609 (5)
H27A 0.1663 0.4751 0.5269 0.091*
H27B 0.0706 0.4089 0.4616 0.091*
H27C 0.1273 0.4806 0.4086 0.091*
N1 0.22212 (12) 0.36773 (10) 0.46454 (10) 0.0426 (3)
N2 0.02779 (13) 0.31006 (12) 0.23303 (11) 0.0521 (4)
H2A −0.0160 0.3229 0.1730 0.063*
O1 0.16988 (12) 0.41046 (10) 0.23798 (10) 0.0562 (4)
O2 0.35713 (10) 0.15537 (9) 0.53672 (8) 0.0471 (3)
O3 0.25399 (9) 0.08941 (8) 0.39242 (8) 0.0379 (3)
Cl1 0.62311 (4) 0.23046 (4) 0.52348 (4) 0.06078 (16)
Cl2 0.72403 (5) 0.41173 (4) 0.23263 (5) 0.07259 (19)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0388 (9) 0.0436 (9) 0.0367 (9) −0.0069 (7) 0.0025 (7) 0.0008 (7)
C2 0.0367 (9) 0.0496 (11) 0.0534 (11) −0.0066 (7) 0.0082 (8) −0.0034 (8)
C3 0.0468 (10) 0.0445 (10) 0.0570 (11) −0.0149 (8) 0.0214 (9) −0.0047 (8)
C4 0.0542 (11) 0.0432 (10) 0.0550 (11) −0.0088 (8) 0.0185 (9) 0.0090 (8)
C5 0.0411 (9) 0.0446 (10) 0.0488 (10) −0.0032 (7) 0.0106 (8) 0.0072 (8)
C6 0.0371 (8) 0.0400 (9) 0.0355 (8) −0.0079 (7) 0.0052 (7) 0.0000 (7)
C7 0.0380 (8) 0.0435 (9) 0.0300 (8) −0.0073 (7) 0.0044 (6) 0.0007 (7)
C8 0.0594 (11) 0.0451 (10) 0.0478 (11) −0.0102 (8) 0.0201 (9) −0.0114 (8)
C9 0.0356 (8) 0.0392 (8) 0.0281 (8) 0.0044 (6) 0.0094 (6) 0.0030 (6)
C10 0.0469 (10) 0.0471 (10) 0.0342 (9) 0.0186 (8) 0.0141 (7) 0.0067 (7)
C11 0.0382 (9) 0.0475 (10) 0.0444 (10) 0.0092 (7) 0.0076 (8) −0.0071 (8)
C12 0.0387 (10) 0.0653 (14) 0.0781 (16) 0.0025 (9) 0.0025 (10) −0.0212 (12)
C13 0.0462 (11) 0.0567 (13) 0.1007 (19) −0.0084 (9) 0.0278 (12) −0.0159 (13)
C14 0.0586 (12) 0.0504 (11) 0.0786 (15) −0.0027 (9) 0.0406 (12) −0.0035 (10)
C15 0.0450 (9) 0.0482 (10) 0.0463 (10) 0.0033 (8) 0.0229 (8) −0.0004 (8)
C16 0.0338 (8) 0.0415 (9) 0.0371 (9) 0.0057 (6) 0.0125 (7) −0.0040 (7)
C17 0.0290 (7) 0.0365 (8) 0.0245 (7) 0.0008 (6) 0.0043 (6) 0.0029 (6)
C18 0.0326 (8) 0.0417 (9) 0.0248 (7) 0.0037 (6) 0.0060 (6) 0.0039 (6)
C19 0.0315 (7) 0.0379 (8) 0.0286 (7) −0.0015 (6) 0.0071 (6) −0.0019 (6)
C20 0.0495 (10) 0.0466 (10) 0.0420 (10) 0.0084 (8) 0.0205 (8) 0.0100 (8)
C21 0.0635 (12) 0.0614 (12) 0.0562 (12) 0.0072 (10) 0.0369 (10) 0.0125 (10)
C22 0.0440 (10) 0.0588 (12) 0.0603 (12) 0.0069 (8) 0.0263 (9) −0.0008 (9)
C23 0.0416 (9) 0.0478 (10) 0.0469 (10) 0.0102 (8) 0.0110 (8) 0.0038 (8)
C24 0.0414 (9) 0.0454 (10) 0.0338 (8) 0.0041 (7) 0.0128 (7) 0.0053 (7)
C25 0.0282 (7) 0.0409 (8) 0.0272 (7) 0.0022 (6) 0.0053 (6) 0.0019 (6)
C26 0.0685 (13) 0.0385 (10) 0.0508 (11) −0.0036 (9) 0.0175 (10) 0.0076 (8)
C27 0.0754 (14) 0.0522 (12) 0.0647 (13) 0.0093 (10) 0.0362 (11) −0.0085 (10)
N1 0.0498 (8) 0.0424 (8) 0.0365 (8) 0.0002 (6) 0.0156 (6) −0.0062 (6)
N2 0.0453 (9) 0.0654 (10) 0.0348 (8) 0.0157 (7) −0.0012 (6) 0.0029 (7)
O1 0.0649 (9) 0.0567 (8) 0.0516 (8) 0.0211 (7) 0.0253 (7) 0.0221 (6)
O2 0.0499 (7) 0.0546 (7) 0.0272 (6) −0.0063 (6) 0.0000 (5) 0.0084 (5)
O3 0.0422 (6) 0.0362 (6) 0.0320 (6) −0.0011 (5) 0.0079 (5) 0.0016 (4)
Cl1 0.0510 (3) 0.0749 (4) 0.0453 (3) 0.0069 (2) 0.0010 (2) 0.0180 (2)
Cl2 0.0699 (4) 0.0693 (4) 0.0948 (5) −0.0121 (3) 0.0490 (3) 0.0052 (3)

Geometric parameters (Å, º)

C1—C2 1.383 (3) C14—C15 1.388 (3)
C1—C6 1.390 (2) C14—H14 0.9300
C1—Cl1 1.7389 (18) C15—C16 1.373 (2)
C2—C3 1.374 (3) C15—H15 0.9300
C2—H2 0.9300 C17—C25 1.530 (2)
C3—C4 1.368 (3) C17—C18 1.549 (2)
C3—Cl2 1.7381 (19) C18—C19 1.516 (2)
C4—C5 1.384 (2) C18—H18A 0.9700
C4—H4 0.9300 C18—H18B 0.9700
C5—C6 1.393 (2) C19—C24 1.385 (2)
C5—H5 0.9300 C19—C20 1.389 (2)
C6—C7 1.510 (2) C20—C21 1.375 (3)
C7—C8 1.525 (3) C20—H20 0.9300
C7—C17 1.580 (2) C21—C22 1.371 (3)
C7—H7 0.9800 C21—H21 0.9300
C8—N1 1.455 (2) C22—C23 1.368 (3)
C8—H8A 0.9700 C22—H22 0.9300
C8—H8B 0.9700 C23—C24 1.382 (2)
C9—N1 1.463 (2) C23—H23 0.9300
C9—C16 1.509 (2) C24—H24 0.9300
C9—C10 1.564 (2) C25—O2 1.2045 (18)
C9—C17 1.599 (2) C25—O3 1.3262 (19)
C10—O1 1.214 (2) C26—O3 1.441 (2)
C10—N2 1.348 (2) C26—H26A 0.9600
C11—C12 1.386 (3) C26—H26B 0.9600
C11—C16 1.387 (2) C26—H26C 0.9600
C11—N2 1.397 (3) C27—N1 1.462 (2)
C12—C13 1.374 (3) C27—H27A 0.9600
C12—H12 0.9300 C27—H27B 0.9600
C13—C14 1.372 (3) C27—H27C 0.9600
C13—H13 0.9300 N2—H2A 0.8600
C2—C1—C6 122.86 (16) C15—C16—C9 130.97 (15)
C2—C1—Cl1 116.62 (14) C11—C16—C9 109.45 (15)
C6—C1—Cl1 120.50 (13) C25—C17—C18 110.14 (12)
C3—C2—C1 118.27 (17) C25—C17—C7 109.87 (12)
C3—C2—H2 120.9 C18—C17—C7 116.02 (13)
C1—C2—H2 120.9 C25—C17—C9 106.29 (12)
C4—C3—C2 121.40 (17) C18—C17—C9 111.02 (11)
C4—C3—Cl2 120.08 (15) C7—C17—C9 102.90 (12)
C2—C3—Cl2 118.51 (15) C19—C18—C17 120.33 (12)
C3—C4—C5 119.09 (17) C19—C18—H18A 107.2
C3—C4—H4 120.5 C17—C18—H18A 107.2
C5—C4—H4 120.5 C19—C18—H18B 107.2
C4—C5—C6 122.06 (17) C17—C18—H18B 107.2
C4—C5—H5 119.0 H18A—C18—H18B 106.9
C6—C5—H5 119.0 C24—C19—C20 117.08 (15)
C1—C6—C5 116.20 (16) C24—C19—C18 125.91 (14)
C1—C6—C7 122.15 (15) C20—C19—C18 116.92 (14)
C5—C6—C7 121.65 (15) C21—C20—C19 121.67 (17)
C6—C7—C8 113.87 (14) C21—C20—H20 119.2
C6—C7—C17 116.42 (13) C19—C20—H20 119.2
C8—C7—C17 105.41 (13) C22—C21—C20 120.30 (17)
C6—C7—H7 106.9 C22—C21—H21 119.8
C8—C7—H7 106.9 C20—C21—H21 119.8
C17—C7—H7 106.9 C23—C22—C21 119.14 (17)
N1—C8—C7 104.15 (14) C23—C22—H22 120.4
N1—C8—H8A 110.9 C21—C22—H22 120.4
C7—C8—H8A 110.9 C22—C23—C24 120.74 (17)
N1—C8—H8B 110.9 C22—C23—H23 119.6
C7—C8—H8B 110.9 C24—C23—H23 119.6
H8A—C8—H8B 108.9 C23—C24—C19 121.04 (16)
N1—C9—C16 111.63 (12) C23—C24—H24 119.5
N1—C9—C10 113.75 (13) C19—C24—H24 119.5
C16—C9—C10 100.84 (13) O2—C25—O3 122.50 (14)
N1—C9—C17 102.99 (12) O2—C25—C17 125.52 (14)
C16—C9—C17 118.08 (13) O3—C25—C17 111.95 (12)
C10—C9—C17 110.01 (12) O3—C26—H26A 109.5
O1—C10—N2 125.73 (16) O3—C26—H26B 109.5
O1—C10—C9 126.47 (17) H26A—C26—H26B 109.5
N2—C10—C9 107.80 (15) O3—C26—H26C 109.5
C12—C11—C16 121.71 (19) H26A—C26—H26C 109.5
C12—C11—N2 128.77 (18) H26B—C26—H26C 109.5
C16—C11—N2 109.43 (16) N1—C27—H27A 109.5
C13—C12—C11 117.9 (2) N1—C27—H27B 109.5
C13—C12—H12 121.1 H27A—C27—H27B 109.5
C11—C12—H12 121.1 N1—C27—H27C 109.5
C14—C13—C12 121.1 (2) H27A—C27—H27C 109.5
C14—C13—H13 119.5 H27B—C27—H27C 109.5
C12—C13—H13 119.5 C8—N1—C27 112.88 (15)
C13—C14—C15 120.8 (2) C8—N1—C9 106.92 (13)
C13—C14—H14 119.6 C27—N1—C9 114.79 (14)
C15—C14—H14 119.6 C10—N2—C11 112.22 (14)
C16—C15—C14 119.13 (18) C10—N2—H2A 123.9
C16—C15—H15 120.4 C11—N2—H2A 123.9
C14—C15—H15 120.4 C25—O3—C26 116.46 (13)
C15—C16—C11 119.43 (16)
C6—C1—C2—C3 0.7 (3) C8—C7—C17—C18 118.92 (15)
Cl1—C1—C2—C3 179.12 (14) C6—C7—C17—C9 −129.76 (14)
C1—C2—C3—C4 2.4 (3) C8—C7—C17—C9 −2.49 (16)
C1—C2—C3—Cl2 −176.21 (14) N1—C9—C17—C25 93.64 (13)
C2—C3—C4—C5 −2.7 (3) C16—C9—C17—C25 −29.85 (17)
Cl2—C3—C4—C5 175.91 (15) C10—C9—C17—C25 −144.76 (13)
C3—C4—C5—C6 −0.1 (3) N1—C9—C17—C18 −146.58 (13)
C2—C1—C6—C5 −3.2 (3) C16—C9—C17—C18 89.92 (16)
Cl1—C1—C6—C5 178.40 (13) C10—C9—C17—C18 −24.99 (18)
C2—C1—C6—C7 176.31 (16) N1—C9—C17—C7 −21.83 (14)
Cl1—C1—C6—C7 −2.1 (2) C16—C9—C17—C7 −145.33 (13)
C4—C5—C6—C1 2.9 (3) C10—C9—C17—C7 99.76 (14)
C4—C5—C6—C7 −176.61 (17) C25—C17—C18—C19 −64.72 (18)
C1—C6—C7—C8 137.44 (17) C7—C17—C18—C19 60.85 (19)
C5—C6—C7—C8 −43.1 (2) C9—C17—C18—C19 177.83 (13)
C1—C6—C7—C17 −99.58 (18) C17—C18—C19—C24 45.3 (2)
C5—C6—C7—C17 79.9 (2) C17—C18—C19—C20 −138.30 (16)
C6—C7—C8—N1 155.06 (14) C24—C19—C20—C21 −1.4 (3)
C17—C7—C8—N1 26.25 (17) C18—C19—C20—C21 −178.13 (17)
N1—C9—C10—O1 54.9 (2) C19—C20—C21—C22 0.2 (3)
C16—C9—C10—O1 174.51 (16) C20—C21—C22—C23 1.0 (3)
C17—C9—C10—O1 −60.1 (2) C21—C22—C23—C24 −1.0 (3)
N1—C9—C10—N2 −124.69 (15) C22—C23—C24—C19 −0.2 (3)
C16—C9—C10—N2 −5.07 (16) C20—C19—C24—C23 1.3 (2)
C17—C9—C10—N2 120.37 (14) C18—C19—C24—C23 177.76 (16)
C16—C11—C12—C13 1.3 (3) C18—C17—C25—O2 146.81 (16)
N2—C11—C12—C13 −174.74 (19) C7—C17—C25—O2 17.8 (2)
C11—C12—C13—C14 −0.2 (3) C9—C17—C25—O2 −92.85 (18)
C12—C13—C14—C15 −0.1 (3) C18—C17—C25—O3 −35.14 (17)
C13—C14—C15—C16 −0.7 (3) C7—C17—C25—O3 −164.13 (12)
C14—C15—C16—C11 1.8 (2) C9—C17—C25—O3 85.20 (14)
C14—C15—C16—C9 176.90 (16) C7—C8—N1—C27 −169.79 (15)
C12—C11—C16—C15 −2.2 (3) C7—C8—N1—C9 −42.64 (17)
N2—C11—C16—C15 174.60 (15) C16—C9—N1—C8 167.99 (14)
C12—C11—C16—C9 −178.24 (16) C10—C9—N1—C8 −78.71 (17)
N2—C11—C16—C9 −1.49 (19) C17—C9—N1—C8 40.32 (16)
N1—C9—C16—C15 −50.5 (2) C16—C9—N1—C27 −65.99 (18)
C10—C9—C16—C15 −171.62 (17) C10—C9—N1—C27 47.31 (19)
C17—C9—C16—C15 68.6 (2) C17—C9—N1—C27 166.33 (14)
N1—C9—C16—C11 125.01 (14) O1—C10—N2—C11 −174.94 (16)
C10—C9—C16—C11 3.87 (16) C9—C10—N2—C11 4.64 (19)
C17—C9—C16—C11 −115.93 (15) C12—C11—N2—C10 174.33 (18)
C6—C7—C17—C25 117.36 (15) C16—C11—N2—C10 −2.1 (2)
C8—C7—C17—C25 −115.37 (14) O2—C25—O3—C26 −1.2 (2)
C6—C7—C17—C18 −8.4 (2) C17—C25—O3—C26 −179.28 (14)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C18—H18B···O1 0.97 2.31 3.046 (2) 132
C24—H24···O3 0.93 2.52 3.155 (2) 126
N2—H2A···O2i 0.86 2.07 2.924 (2) 170

Symmetry code: (i) x−1/2, −y+1/2, z−1/2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: SU2699).

References

  1. Allen, F. H. (1981). Acta Cryst. B37, 900–906.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Bruker (2008). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cremer, D. & Pople, J. A. (1975). Br. J. Pharmacol. 44, 561—576.
  5. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  6. Hilton, S. T., Ho, T. C., Pljevalijcic, G. & Jones, K. (2000). Org. Lett. 2, 2639–2641. [DOI] [PubMed]
  7. Karthikeyan, S., Sethusankar, K., Devaraj, A. & Bakthadoss, M. (2014). Acta Cryst. E70, o299–o300. [DOI] [PMC free article] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536814003523/su2699sup1.cif

e-70-0o335-sup1.cif (24.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814003523/su2699Isup2.hkl

e-70-0o335-Isup2.hkl (316.5KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814003523/su2699Isup3.cml

CCDC reference: 888482

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES