Skip to main content

PMC Search Update

PMC Beta search will replace the current PMC search the week of September 7, 2025. Try out PMC Beta search now and give us your feedback. Learn more

Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Feb 22;70(Pt 3):o344. doi: 10.1107/S1600536814003298

4-Bromo-N-(2-nitro­phen­yl)benzamide

Rodolfo Moreno-Fuquen a,*, Alexis Azcárate a, Alan R Kennedy b
PMCID: PMC3998505  PMID: 24765035

Abstract

The title nitro­phenyl benzamide, C13H9BrN2O3, with two mol­ecules in the asymmetric unit, has dihedral angles of 16.78 (15) and 18.87 (14)° between the benzene rings. An intra­molecular N—H⋯O hydrogen bond is observed in each mol­ecule. In the crystal, the molecules are linked by weak C—H⋯O inter­actions; halogen–halogen inter­actions are also observed [Br⋯Br = 3.4976 (7) Å]. These inter­actions form R 2 2(10), R 2 2(15) and R 6 6(32) edge-fused rings along [010].

Related literature  

For properties of amide compounds, see: Bisson et al. (2000). For the anti­bacterial and anti­fungal activity of amide compounds, see: Aytemir et al. (2003). For similar compounds, see: Moreno-Fuquen et al. (2013); Sripet et al. (2012). For halogen–halogen inter­actions, see: Awwadi et al. (2006); For hydrogen-bonding information, see: Nardelli (1995). For hydrogen-bond motifs, see: Etter (1990).graphic file with name e-70-0o344-scheme1.jpg

Experimental  

Crystal data  

  • C13H9BrN2O3

  • M r = 321.13

  • Triclinic, Inline graphic

  • a = 3.8338 (4) Å

  • b = 12.6784 (13) Å

  • c = 24.918 (2) Å

  • α = 81.875 (8)°

  • β = 88.386 (7)°

  • γ = 85.460 (8)°

  • V = 1195.1 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.45 mm−1

  • T = 123 K

  • 0.49 × 0.05 × 0.03 mm

Data collection  

  • Oxford Diffraction Xcalibur E diffractometer

  • Absorption correction: analytical [CrysAlis PRO (Oxford Diffraction, 2010; analytical numeric absorption correction using a multi-faceted crystal model (Clark & Reid, 1995)] T min = 0.380, T max = 0.914

  • 9979 measured reflections

  • 9979 independent reflections

  • 7814 reflections with I > 2σ(I)

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.049

  • wR(F 2) = 0.135

  • S = 1.04

  • 9979 reflections

  • 344 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.62 e Å−3

  • Δρmin = −0.77 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536814003298/gg2134sup1.cif

e-70-0o344-sup1.cif (32.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814003298/gg2134Isup2.hkl

e-70-0o344-Isup2.hkl (478.9KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814003298/gg2134Isup3.cml

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O4i 0.95 2.65 3.378 (5) 134
C16—H16⋯O2ii 0.95 2.64 3.349 (5) 132
C19—H19⋯O1iii 0.95 2.52 3.262 (5) 135
C3—H3⋯O5iv 0.95 2.58 3.299 (5) 133
C23—H23⋯O6v 0.95 2.56 3.334 (5) 139
N1—H1N⋯O2 0.88 1.92 2.615 (5) 134
N3—H3N⋯O5 0.88 1.92 2.628 (5) 136

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

RMF thanks the Universidad del Valle, Colombia, for partial financial support.

supplementary crystallographic information

1. Introduction

2. Experimental

2.1. Synthesis and crystallization

The reagents and solvents for the synthesis were obtained from the Aldrich Chemical Co., and were used without additional purification. The title molecule was synthesized using equimolar qu­anti­ties of 4-bromo­benzoyl chloride (0.328 g., 1.495 mmol) and 2-nitro­aniline (0.206 g). The reagents were dissolved in 10 mL of aceto­nitrile and the solution was taken to reflux in constant stirring for 1 hour. Yellow crystals of good quality were obtained after leaving the solvent to evaporate. Yellow crystals of good quality were obtained with m.p of 423 (1)K.

2.2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. All H-atoms were positioned at geometrically idealized positions with C—H distance of 0.95 Å and N—H distance of 0.88 Å and Uiso(H) = 1.2 times Ueq of the atoms to which they were bonded.

3. Results and discussion

The present compound forms part of a systematic work on N-aromatic amides. The formation of oligomers with properties of molecular zippers have been obtained using molecular templates which include amido ligands (Bisson et al., 2000). Anti­bacterial and anti­fungal activities of different carb­oxy­amide derivatives have been reported (Aytemir et al., 2003). In the synthesis of amides in our group, the 2-nitro­aniline is taken as a template, in order to study the structural changes and the supra­molecular behavior by the reaction of different ligands with this precursor (Moreno-Fuquen et al., 2013). In the reactions involving the 2-nitro­aniline, as precursor, we aimed to synthesize the N-(2-nitro­phenyl)-4-bromo­benzamide (I). A close structure, the 4-bromo-N-(4-meth­oxy-2-nitro­phenyl)-benzamide, (4MNB), (Sripet et al., 2012), has been used as comparison with the structural parameters of the title compound. The title compound has two molecules (A and B) per asymmetric unit (see Fig. 1). The compound exhibits dihedral angles between the benzene rings, very similar: 16.78 (15)° and 18.87 (14)° for A and B molecules, respectively. These dihedral angles are somewhat different when compared with the related compound (4MNB) [2.90 (8)°]. In (I) the other bond lengths and bond angles agree closely with those values presented in its homologous amide (4MNB). The nitro groups form dihedral angles with the adjacent benzene ring of 6.7 (2)° and 9.9 (2)° for O2—N2—O3 and O5—N4—O6, respectively. The crystal packing shows no classical inter­molecular hydrogen bonds and the molecules pack by forming weak C—H···O inter­actions that are propagated along [010] (see Fig. 2). According to the graph-set assignment, the intra­molecular hydrogen-bond pattern generates a S(6) ring motif (Etter, 1990). The crystal packing is stabilized by weak C—H···O inter­molecular inter­actions. The C6 and C3 atoms of the phenyl ring at (x,y,z) act as hydrogen-bond donors to carbonyl O4 atom at (x-1, +y, +z) and to nitro O5 atom at (x,+y+1,+z) respectively. The C16 and C19 atoms of the phenyl ring at (x, y, z) act as hydrogen-bond donors to nitro O2 atom at (x+1, y, z) and to carbonyl O1 atom at (x,y-1,z), respectively. Additionally the C23 atom at (x,y,z) acts as a hydrogen-bond donor to nitro O6 atom at (-x-1, -y, -z+1), (see Table 1; Nardelli, 1995). All these inter­actions form R22(10), R22(15) and R66(32) edge-fused rings along the [010] direction (see Fig. 2). Recent theoretical calculations show that halogen···halogen inter­actions are controlled by electrostatic forces and they display directional character (Awwadi et al., 2006). In the title structure, halogen···halogen inter­actions [Br···Br = 3.4976 (7) Å] within the chains stabilized by C—H···O inter­actions are observed. This Br···Br distance is much shorter than the sum of the van der Waals radii (3.70 Å).

Figures

Fig. 1.

Fig. 1.

Molecular conformation and atom numbering scheme for the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.

Fig. 2.

Fig. 2.

Part of the crystal structure of (I), showing the formation of edge-fused R22(10), R22(15) and R22(32) rings running along [010].

Crystal data

C13H9BrN2O3 Z = 4
Mr = 321.13 F(000) = 640
Triclinic, P1 Dx = 1.785 Mg m3
Hall symbol: -P 1 Melting point: 423(1) K
a = 3.8338 (4) Å Mo Kα radiation, λ = 0.71073 Å
b = 12.6784 (13) Å Cell parameters from 4010 reflections
c = 24.918 (2) Å θ = 3.1–28.0°
α = 81.875 (8)° µ = 3.45 mm1
β = 88.386 (7)° T = 123 K
γ = 85.460 (8)° Needle, yellow
V = 1195.1 (2) Å3 0.49 × 0.05 × 0.03 mm

Data collection

Oxford Diffraction Xcalibur E diffractometer 9979 independent reflections
Radiation source: fine-focus sealed tube 7814 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.000
ω scans θmax = 27.0°, θmin = 3.2°
Absorption correction: analytical [CrysAlis PRO (Oxford Diffraction, 2010; analytical numeric absorption correction using a multi-faceted crystal model (Clark & Reid, 1995)] h = −4→4
Tmin = 0.380, Tmax = 0.914 k = −14→16
9979 measured reflections l = −31→31

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0479P)2 + 3.1562P] where P = (Fo2 + 2Fc2)/3
9979 reflections (Δ/σ)max < 0.001
344 parameters Δρmax = 0.62 e Å3
1 restraint Δρmin = −0.77 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 −0.49930 (10) 0.56740 (4) 0.433729 (18) 0.02208 (13)
Br2 0.96920 (10) 0.05996 (4) 0.084392 (18) 0.02296 (13)
O1 0.2537 (8) 0.8253 (2) 0.20551 (12) 0.0270 (7)
O2 −0.0265 (8) 0.4919 (3) 0.14483 (13) 0.0334 (8)
O3 0.1224 (9) 0.4476 (3) 0.06706 (14) 0.0384 (9)
O4 0.4069 (8) 0.3367 (3) 0.29067 (13) 0.0313 (8)
O5 −0.0468 (8) −0.0126 (2) 0.35060 (13) 0.0312 (8)
O6 −0.3517 (8) −0.0460 (2) 0.42413 (13) 0.0285 (8)
N1 0.1677 (9) 0.6691 (3) 0.17304 (14) 0.0202 (8)
H1N 0.0934 0.6052 0.1830 0.024*
N2 0.1123 (9) 0.5117 (3) 0.09994 (16) 0.0229 (9)
N3 0.2077 (8) 0.1750 (3) 0.32592 (14) 0.0197 (8)
H3N 0.1732 0.1120 0.3170 0.024*
N4 −0.1642 (9) 0.0120 (3) 0.39439 (15) 0.0209 (8)
C1 −0.3041 (10) 0.6174 (3) 0.36484 (17) 0.0168 (9)
C2 −0.2476 (11) 0.7244 (3) 0.35235 (18) 0.0214 (10)
H2 −0.3098 0.7727 0.3775 0.026*
C3 −0.0988 (10) 0.7599 (4) 0.30253 (18) 0.0215 (10)
H3 −0.0561 0.8331 0.2937 0.026*
C4 −0.0101 (10) 0.6895 (3) 0.26489 (17) 0.0158 (9)
C5 −0.0678 (10) 0.5813 (3) 0.27900 (17) 0.0180 (9)
H5 −0.0041 0.5321 0.2543 0.022*
C6 −0.2171 (10) 0.5459 (3) 0.32875 (17) 0.0201 (10)
H6 −0.2598 0.4728 0.3381 0.024*
C7 0.1510 (10) 0.7357 (3) 0.21253 (18) 0.0194 (10)
C8 0.2861 (10) 0.6897 (3) 0.11986 (17) 0.0173 (9)
C9 0.2622 (10) 0.6145 (3) 0.08342 (18) 0.0186 (9)
C10 0.3722 (10) 0.6340 (3) 0.02913 (17) 0.0194 (10)
H10 0.3486 0.5824 0.0056 0.023*
C11 0.5139 (10) 0.7282 (3) 0.01035 (18) 0.0212 (10)
H11 0.5915 0.7424 −0.0263 0.025*
C12 0.5432 (10) 0.8028 (4) 0.04532 (18) 0.0228 (10)
H12 0.6411 0.8682 0.0321 0.027*
C13 0.4345 (10) 0.7847 (3) 0.09874 (18) 0.0193 (10)
H13 0.4604 0.8375 0.1216 0.023*
C14 0.7748 (10) 0.1158 (3) 0.14657 (17) 0.0177 (9)
C15 0.7605 (10) 0.2246 (3) 0.14817 (18) 0.0200 (10)
H15 0.8432 0.2718 0.1183 0.024*
C16 0.6236 (10) 0.2633 (3) 0.19396 (18) 0.0213 (10)
H16 0.6128 0.3378 0.1957 0.026*
C17 0.5013 (10) 0.1945 (3) 0.23763 (17) 0.0184 (10)
C18 0.5160 (10) 0.0848 (3) 0.23493 (18) 0.0193 (10)
H18 0.4291 0.0375 0.2644 0.023*
C19 0.6571 (10) 0.0450 (4) 0.18936 (18) 0.0202 (10)
H19 0.6726 −0.0296 0.1875 0.024*
C20 0.3678 (11) 0.2434 (4) 0.28646 (18) 0.0194 (10)
C21 0.0933 (10) 0.1912 (3) 0.37755 (17) 0.0180 (9)
C22 −0.0783 (10) 0.1120 (3) 0.41268 (18) 0.0187 (10)
C23 −0.1763 (10) 0.1250 (3) 0.46513 (18) 0.0204 (10)
H23 −0.2880 0.0701 0.4875 0.024*
C24 −0.1133 (11) 0.2167 (4) 0.48520 (18) 0.0233 (10)
H24 −0.1778 0.2254 0.5215 0.028*
C25 0.0461 (10) 0.2968 (3) 0.45179 (18) 0.0198 (10)
H25 0.0882 0.3608 0.4654 0.024*
C26 0.1440 (10) 0.2850 (3) 0.39935 (18) 0.0197 (10)
H26 0.2486 0.3418 0.3773 0.024*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0215 (2) 0.0273 (3) 0.0174 (3) −0.00393 (18) 0.00245 (17) −0.00226 (19)
Br2 0.0207 (2) 0.0277 (3) 0.0208 (3) −0.00279 (18) 0.00324 (17) −0.0047 (2)
O1 0.0428 (19) 0.0170 (18) 0.0223 (19) −0.0113 (14) 0.0046 (15) −0.0028 (14)
O2 0.052 (2) 0.031 (2) 0.020 (2) −0.0187 (16) 0.0162 (16) −0.0100 (15)
O3 0.067 (2) 0.020 (2) 0.032 (2) −0.0136 (17) 0.0130 (18) −0.0141 (16)
O4 0.047 (2) 0.021 (2) 0.028 (2) −0.0090 (15) 0.0118 (15) −0.0079 (15)
O5 0.049 (2) 0.027 (2) 0.020 (2) −0.0157 (15) 0.0125 (15) −0.0091 (15)
O6 0.0359 (18) 0.0234 (19) 0.028 (2) −0.0123 (14) 0.0114 (15) −0.0056 (15)
N1 0.029 (2) 0.014 (2) 0.018 (2) −0.0049 (15) 0.0032 (16) −0.0033 (15)
N2 0.029 (2) 0.016 (2) 0.024 (2) −0.0024 (16) −0.0005 (17) −0.0049 (17)
N3 0.0251 (19) 0.014 (2) 0.020 (2) −0.0045 (15) 0.0007 (15) −0.0029 (16)
N4 0.0220 (19) 0.021 (2) 0.019 (2) −0.0017 (15) −0.0012 (16) 0.0000 (17)
C1 0.014 (2) 0.022 (3) 0.014 (2) −0.0017 (17) 0.0008 (16) −0.0008 (18)
C2 0.024 (2) 0.023 (3) 0.019 (3) −0.0006 (19) 0.0036 (18) −0.010 (2)
C3 0.025 (2) 0.017 (2) 0.024 (3) −0.0035 (18) −0.0004 (19) −0.0044 (19)
C4 0.018 (2) 0.013 (2) 0.016 (2) −0.0002 (16) −0.0023 (17) −0.0016 (17)
C5 0.024 (2) 0.016 (2) 0.016 (2) −0.0044 (17) 0.0020 (18) −0.0056 (18)
C6 0.022 (2) 0.016 (2) 0.022 (3) −0.0012 (17) −0.0036 (18) −0.0041 (19)
C7 0.019 (2) 0.019 (3) 0.019 (3) 0.0025 (18) −0.0001 (17) −0.0024 (19)
C8 0.013 (2) 0.019 (2) 0.019 (3) −0.0009 (16) −0.0022 (17) −0.0006 (18)
C9 0.020 (2) 0.015 (2) 0.021 (3) −0.0043 (17) 0.0003 (18) −0.0019 (18)
C10 0.022 (2) 0.017 (2) 0.019 (3) −0.0009 (17) 0.0042 (18) −0.0031 (18)
C11 0.021 (2) 0.029 (3) 0.012 (2) −0.0021 (18) 0.0040 (17) 0.0013 (19)
C12 0.021 (2) 0.022 (3) 0.025 (3) −0.0058 (18) 0.0020 (19) −0.001 (2)
C13 0.023 (2) 0.015 (2) 0.019 (3) −0.0040 (17) 0.0042 (18) −0.0027 (18)
C14 0.015 (2) 0.021 (3) 0.017 (2) −0.0007 (17) 0.0004 (17) −0.0050 (18)
C15 0.019 (2) 0.023 (3) 0.017 (3) −0.0059 (18) 0.0026 (18) −0.0010 (19)
C16 0.021 (2) 0.012 (2) 0.029 (3) −0.0024 (17) −0.0003 (19) 0.0019 (19)
C17 0.016 (2) 0.020 (3) 0.020 (3) −0.0047 (17) −0.0015 (17) −0.0037 (19)
C18 0.021 (2) 0.018 (2) 0.018 (3) −0.0022 (17) 0.0030 (18) −0.0002 (19)
C19 0.018 (2) 0.019 (3) 0.024 (3) −0.0033 (17) −0.0022 (18) −0.0030 (19)
C20 0.022 (2) 0.020 (3) 0.017 (3) −0.0017 (18) −0.0008 (18) −0.0041 (19)
C21 0.015 (2) 0.020 (3) 0.018 (2) 0.0002 (17) −0.0015 (17) 0.0011 (18)
C22 0.016 (2) 0.016 (2) 0.025 (3) 0.0016 (16) −0.0027 (18) −0.0042 (19)
C23 0.022 (2) 0.019 (3) 0.020 (3) 0.0008 (18) 0.0001 (18) −0.0035 (19)
C24 0.021 (2) 0.030 (3) 0.018 (3) 0.0067 (19) −0.0013 (18) −0.006 (2)
C25 0.020 (2) 0.017 (2) 0.024 (3) 0.0017 (17) −0.0022 (18) −0.0094 (19)
C26 0.024 (2) 0.015 (2) 0.020 (3) −0.0010 (17) 0.0020 (18) −0.0014 (18)

Geometric parameters (Å, º)

Br1—C1 1.898 (4) C9—C10 1.400 (6)
Br2—C14 1.902 (4) C10—C11 1.368 (6)
O1—C7 1.219 (5) C10—H10 0.9500
O2—N2 1.227 (5) C11—C12 1.386 (6)
O3—N2 1.230 (5) C11—H11 0.9500
O4—C20 1.223 (5) C12—C13 1.377 (6)
O5—N4 1.239 (5) C12—H12 0.9500
O6—N4 1.227 (4) C13—H13 0.9500
N1—C7 1.382 (5) C14—C15 1.383 (6)
N1—C8 1.385 (5) C14—C19 1.383 (6)
N1—H1N 0.8800 C15—C16 1.378 (6)
N2—C9 1.467 (5) C15—H15 0.9500
N3—C20 1.380 (5) C16—C17 1.390 (6)
N3—C21 1.385 (5) C16—H16 0.9500
N3—H3N 0.8800 C17—C18 1.399 (6)
N4—C22 1.470 (5) C17—C20 1.502 (6)
C1—C6 1.381 (6) C18—C19 1.386 (6)
C1—C2 1.382 (6) C18—H18 0.9500
C2—C3 1.383 (6) C19—H19 0.9500
C2—H2 0.9500 C21—C26 1.404 (6)
C3—C4 1.401 (6) C21—C22 1.425 (6)
C3—H3 0.9500 C22—C23 1.378 (6)
C4—C5 1.400 (6) C23—C24 1.370 (6)
C4—C7 1.491 (6) C23—H23 0.9500
C5—C6 1.382 (6) C24—C25 1.388 (6)
C5—H5 0.9500 C24—H24 0.9500
C6—H6 0.9500 C25—C26 1.374 (6)
C8—C13 1.402 (6) C25—H25 0.9500
C8—C9 1.415 (6) C26—H26 0.9500
C7—N1—C8 128.5 (4) C13—C12—C11 121.9 (4)
C7—N1—H1N 115.8 C13—C12—H12 119.1
C8—N1—H1N 115.8 C11—C12—H12 119.1
O2—N2—O3 121.3 (4) C12—C13—C8 120.9 (4)
O2—N2—C9 120.5 (4) C12—C13—H13 119.5
O3—N2—C9 118.1 (4) C8—C13—H13 119.5
C20—N3—C21 129.4 (4) C15—C14—C19 122.1 (4)
C20—N3—H3N 115.3 C15—C14—Br2 119.6 (3)
C21—N3—H3N 115.3 C19—C14—Br2 118.3 (3)
O6—N4—O5 121.7 (4) C16—C15—C14 118.6 (4)
O6—N4—C22 117.7 (4) C16—C15—H15 120.7
O5—N4—C22 120.6 (4) C14—C15—H15 120.7
C6—C1—C2 121.5 (4) C15—C16—C17 120.8 (4)
C6—C1—Br1 119.4 (3) C15—C16—H16 119.6
C2—C1—Br1 119.0 (3) C17—C16—H16 119.6
C1—C2—C3 118.7 (4) C16—C17—C18 119.5 (4)
C1—C2—H2 120.6 C16—C17—C20 117.1 (4)
C3—C2—H2 120.6 C18—C17—C20 123.4 (4)
C2—C3—C4 121.0 (4) C19—C18—C17 120.1 (4)
C2—C3—H3 119.5 C19—C18—H18 120.0
C4—C3—H3 119.5 C17—C18—H18 120.0
C5—C4—C3 118.8 (4) C14—C19—C18 118.8 (4)
C5—C4—C7 124.4 (4) C14—C19—H19 120.6
C3—C4—C7 116.7 (4) C18—C19—H19 120.6
C6—C5—C4 120.1 (4) O4—C20—N3 123.4 (4)
C6—C5—H5 119.9 O4—C20—C17 121.5 (4)
C4—C5—H5 119.9 N3—C20—C17 115.1 (4)
C1—C6—C5 119.7 (4) N3—C21—C26 122.7 (4)
C1—C6—H6 120.1 N3—C21—C22 121.8 (4)
C5—C6—H6 120.1 C26—C21—C22 115.4 (4)
O1—C7—N1 123.6 (4) C23—C22—C21 122.3 (4)
O1—C7—C4 122.3 (4) C23—C22—N4 116.4 (4)
N1—C7—C4 114.2 (4) C21—C22—N4 121.4 (4)
N1—C8—C13 122.8 (4) C24—C23—C22 120.3 (4)
N1—C8—C9 121.2 (4) C24—C23—H23 119.8
C13—C8—C9 116.0 (4) C22—C23—H23 119.8
C10—C9—C8 122.5 (4) C23—C24—C25 119.1 (4)
C10—C9—N2 115.5 (4) C23—C24—H24 120.4
C8—C9—N2 122.0 (4) C25—C24—H24 120.4
C11—C10—C9 119.3 (4) C26—C25—C24 121.2 (4)
C11—C10—H10 120.4 C26—C25—H25 119.4
C9—C10—H10 120.4 C24—C25—H25 119.4
C10—C11—C12 119.4 (4) C25—C26—C21 121.7 (4)
C10—C11—H11 120.3 C25—C26—H26 119.2
C12—C11—H11 120.3 C21—C26—H26 119.2
O2—O2—N2—O3 0.0 (3) N1—C8—C13—C12 −178.8 (3)
O2—O2—N2—C9 0.0 (4) C9—C8—C13—C12 1.0 (5)
O5—O5—N4—O6 0.0 (12) C19—C14—C15—C16 −0.1 (6)
O5—O5—N4—C22 0.0 (13) Br2—C14—C15—C16 −179.0 (3)
C6—C1—C2—C3 −0.3 (6) C14—C15—C16—C17 −0.2 (6)
Br1—C1—C2—C3 178.7 (3) C15—C16—C17—C18 −0.3 (6)
C1—C2—C3—C4 0.8 (6) C15—C16—C17—C20 178.0 (4)
C2—C3—C4—C5 −1.4 (6) C16—C17—C18—C19 1.1 (6)
C2—C3—C4—C7 −179.6 (3) C20—C17—C18—C19 −177.1 (4)
C3—C4—C5—C6 1.5 (6) C15—C14—C19—C18 0.9 (6)
C7—C4—C5—C6 179.6 (3) Br2—C14—C19—C18 179.8 (3)
C2—C1—C6—C5 0.4 (6) C17—C18—C19—C14 −1.4 (5)
Br1—C1—C6—C5 −178.6 (3) C21—N3—C20—O4 −6.5 (6)
C4—C5—C6—C1 −1.0 (6) C21—N3—C20—C17 172.1 (3)
C8—N1—C7—O1 −2.2 (6) C16—C17—C20—O4 −9.4 (6)
C8—N1—C7—C4 176.8 (3) C18—C17—C20—O4 168.8 (4)
C5—C4—C7—O1 −166.6 (4) C16—C17—C20—N3 172.0 (3)
C3—C4—C7—O1 11.5 (6) C18—C17—C20—N3 −9.8 (5)
C5—C4—C7—N1 14.3 (5) C20—N3—C21—C26 −3.4 (6)
C3—C4—C7—N1 −167.5 (3) C20—N3—C21—C22 178.0 (4)
C7—N1—C8—C13 4.4 (6) N3—C21—C22—C23 176.4 (3)
C7—N1—C8—C9 −175.5 (4) C26—C21—C22—C23 −2.3 (5)
N1—C8—C9—C10 178.5 (3) N3—C21—C22—N4 −4.3 (5)
C13—C8—C9—C10 −1.4 (6) C26—C21—C22—N4 177.0 (3)
N1—C8—C9—N2 −0.1 (6) O6—N4—C22—C23 8.7 (5)
C13—C8—C9—N2 −179.9 (3) O5—N4—C22—C23 −170.6 (3)
O2—N2—C9—C10 −172.0 (4) O5—N4—C22—C23 −170.6 (3)
O2—N2—C9—C10 −172.0 (4) O6—N4—C22—C21 −170.6 (3)
O3—N2—C9—C10 6.2 (5) O5—N4—C22—C21 10.1 (5)
O2—N2—C9—C8 6.7 (6) O5—N4—C22—C21 10.1 (5)
O2—N2—C9—C8 6.7 (6) C21—C22—C23—C24 0.7 (6)
O3—N2—C9—C8 −175.1 (4) N4—C22—C23—C24 −178.6 (3)
C8—C9—C10—C11 1.1 (6) C22—C23—C24—C25 0.8 (6)
N2—C9—C10—C11 179.8 (3) C23—C24—C25—C26 −0.6 (6)
C9—C10—C11—C12 −0.5 (6) C24—C25—C26—C21 −1.1 (6)
C10—C11—C12—C13 0.2 (6) N3—C21—C26—C25 −176.2 (3)
C11—C12—C13—C8 −0.5 (6) C22—C21—C26—C25 2.5 (5)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C6—H6···O4i 0.95 2.65 3.378 (5) 134
C16—H16···O2ii 0.95 2.64 3.349 (5) 132
C19—H19···O1iii 0.95 2.52 3.262 (5) 135
C3—H3···O5iv 0.95 2.58 3.299 (5) 133
C23—H23···O6v 0.95 2.56 3.334 (5) 139
N1—H1N···O2 0.88 1.92 2.615 (5) 134
N3—H3N···O5 0.88 1.92 2.628 (5) 136

Symmetry codes: (i) x−1, y, z; (ii) x+1, y, z; (iii) x, y−1, z; (iv) x, y+1, z; (v) −x−1, −y, −z+1.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: GG2134).

References

  1. Awwadi, F. F., Willett, R. D., Peterson, K. A. & Twamley, B. (2006). Chem. Eur. J. 12, 8952–8960. [DOI] [PubMed]
  2. Aytemir, M. D., Hider, R. C., Erol, D. D., Ozalp, M. & Ekizoglu, M. (2003). Turk. J. Chem. 27, 445–452.
  3. Bisson, A. P., Carver, F. J., Eggleston, D. S., Haltiwanger, R. C., Hunter, C. A., Livingstone, D. L., McCabe, J. F., Rotger, C. & Rowan, A. E. (2000). J. Am. Chem. Soc. 122, 8856–8868.
  4. Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.
  5. Etter, M. (1990). Acc. Chem. Res. 23, 120–126.
  6. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  7. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  8. Moreno-Fuquen, R., Azcárate, A., Kennedy, A. R., Gilmour, D. & De Almeida Santos, R. H. (2013). Acta Cryst. E69, o1592. [DOI] [PMC free article] [PubMed]
  9. Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
  10. Oxford Diffraction (2010). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Sripet, W., Chantrapromma, S., Ruanwas, P. & Fun, H.-K. (2012). Acta Cryst. E68, o1234. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536814003298/gg2134sup1.cif

e-70-0o344-sup1.cif (32.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814003298/gg2134Isup2.hkl

e-70-0o344-Isup2.hkl (478.9KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814003298/gg2134Isup3.cml

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES