Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Feb 22;70(Pt 3):o323. doi: 10.1107/S1600536814003468

4-Nitro­phthalo­nitrile

Chin Yee Jan a, Norzianah Binti Haji Shamsudin a, Ai Ling Tan a, David J Young a,, Seik Weng Ng b,c, Edward R T Tiekink b,*
PMCID: PMC3998506  PMID: 24765021

Abstract

In the title compound, C8H3N3O2 (systematic name: 4-nitro­benzene-1,2-dicarbo­nitrile), the nitro group is twisted out of the plane of the benzene ring to which it is attached [O—N—Cring—Cring torsion angle = 9.80 (13)°]. In the crystal packing, supra­molecular layers with a zigzag topology in the ac plane are sustained by C—H⋯N inter­actions.

Related literature  

For background to the synthesis of functional phthalocyanines, see: Chin et al. (2012). For a related structure, see: Lin et al. (2006). For the synthesis, see: Rasmussen et al. (1978).graphic file with name e-70-0o323-scheme1.jpg

Experimental  

Crystal data  

  • C8H3N3O2

  • M r = 173.13

  • Orthorhombic, Inline graphic

  • a = 12.8642 (3) Å

  • b = 9.2013 (2) Å

  • c = 13.2578 (3) Å

  • V = 1569.29 (6) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 0.94 mm−1

  • T = 100 K

  • 0.35 × 0.30 × 0.25 mm

Data collection  

  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013) T min = 0.626, T max = 1.000

  • 7104 measured reflections

  • 1638 independent reflections

  • 1556 reflections with I > 2σ(I)

  • R int = 0.016

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.030

  • wR(F 2) = 0.088

  • S = 1.10

  • 1638 reflections

  • 130 parameters

  • All H-atom parameters refined

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) general, I. DOI: 10.1107/S1600536814003468/wm5005sup1.cif

e-70-0o323-sup1.cif (14.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814003468/wm5005Isup2.hkl

e-70-0o323-Isup2.hkl (80.8KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814003468/wm5005Isup3.cml

CCDC reference: 987296

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯N3i 0.962 (14) 2.621 (14) 3.3880 (13) 136.9 (11)
C3—H3⋯N2ii 0.950 (14) 2.554 (14) 3.3955 (13) 147.8 (10)
C6—H6⋯N3iii 0.943 (13) 2.457 (13) 3.3412 (13) 156.1 (10)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

We gratefully acknowledge funding from the Brunei Research Council, and thank the Ministry of Higher Education (Malaysia) and the University of Malaya for funding structural studies through the High-Impact Research scheme (UM.C/HIR-MOHE/SC/03).

supplementary crystallographic information

1. Chemical context

As part of our on-going study of functional phthalocyanines, we have previously reported the synthesis and structure of 4-(prop-2-yn-1-yl­oxy)benzene-1,2-dicarbo­nitrile prepared from 4-nitro­phthalo­nitrile (Chin et al., 2012). We now report the structure of the latter.

2. Structural commentary

In the title compound (Fig. 1), the nitro group is slightly twisted out of the plane of the benzene ring to which it is attached as seen in the value of the O1—N1—C1—C6 torsion angle of 9.80 (13)°. A similar small twist was found in the structure of the most closely related compound in the literature, i.e. 4-bromo-5-nitro­phthalo­nitrile (Lin et al., 2006).

3. Supra­molecular features

Supra­molecular layers (Fig. 2) sustained by C—H···N inter­actions which form 22-membered {···NC4N···HC2H···NC3H···NC5H} synthons (Table 1) features in the crystal packing. The layers have a zigzag topolgy and extend parallel to the ac plane and stack along the b axis (Fig. 3).

4. Database survey

5. Synthesis and crystallization

The title compound was prepared by a literature procedure (Rasmussen et al., 1978). Thio­nyl chloride (4.3 ml, 0.56 mmol) was added drop wise with stiring over 5 minutes to 4-nitro­phthalamide (2.83 g, 13.5 mmol) in dry DMF (10.4 ml, 0.20 mmol) at 263 to 258 K (salt-ice bath). After 4 h, the homogenous yellow solution was poured onto excess ice-water with vigorous stirring. The precipitate was vacuum filtered, washed with cold water and dried. Crystals for the X-ray study were grown from slow evaporation from its methanol solution. Yield = 1.92 g (68 %), M.pt: 408–413 K (lit. 413–415 K). IR (KBr) ν/cm-1: 2924, 2241, 1610, 1587, 1538, 1463, 1356, 1297, 1076, 931, 855, 802, 745, 718.

6. Refinement

All hydrogen atoms were refined freely.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level.

Fig. 2.

Fig. 2.

A view of the supramolecular layer in the title compound, sustained by C—H···N interactions shown as orange dashed lines.

Fig. 3.

Fig. 3.

A view of the unit-cell contents of the title compound in projection down the a axis. The C—H···N interactions are shown as orange dashed lines.

Crystal data

C8H3N3O2 F(000) = 704
Mr = 173.13 Dx = 1.466 Mg m3
Orthorhombic, Pbca Cu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ac 2ab Cell parameters from 4240 reflections
a = 12.8642 (3) Å θ = 3.3–76.1°
b = 9.2013 (2) Å µ = 0.94 mm1
c = 13.2578 (3) Å T = 100 K
V = 1569.29 (6) Å3 Prism, colourless
Z = 8 0.35 × 0.30 × 0.25 mm

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector 1638 independent reflections
Radiation source: SuperNova (Cu) X-ray Source 1556 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.016
Detector resolution: 10.4041 pixels mm-1 θmax = 76.3°, θmin = 6.7°
ω scan h = −8→16
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013) k = −10→11
Tmin = 0.626, Tmax = 1.000 l = −16→16
7104 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088 All H-atom parameters refined
S = 1.10 w = 1/[σ2(Fo2) + (0.0522P)2 + 0.3777P] where P = (Fo2 + 2Fc2)/3
1638 reflections (Δ/σ)max < 0.001
130 parameters Δρmax = 0.21 e Å3
0 restraints Δρmin = −0.24 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.55783 (6) 0.56540 (8) 0.23140 (6) 0.0224 (2)
O2 0.41285 (6) 0.62811 (9) 0.16017 (6) 0.0284 (2)
N1 0.46305 (7) 0.56035 (9) 0.22296 (6) 0.0185 (2)
N2 0.49465 (7) 0.20831 (10) 0.59515 (7) 0.0245 (2)
N3 0.20184 (7) 0.10850 (10) 0.54001 (7) 0.0214 (2)
C1 0.40488 (7) 0.46610 (10) 0.29308 (7) 0.0159 (2)
C2 0.30038 (8) 0.44112 (11) 0.27448 (7) 0.0185 (2)
C3 0.24639 (7) 0.34933 (11) 0.33907 (7) 0.0183 (2)
C4 0.29752 (7) 0.28688 (10) 0.42094 (7) 0.0158 (2)
C5 0.40307 (7) 0.31687 (10) 0.43884 (7) 0.0152 (2)
C6 0.45807 (7) 0.40675 (10) 0.37365 (7) 0.0156 (2)
C7 0.45469 (7) 0.25464 (10) 0.52497 (7) 0.0176 (2)
C8 0.24319 (7) 0.18890 (10) 0.48760 (7) 0.0173 (2)
H2 0.2670 (11) 0.4827 (16) 0.2163 (10) 0.027 (3)*
H3 0.1745 (11) 0.3317 (13) 0.3282 (9) 0.020 (3)*
H6 0.5294 (10) 0.4254 (13) 0.3839 (9) 0.017 (3)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0156 (4) 0.0246 (4) 0.0271 (4) −0.0022 (3) 0.0032 (3) 0.0031 (3)
O2 0.0248 (4) 0.0300 (4) 0.0304 (4) −0.0019 (3) −0.0029 (3) 0.0151 (3)
N1 0.0177 (4) 0.0174 (4) 0.0204 (4) −0.0004 (3) 0.0013 (3) 0.0015 (3)
N2 0.0198 (4) 0.0303 (5) 0.0235 (5) 0.0001 (3) −0.0016 (3) 0.0064 (4)
N3 0.0183 (4) 0.0241 (4) 0.0217 (4) −0.0026 (3) 0.0008 (3) 0.0014 (3)
C1 0.0166 (5) 0.0145 (4) 0.0167 (5) 0.0002 (3) 0.0030 (3) −0.0003 (3)
C2 0.0176 (5) 0.0204 (5) 0.0174 (5) 0.0014 (3) −0.0017 (3) 0.0002 (4)
C3 0.0132 (5) 0.0219 (5) 0.0199 (5) −0.0009 (3) −0.0010 (3) −0.0005 (4)
C4 0.0155 (4) 0.0152 (4) 0.0166 (4) −0.0002 (3) 0.0021 (3) −0.0022 (3)
C5 0.0152 (4) 0.0144 (4) 0.0159 (4) 0.0021 (3) −0.0001 (3) −0.0020 (3)
C6 0.0125 (4) 0.0153 (4) 0.0190 (5) 0.0005 (3) 0.0006 (3) −0.0021 (4)
C7 0.0135 (4) 0.0185 (5) 0.0208 (5) −0.0015 (3) 0.0019 (3) 0.0000 (4)
C8 0.0139 (4) 0.0196 (5) 0.0184 (4) 0.0002 (3) −0.0014 (3) −0.0023 (4)

Geometric parameters (Å, º)

O1—N1 1.2252 (12) C2—H2 0.962 (14)
O2—N1 1.2243 (11) C3—C4 1.3932 (13)
N1—C1 1.4752 (12) C3—H3 0.949 (13)
N2—C7 1.1453 (13) C4—C5 1.4057 (13)
N3—C8 1.1459 (13) C4—C8 1.4431 (13)
C1—C6 1.3811 (14) C5—C6 1.3898 (13)
C1—C2 1.3859 (14) C5—C7 1.4397 (13)
C2—C3 1.3889 (14) C6—H6 0.943 (13)
O2—N1—O1 124.59 (8) C3—C4—C5 120.44 (9)
O2—N1—C1 117.40 (8) C3—C4—C8 120.41 (8)
O1—N1—C1 118.01 (8) C5—C4—C8 119.15 (8)
C6—C1—C2 123.54 (9) C6—C5—C4 120.23 (9)
C6—C1—N1 117.94 (8) C6—C5—C7 119.68 (8)
C2—C1—N1 118.52 (9) C4—C5—C7 120.09 (8)
C1—C2—C3 118.44 (9) C1—C6—C5 117.66 (9)
C1—C2—H2 120.7 (8) C1—C6—H6 121.4 (8)
C3—C2—H2 120.8 (8) C5—C6—H6 120.9 (8)
C2—C3—C4 119.67 (9) N2—C7—C5 178.04 (11)
C2—C3—H3 119.8 (8) N3—C8—C4 178.30 (10)
C4—C3—H3 120.5 (8)
O2—N1—C1—C6 −170.25 (9) C3—C4—C5—C7 178.52 (9)
O1—N1—C1—C6 9.80 (13) C8—C4—C5—C7 −2.37 (13)
O2—N1—C1—C2 10.12 (13) C2—C1—C6—C5 0.25 (14)
O1—N1—C1—C2 −169.82 (9) N1—C1—C6—C5 −179.36 (8)
C6—C1—C2—C3 −1.26 (15) C4—C5—C6—C1 1.09 (14)
N1—C1—C2—C3 178.34 (8) C7—C5—C6—C1 −178.85 (8)
C1—C2—C3—C4 0.91 (15) C6—C5—C7—N2 96 (3)
C2—C3—C4—C5 0.38 (14) C4—C5—C7—N2 −84 (3)
C2—C3—C4—C8 −178.71 (9) C3—C4—C8—N3 122 (3)
C3—C4—C5—C6 −1.41 (14) C5—C4—C8—N3 −57 (4)
C8—C4—C5—C6 177.69 (8)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C2—H2···N3i 0.962 (14) 2.621 (14) 3.3880 (13) 136.9 (11)
C3—H3···N2ii 0.950 (14) 2.554 (14) 3.3955 (13) 147.8 (10)
C6—H6···N3iii 0.943 (13) 2.457 (13) 3.3412 (13) 156.1 (10)

Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) x−1/2, −y+1/2, −z+1; (iii) x+1/2, −y+1/2, −z+1.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: WM5005).

References

  1. Agilent (2013). CrysAlis PRO Agilent Technologies Inc., Santa Clara, CA, USA.
  2. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Chin, Y. J., Tan, A. L., Wimmer, F. L., Mirza, A. H., Young, D. J., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o2293–o2294. [DOI] [PMC free article] [PubMed]
  4. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  5. Lin, M.-J., Wang, J.-D., Chen, N.-S. & Huang, J.-L. (2006). J. Coord. Chem. 59, 607–615.
  6. Rasmussen, C. R., Gardocki, J. F., Plampin, J. N., Twardzik, B. L., Reynolds, B. E., Molinari, A. J., Schwartz, N., Bennetts, W. W., Price, B. E. & Marakowski, J. (1978). J. Med. Chem. 21, 1044–1054. [DOI] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) general, I. DOI: 10.1107/S1600536814003468/wm5005sup1.cif

e-70-0o323-sup1.cif (14.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814003468/wm5005Isup2.hkl

e-70-0o323-Isup2.hkl (80.8KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814003468/wm5005Isup3.cml

CCDC reference: 987296

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES