Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Feb 12;70(Pt 3):o270–o271. doi: 10.1107/S160053681400261X

1-Piperonylpiperazinium 4-nitro­benzoate monohydrate

Channappa N Kavitha a, Manpreet Kaur a, Brian J Anderson b, Jerry P Jasinski b,*, H S Yathirajan a
PMCID: PMC3998489  PMID: 24764985

Abstract

In the title hydrated salt [systematic name: 1-(1,3-benzodioxol-5-ylmeth­yl)piperazin-1-ium 4-nitro­benzoate monohydrate], C12H17N2O2 +·C7H4NO4 ·H2O, the piperazinium ring of the cation adopts a slightly distorted chair conformation. The piperonyl and piperazine rings are rotated with respect to each other with an N—C—C—C torsion angle of 45.6 (2)°. In the anion, the nitro group is almost coplanar with the adjacent benzene ring, forming a dihedral angle of only 3.9 (4)°. In the crystal, the cations, anions and water mol­ecules are linked through N—H⋯O and O—H⋯O hydrogen bonds into chains along the a axis. In addition, weaker inter­molecular C—H⋯O inter­actions are also observed within the chains. The anions form centrosymmetric couples through π-stacking inter­actions, with an inter­centroid distance of 3.681 (4) Å between the benzene rings.

Related literature  

For the drug, piribedil {systematic name: 2-[4-(benzo[1,3]dioxol-5-ylmeth­yl)piperazin-1-yl]pyrimidine}, an anti­parkin­sonian agent, see: Millan et al. (2001). For piperonylpiperazine derivatives with α-adrenergic antagonist and vasodilator properties, see: Gobert et al. (2003); Gilbert et al. (1968). For the use of piperazine in the construction of various bioactive mol­ecules, see: Choudhary et al. (2006). For the anti­microbial activity of piperazine derivatives, see: Kharb et al. (2012). For related biologically active compounds, see: Brockunier et al. (2004); Bogatcheva et al. (2006). For a review on the current pharmacological and toxicological information for piperazine derivatives, see: Elliott (2011). For a related structure, see: Capuano et al. (2000). For puckering parameters, see Cremer & Pople (1975). For standard bond lengths, see: Allen et al. (1987).graphic file with name e-70-0o270-scheme1.jpg

Experimental  

Crystal data  

  • C12H17N2O2 +·C7H4NO4 ·H2O

  • M r = 405.40

  • Triclinic, Inline graphic

  • a = 6.0745 (5) Å

  • b = 12.0617 (11) Å

  • c = 13.4817 (10) Å

  • α = 92.561 (7)°

  • β = 98.753 (7)°

  • γ = 93.326 (7)°

  • V = 973.20 (14) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.90 mm−1

  • T = 173 K

  • 0.42 × 0.36 × 0.24 mm

Data collection  

  • Agilent Xcalibur (Eos, Gemini) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012) T min = 0.882, T max = 1.000

  • 6403 measured reflections

  • 3761 independent reflections

  • 3196 reflections with I > 2σ(I)

  • R int = 0.021

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.120

  • S = 1.03

  • 3761 reflections

  • 263 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007; Palatinus & van der Lee, 2008; Palatinus et al., 2012); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S160053681400261X/ld2118sup1.cif

e-70-0o270-sup1.cif (29.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681400261X/ld2118Isup2.hkl

e-70-0o270-Isup2.hkl (206.3KB, hkl)

Supporting information file. DOI: 10.1107/S160053681400261X/ld2118Isup3.cml

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2A—H2AA⋯O1W i 0.94 1.84 2.7800 (16) 172
N2A—H2AB⋯O1B ii 0.93 1.80 2.7262 (16) 175
C9A—H9AA⋯O2A iii 0.99 2.58 3.3260 (19) 132
C10A—H10A⋯O1W iv 0.99 2.51 3.2833 (19) 135
O1W—H1WA⋯O2B v 0.90 1.76 2.6526 (16) 170
O1W—H1WB⋯O1B ii 0.92 1.90 2.7867 (16) 163

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

CNK thanks the University of Mysore for research facilities and is also grateful to the Principal, Maharani’s Science College for Women, Mysore, for giving permission to undertake research. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

supplementary crystallographic information

1. Comment

1-(3,4-Methylenedioxybenzyl)piperazine or 1-piperonylpiperazine is a psychoactive drug of the piperazine class and is used to synthesise the drug, piribedil, an antiparkinsonian agent (Millan et al., 2001). Piperonylpiperazine derivatives also has α-adrenergic antagonist properties (Gobert et al., 2003) and peripheral vasodilator properties (Gilbert et al., 1968). The piperazine moiety is extensively employed to construct various bioactive molecules with anti-bacterial, antimalarial activity and as antipsychotic agents (Choudhary et al., 2006). A valuable insight into recent advances on antimicrobial activity of piperazine derivatives is reported (Kharb et al., 2012). Piperazines are among the most important building blocks in today's drug discovery and are found in biologically active compounds across a number of different therapeutic areas (Brockunier et al., 2004; Bogatcheva et al., 2006). A review on the current pharmacological and toxicological information for piperazine derivatives is available (Elliott, 2011). The crystal structure of an N-piperonyl analogue of the atypical antipsychotic clozapine (Capuano et al., 2000) is reported. In continuation of our work on salts of piperonylpiperazines, this paper reports the crystal structure of the title compound, (I), C12H17N2O2+ . C7H4NO4- . H2O.

The asymmetric unit of the title compound, (I), contains one independent 1-piperonylpiperazinium monocation, one 4-nitrobenzoate monoanion and one water molecule (Fig. 1). The piperazine ring in the cation adopts a slightly disordered chair conformation (puckering parameters Q, θ, and φ = 0.590 (2)Å, 3.8 (6)° and 1.68 (4)°; (Cremer & Pople, 1975). The piperonyl and piperazine rings are twisted with respect to each other with an N1A/C1A/C2A/C8A torsion angle of 45.6 (2)°. In the anion, the nitro substituent is slightly twisted from the mean plane of the phenyl ring with a dihedral angle of 3.9 (4)°. Bond lengths are in normal ranges (Allen et al., 1987). In the crystal, the cations and anions interact through N—H···O intermolecular hydrogen bonds while weak C—H···O intermolecular interactions are observed between the cations (Fig. 2). The crystal packing is stabilized by these N—H···O and O—H···O intermolecular hydrogen bonds and weak C—H···O intermolecular interactions (Table 1) involving the water molecules which form 1D chains along [1 0 0]. In addition, weak Cg5–Cg5 π–π stacking interactions with an intercentroid distance of 3.681 (4)Å (Symmetry operation 2-x, -y, -z; Cg5 is the centroid between the phenyl rings, C1B–C6B, of the anions) contribute to the crystal packing.

2. Experimental

1-piperonylpiperazine ( 2.2g, 0.01 mol) and p-nitrobenzoic acid (1.67 g, 0.01 mol) were dissolved in hot N,N-dimethylformamide and stirred for 10 mins at 323 K. The resulting solution was allowed to cool slowly at room temperature. The crystals of the title salt appeared after a few days was used as such for x-ray studies (m. p:448-451 K).

3. Refinement

All of the H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.95Å (CH) , 0.99Å (CH2), 0.92 or 0.94Å (NH2), 0.89 or 0.91Å (OH2). Isotropic displacement parameters for these atoms were set to 1.2 (CH, CH2, NH2) or 1.5 (OH2) times Ueq of the parent atom.

Figures

Fig. 1.

Fig. 1.

ORTEP drawing of one independent monocation-monoanion-water molecule unit in the asymmetric unit of (I) (C12H17N2O2+ . C7H4NO4- . H2O) showing the labeling scheme with 30% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

Molecular packing for (I) viewed along the b axis. Dashed lines indicate N—H···O, O—H···O intermolecular hydrogen bonds and weak C—H···O intermolecular interactions. H atoms not involved in hydrogen bonding have been removed for clarity.

Crystal data

C12H17N2O2+·C7H4NO4·H2O Z = 2
Mr = 405.40 F(000) = 428
Triclinic, P1 Dx = 1.383 Mg m3
a = 6.0745 (5) Å Cu Kα radiation, λ = 1.54184 Å
b = 12.0617 (11) Å Cell parameters from 2866 reflections
c = 13.4817 (10) Å θ = 3.3–72.4°
α = 92.561 (7)° µ = 0.90 mm1
β = 98.753 (7)° T = 173 K
γ = 93.326 (7)° Irregular, colourless
V = 973.20 (14) Å3 0.42 × 0.36 × 0.24 mm

Data collection

Agilent Xcalibur (Eos, Gemini) diffractometer 3761 independent reflections
Radiation source: Enhance (Cu) X-ray Source 3196 reflections with I > 2σ(I)
Detector resolution: 16.0416 pixels mm-1 Rint = 0.021
ω scans θmax = 72.4°, θmin = 3.3°
Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012) h = −7→7
Tmin = 0.882, Tmax = 1.000 k = −14→13
6403 measured reflections l = −16→15

Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.043 w = 1/[σ2(Fo2) + (0.0563P)2 + 0.0984P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.120 (Δ/σ)max < 0.001
S = 1.03 Δρmax = 0.27 e Å3
3761 reflections Δρmin = −0.20 e Å3
263 parameters Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.0049 (6)
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1A 0.5807 (2) 0.15502 (11) 0.58196 (11) 0.0590 (4)
O2A 0.5429 (2) 0.34467 (10) 0.59022 (10) 0.0501 (3)
N1A −0.1474 (2) 0.41016 (10) 0.31368 (9) 0.0318 (3)
N2A −0.1698 (2) 0.54167 (10) 0.14110 (9) 0.0332 (3)
H2AA −0.2433 0.4918 0.0891 0.040*
H2AB −0.1248 0.6053 0.1115 0.040*
C1A −0.1964 (3) 0.31162 (14) 0.36785 (13) 0.0403 (4)
H1AA −0.2762 0.2532 0.3195 0.048*
H1AB −0.2965 0.3308 0.4166 0.048*
C2A 0.0109 (3) 0.26602 (13) 0.42328 (11) 0.0369 (3)
C3A 0.0366 (3) 0.15269 (14) 0.41979 (13) 0.0446 (4)
H3A −0.0772 0.1047 0.3811 0.054*
C4A 0.2234 (3) 0.10638 (14) 0.47100 (14) 0.0500 (4)
H4A 0.2393 0.0285 0.4678 0.060*
C5A 0.3822 (3) 0.17849 (14) 0.52603 (12) 0.0426 (4)
C6A 0.6796 (3) 0.25825 (15) 0.62731 (13) 0.0466 (4)
H6AA 0.8318 0.2712 0.6106 0.056*
H6AB 0.6907 0.2575 0.7013 0.056*
C7A 0.3587 (3) 0.29153 (13) 0.53067 (11) 0.0375 (3)
C8A 0.1769 (3) 0.33840 (13) 0.48093 (12) 0.0378 (3)
H8A 0.1632 0.4165 0.4851 0.045*
C9A −0.3555 (2) 0.45704 (13) 0.27135 (11) 0.0337 (3)
H9AA −0.4451 0.4722 0.3254 0.040*
H9AB −0.4436 0.4028 0.2212 0.040*
C10A −0.3064 (3) 0.56353 (13) 0.22182 (12) 0.0353 (3)
H10A −0.4481 0.5943 0.1927 0.042*
H10B −0.2245 0.6190 0.2726 0.042*
C11A 0.0375 (2) 0.48756 (13) 0.18124 (12) 0.0349 (3)
H11A 0.1350 0.5397 0.2300 0.042*
H11B 0.1200 0.4685 0.1256 0.042*
C12A −0.0217 (3) 0.38327 (12) 0.23225 (11) 0.0336 (3)
H12A −0.1124 0.3295 0.1826 0.040*
H12B 0.1165 0.3483 0.2598 0.040*
O1B 1.02663 (19) 0.27812 (9) −0.04752 (9) 0.0437 (3)
O2B 1.3475 (2) 0.26959 (12) 0.05605 (11) 0.0591 (4)
O3B 0.8956 (2) −0.16582 (12) 0.28622 (10) 0.0616 (4)
O4B 0.5845 (2) −0.15818 (12) 0.18715 (11) 0.0595 (4)
N1B 0.7773 (2) −0.12428 (11) 0.21838 (10) 0.0409 (3)
C1B 1.0487 (2) 0.14427 (11) 0.07692 (11) 0.0301 (3)
C2B 1.1819 (2) 0.09318 (13) 0.15270 (12) 0.0357 (3)
H2B 1.3335 0.1195 0.1723 0.043*
C3B 1.0959 (3) 0.00431 (13) 0.19982 (12) 0.0369 (3)
H3B 1.1868 −0.0319 0.2505 0.044*
C4B 0.8739 (2) −0.02983 (12) 0.17066 (11) 0.0319 (3)
C5B 0.7362 (2) 0.02062 (12) 0.09760 (11) 0.0329 (3)
H5B 0.5832 −0.0040 0.0803 0.039*
C6B 0.8256 (2) 0.10799 (12) 0.04996 (11) 0.0329 (3)
H6B 0.7341 0.1431 −0.0013 0.039*
C7B 1.1503 (3) 0.23837 (12) 0.02427 (12) 0.0355 (3)
O1W 0.34602 (17) 0.60766 (9) 0.01811 (8) 0.0378 (3)
H1WA 0.4609 0.6478 −0.0004 0.057*
H1WB 0.2443 0.6571 0.0317 0.057*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1A 0.0637 (8) 0.0486 (8) 0.0625 (8) 0.0261 (6) −0.0051 (7) −0.0006 (6)
O2A 0.0471 (7) 0.0435 (7) 0.0574 (8) 0.0115 (5) −0.0010 (6) −0.0032 (6)
N1A 0.0333 (6) 0.0342 (6) 0.0301 (6) 0.0046 (5) 0.0096 (5) 0.0081 (5)
N2A 0.0372 (7) 0.0298 (6) 0.0332 (6) −0.0004 (5) 0.0060 (5) 0.0086 (5)
C1A 0.0417 (8) 0.0422 (9) 0.0399 (8) 0.0020 (7) 0.0123 (7) 0.0149 (7)
C2A 0.0452 (9) 0.0383 (8) 0.0305 (7) 0.0060 (7) 0.0124 (6) 0.0105 (6)
C3A 0.0591 (10) 0.0377 (9) 0.0374 (8) 0.0035 (7) 0.0081 (7) 0.0026 (7)
C4A 0.0716 (12) 0.0331 (8) 0.0468 (10) 0.0140 (8) 0.0095 (9) 0.0039 (7)
C5A 0.0532 (10) 0.0405 (9) 0.0366 (8) 0.0172 (7) 0.0085 (7) 0.0059 (7)
C6A 0.0491 (10) 0.0522 (10) 0.0404 (9) 0.0139 (8) 0.0073 (7) 0.0065 (8)
C7A 0.0456 (9) 0.0368 (8) 0.0326 (8) 0.0072 (7) 0.0123 (6) 0.0029 (6)
C8A 0.0468 (9) 0.0317 (8) 0.0384 (8) 0.0078 (6) 0.0138 (7) 0.0081 (6)
C9A 0.0312 (7) 0.0382 (8) 0.0332 (7) 0.0041 (6) 0.0081 (6) 0.0055 (6)
C10A 0.0354 (7) 0.0349 (8) 0.0368 (8) 0.0078 (6) 0.0065 (6) 0.0053 (6)
C11A 0.0315 (7) 0.0378 (8) 0.0375 (8) 0.0017 (6) 0.0105 (6) 0.0094 (6)
C12A 0.0374 (8) 0.0328 (7) 0.0335 (7) 0.0074 (6) 0.0114 (6) 0.0067 (6)
O1B 0.0434 (6) 0.0370 (6) 0.0553 (7) 0.0035 (5) 0.0167 (5) 0.0182 (5)
O2B 0.0420 (7) 0.0654 (9) 0.0692 (9) −0.0174 (6) 0.0100 (6) 0.0172 (7)
O3B 0.0658 (9) 0.0635 (9) 0.0555 (8) 0.0021 (7) 0.0009 (7) 0.0353 (7)
O4B 0.0504 (7) 0.0568 (8) 0.0712 (9) −0.0115 (6) 0.0075 (7) 0.0281 (7)
N1B 0.0471 (8) 0.0380 (7) 0.0393 (7) 0.0017 (6) 0.0096 (6) 0.0128 (6)
C1B 0.0330 (7) 0.0255 (7) 0.0334 (7) 0.0031 (5) 0.0107 (6) −0.0002 (6)
C2B 0.0300 (7) 0.0373 (8) 0.0395 (8) 0.0008 (6) 0.0050 (6) 0.0015 (6)
C3B 0.0381 (8) 0.0400 (8) 0.0327 (8) 0.0077 (6) 0.0022 (6) 0.0080 (6)
C4B 0.0390 (8) 0.0286 (7) 0.0299 (7) 0.0032 (6) 0.0092 (6) 0.0056 (6)
C5B 0.0302 (7) 0.0327 (7) 0.0350 (8) −0.0017 (6) 0.0032 (6) 0.0062 (6)
C6B 0.0338 (7) 0.0309 (7) 0.0338 (7) 0.0033 (6) 0.0027 (6) 0.0068 (6)
C7B 0.0367 (8) 0.0295 (7) 0.0436 (9) 0.0019 (6) 0.0170 (7) 0.0028 (6)
O1W 0.0347 (5) 0.0365 (6) 0.0422 (6) −0.0020 (4) 0.0061 (5) 0.0073 (5)

Geometric parameters (Å, º)

O1A—C5A 1.373 (2) C9A—C10A 1.509 (2)
O1A—C6A 1.421 (2) C10A—H10A 0.9900
O2A—C6A 1.431 (2) C10A—H10B 0.9900
O2A—C7A 1.3802 (19) C11A—H11A 0.9900
N1A—C1A 1.4619 (19) C11A—H11B 0.9900
N1A—C9A 1.4617 (18) C11A—C12A 1.511 (2)
N1A—C12A 1.4648 (18) C12A—H12A 0.9900
N2A—H2AA 0.9422 C12A—H12B 0.9900
N2A—H2AB 0.9268 O1B—C7B 1.2622 (19)
N2A—C10A 1.4888 (19) O2B—C7B 1.2400 (19)
N2A—C11A 1.4913 (18) O3B—N1B 1.2192 (18)
C1A—H1AA 0.9900 O4B—N1B 1.2231 (18)
C1A—H1AB 0.9900 N1B—C4B 1.4693 (19)
C1A—C2A 1.509 (2) C1B—C2B 1.393 (2)
C2A—C3A 1.384 (2) C1B—C6B 1.388 (2)
C2A—C8A 1.408 (2) C1B—C7B 1.516 (2)
C3A—H3A 0.9500 C2B—H2B 0.9500
C3A—C4A 1.395 (2) C2B—C3B 1.387 (2)
C4A—H4A 0.9500 C3B—H3B 0.9500
C4A—C5A 1.366 (3) C3B—C4B 1.379 (2)
C5A—C7A 1.379 (2) C4B—C5B 1.379 (2)
C6A—H6AA 0.9900 C5B—H5B 0.9500
C6A—H6AB 0.9900 C5B—C6B 1.385 (2)
C7A—C8A 1.367 (2) C6B—H6B 0.9500
C8A—H8A 0.9500 O1W—H1WA 0.8987
C9A—H9AA 0.9900 O1W—H1WB 0.9158
C9A—H9AB 0.9900
C5A—O1A—C6A 106.07 (13) C10A—C9A—H9AA 109.6
C7A—O2A—C6A 105.74 (13) C10A—C9A—H9AB 109.6
C1A—N1A—C12A 111.33 (12) N2A—C10A—C9A 109.95 (12)
C9A—N1A—C1A 109.81 (12) N2A—C10A—H10A 109.7
C9A—N1A—C12A 108.99 (11) N2A—C10A—H10B 109.7
H2AA—N2A—H2AB 107.3 C9A—C10A—H10A 109.7
C10A—N2A—H2AA 113.1 C9A—C10A—H10B 109.7
C10A—N2A—H2AB 113.7 H10A—C10A—H10B 108.2
C10A—N2A—C11A 110.93 (11) N2A—C11A—H11A 109.7
C11A—N2A—H2AA 104.7 N2A—C11A—H11B 109.7
C11A—N2A—H2AB 106.6 N2A—C11A—C12A 109.91 (12)
N1A—C1A—H1AA 109.0 H11A—C11A—H11B 108.2
N1A—C1A—H1AB 109.0 C12A—C11A—H11A 109.7
N1A—C1A—C2A 112.76 (13) C12A—C11A—H11B 109.7
H1AA—C1A—H1AB 107.8 N1A—C12A—C11A 110.19 (12)
C2A—C1A—H1AA 109.0 N1A—C12A—H12A 109.6
C2A—C1A—H1AB 109.0 N1A—C12A—H12B 109.6
C3A—C2A—C1A 120.29 (15) C11A—C12A—H12A 109.6
C3A—C2A—C8A 119.60 (15) C11A—C12A—H12B 109.6
C8A—C2A—C1A 120.09 (14) H12A—C12A—H12B 108.1
C2A—C3A—H3A 118.8 O3B—N1B—O4B 123.48 (14)
C2A—C3A—C4A 122.45 (17) O3B—N1B—C4B 117.98 (14)
C4A—C3A—H3A 118.8 O4B—N1B—C4B 118.52 (13)
C3A—C4A—H4A 121.6 C2B—C1B—C7B 119.39 (13)
C5A—C4A—C3A 116.74 (16) C6B—C1B—C2B 119.79 (14)
C5A—C4A—H4A 121.6 C6B—C1B—C7B 120.82 (13)
O1A—C5A—C7A 110.07 (15) C1B—C2B—H2B 119.6
C4A—C5A—O1A 128.41 (16) C3B—C2B—C1B 120.75 (14)
C4A—C5A—C7A 121.52 (16) C3B—C2B—H2B 119.6
O1A—C6A—O2A 108.35 (14) C2B—C3B—H3B 121.1
O1A—C6A—H6AA 110.0 C4B—C3B—C2B 117.81 (14)
O1A—C6A—H6AB 110.0 C4B—C3B—H3B 121.1
O2A—C6A—H6AA 110.0 C3B—C4B—N1B 119.33 (13)
O2A—C6A—H6AB 110.0 C3B—C4B—C5B 122.89 (14)
H6AA—C6A—H6AB 108.4 C5B—C4B—N1B 117.78 (13)
C5A—C7A—O2A 109.55 (14) C4B—C5B—H5B 120.7
C8A—C7A—O2A 127.90 (14) C4B—C5B—C6B 118.61 (13)
C8A—C7A—C5A 122.54 (15) C6B—C5B—H5B 120.7
C2A—C8A—H8A 121.4 C1B—C6B—H6B 119.9
C7A—C8A—C2A 117.14 (14) C5B—C6B—C1B 120.13 (13)
C7A—C8A—H8A 121.4 C5B—C6B—H6B 119.9
N1A—C9A—H9AA 109.6 O1B—C7B—C1B 117.18 (13)
N1A—C9A—H9AB 109.6 O2B—C7B—O1B 125.94 (15)
N1A—C9A—C10A 110.19 (12) O2B—C7B—C1B 116.88 (14)
H9AA—C9A—H9AB 108.1 H1WA—O1W—H1WB 106.6
O1A—C5A—C7A—O2A 0.01 (19) C9A—N1A—C1A—C2A −173.67 (12)
O1A—C5A—C7A—C8A 179.33 (15) C9A—N1A—C12A—C11A 61.80 (15)
O2A—C7A—C8A—C2A 179.03 (14) C10A—N2A—C11A—C12A 55.02 (16)
N1A—C1A—C2A—C3A −135.98 (16) C11A—N2A—C10A—C9A −55.19 (16)
N1A—C1A—C2A—C8A 45.6 (2) C12A—N1A—C1A—C2A 65.54 (16)
N1A—C9A—C10A—N2A 58.74 (16) C12A—N1A—C9A—C10A −61.96 (15)
N2A—C11A—C12A—N1A −58.34 (16) O3B—N1B—C4B—C3B 3.6 (2)
C1A—N1A—C9A—C10A 175.85 (12) O3B—N1B—C4B—C5B −176.66 (15)
C1A—N1A—C12A—C11A −176.93 (12) O4B—N1B—C4B—C3B −175.27 (15)
C1A—C2A—C3A—C4A −178.95 (15) O4B—N1B—C4B—C5B 4.5 (2)
C1A—C2A—C8A—C7A 178.88 (13) N1B—C4B—C5B—C6B −178.38 (13)
C2A—C3A—C4A—C5A 0.3 (3) C1B—C2B—C3B—C4B −1.4 (2)
C3A—C2A—C8A—C7A 0.5 (2) C2B—C1B—C6B—C5B −0.6 (2)
C3A—C4A—C5A—O1A −179.27 (16) C2B—C1B—C7B—O1B 176.26 (13)
C3A—C4A—C5A—C7A 0.0 (3) C2B—C1B—C7B—O2B −4.0 (2)
C4A—C5A—C7A—O2A −179.42 (16) C2B—C3B—C4B—N1B 179.53 (13)
C4A—C5A—C7A—C8A −0.1 (3) C2B—C3B—C4B—C5B −0.2 (2)
C5A—O1A—C6A—O2A −4.64 (19) C3B—C4B—C5B—C6B 1.3 (2)
C5A—C7A—C8A—C2A −0.2 (2) C4B—C5B—C6B—C1B −0.9 (2)
C6A—O1A—C5A—C4A −177.74 (18) C6B—C1B—C2B—C3B 1.8 (2)
C6A—O1A—C5A—C7A 2.89 (19) C6B—C1B—C7B—O1B −3.2 (2)
C6A—O2A—C7A—C5A −2.88 (18) C6B—C1B—C7B—O2B 176.51 (14)
C6A—O2A—C7A—C8A 177.85 (16) C7B—C1B—C2B—C3B −177.71 (13)
C7A—O2A—C6A—O1A 4.63 (19) C7B—C1B—C6B—C5B 178.89 (13)
C8A—C2A—C3A—C4A −0.5 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2A—H2AA···O1Wi 0.94 1.84 2.7800 (16) 172
N2A—H2AB···O1Bii 0.93 1.80 2.7262 (16) 175
C9A—H9AA···O2Aiii 0.99 2.58 3.3260 (19) 132
C10A—H10A···O1Wiv 0.99 2.51 3.2833 (19) 135
O1W—H1WA···O2Bv 0.90 1.76 2.6526 (16) 170
O1W—H1WB···O1Bii 0.92 1.90 2.7867 (16) 163

Symmetry codes: (i) −x, −y+1, −z; (ii) −x+1, −y+1, −z; (iii) −x, −y+1, −z+1; (iv) x−1, y, z; (v) −x+2, −y+1, −z.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: LD2118).

References

  1. Agilent (2012). CrysAlis PRO and CrysAlis RED Agilent Technologies, Yarnton, England.
  2. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  3. Bogatcheva, E., Hanrahan, C., Nikonenko, B., Samala, R., Chen, P., Gearhart, J., Barbosa, F., Einck, L., Nacy, C. A. & Protopopova, M. (2006). J. Med. Chem. 49, 3045–3048. [DOI] [PMC free article] [PubMed]
  4. Brockunier, L. L., He, J., Colwell, L. F. Jr, Habulihaz, B., He, H., Leiting, B., Lyons, K. A., Marsilio, F., Patel, R. A., Teffera, Y., Wu, J. K., Thornberry, N. A., Weber, A. E. & Parmee, E. R. (2004). Bioorg. Med. Chem. Lett. 14, 4763–4766. [DOI] [PubMed]
  5. Capuano, B., Crosby, I. T., Gable, R. W. & Lloyd, E. J. (2000). Acta Cryst. C56, 339–340. [DOI] [PubMed]
  6. Choudhary, P., Kumar, R. & Verma, K. (2006). Bioorg. Med. Chem. 14, 1819–1826. [DOI] [PubMed]
  7. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  8. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  9. Elliott, S. (2011). Drug Test Anal. 3, 430–438. [DOI] [PubMed]
  10. Gilbert, R., Canevari, R. J. M. J., Laubie, M. J. & Le Douarec, J. C. (1968). J. Med. Chem. 11, 1151–1155. [DOI] [PubMed]
  11. Gobert, A., Di Cara, B., Cistarelli, L. & Millan, M. J. (2003). J. Pharmacol. Exp. Ther. 305, 338–46. [DOI] [PubMed]
  12. Kharb, R., Bansal, K. & Sharma, A. K. (2012). Pharma Chem. 4, 2470–2488.
  13. Millan, M. J., Cussac, D. & Milligan, G. (2001). J. Pharmacol. Exp. Ther. 297, 876–887. [PubMed]
  14. Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.
  15. Palatinus, L., Prathapa, S. J. & van Smaalen, S. (2012). J. Appl. Cryst. 45, 575–580.
  16. Palatinus, L. & van der Lee, A. (2008). J. Appl. Cryst. 41, 975–984.
  17. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S160053681400261X/ld2118sup1.cif

e-70-0o270-sup1.cif (29.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681400261X/ld2118Isup2.hkl

e-70-0o270-Isup2.hkl (206.3KB, hkl)

Supporting information file. DOI: 10.1107/S160053681400261X/ld2118Isup3.cml

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES