Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Mar 19;70(Pt 4):o458. doi: 10.1107/S1600536814005601

5-Chloro-3-ethyl­sulfinyl-7-methyl-2-(4-methyl­phen­yl)-1-benzo­furan

Hong Dae Choi a, Pil Ja Seo a, Uk Lee b,*
PMCID: PMC3998548  PMID: 24826157

Abstract

In the title compound, C18H17ClO2S, the dihedral angle between the mean planes of the benzo­furan ring system and the methyl­phenyl ring is 14.50 (4)°. The centroid–centroid distances between the benzene and the methyl­phenyl rings are 3.827 (2) and 3.741 (2) Å, while the centroid–centroid distance between the furan and methyl­phenyl rings is 3.843 (2) Å. These distances indicate π–π inter­actions; on the other hand, the inter­planar angles between the benzene and methyl­phenyl rings, and between the furan and methyl­phenyl rings are 13.89 (4) and 15.53 (4)°, respectively. In the crystal, the mol­ecules stack along the a-axis direction.

Related literature  

For background information about related compounds and their crystal structures, see Choi et al. (2010a ,b ). For π–π stacking in metal complexes with aromatic nitro­gen ligands, see: Janiak (2000).graphic file with name e-70-0o458-scheme1.jpg

Experimental  

Crystal data  

  • C18H17ClO2S

  • M r = 332.83

  • Triclinic, Inline graphic

  • a = 7.3638 (5) Å

  • b = 10.2524 (6) Å

  • c = 11.8335 (7) Å

  • α = 68.949 (3)°

  • β = 89.362 (3)°

  • γ = 71.460 (3)°

  • V = 785.11 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.38 mm−1

  • T = 173 K

  • 0.46 × 0.37 × 0.33 mm

Data collection  

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.691, T max = 0.746

  • 13937 measured reflections

  • 3759 independent reflections

  • 3348 reflections with I > 2σ(I)

  • R int = 0.031

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.034

  • wR(F 2) = 0.100

  • S = 1.06

  • 3759 reflections

  • 203 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814005601/fb2296sup1.cif

e-70-0o458-sup1.cif (25.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814005601/fb2296Isup2.hkl

e-70-0o458-Isup2.hkl (184.3KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814005601/fb2296Isup3.cml

CCDC reference: 991267

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

1. Comment

As a part of our ongoing study of 5-chloro-3-ethylsulfinyl-7-methyl-1-benzofuran derivatives which contain 4-fluorophenyl and 4 iodophenyl substituents in the 2-position (Choi et al. (2010a,b) for the F and I-compound, respectively), we report the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with the mean deviation from the least-squares plane defined by the nine constituent atoms which equals to 0.016 (1) Å. The 4-methylphenyl ring is also essentially planar, with the mean deviation of 0.004 (1) Å from the least-squares plane defined by the six core-ring atoms. The dihedral angle between the benzofuran ring system and the core of the 4-methylphenyl rings is 14.50 (4)°.

Let the centroid names Cg1, Cg2 and Cg3 be assigned to the benzene ring (C2–C7), the furan ring (C1/C2/C7/O1/C8) and the core of 4-methylphenyl ring (C10–C15), respectively: The centroid–centroid separations of Cg1···Cg3i, Cg1···Cg3ii and Cg2···Cg3i are 3.827 (2), 3.741 (2) and 3.843 (2) Å, respectively. (The symmetry codes are: (i) -x + 1, -y + 1, -z + 1; (ii) -x, -y + 1, -z + 1.)

The interplanar angles between the benzene and the core of 4-methylphenyl ring and between the furan and the core of 4-methylphenyl ring equal to 13.89 (4) and 15.53 (4)°, respectively. These angles are quite large for the rings being in π-electron···π-electron interactions as it follows from the study by Janiak (2000) who investigated π–π stacking in metal complexes with aromatic nitrogen ligands. According to Fig. 8 of Janiak's study, the interplanar angles between the rings that are involved in π-electron···π-electron interactions are less than 10° in overwhelming majority of cases.

2. Experimental

3-Chloroperoxybenzoic acid (77%, 224 mg, 1.0 mmol) was added in small portions to the stirred solution of 5-chloro-3-ethylsulfanyl-7-methyl-2-(4-methylphenyl)-1-benzofuran (285 mg, 0.9 mmol) in dichloromethane (30 ml) at 273 K. The mixture was washed with saturated sodium hydrogen carbonate solution after having been stirred at room temperature for 4h. The organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure.

The residue was purified by column chromatography (hexane–ethyl acetate, 1:1v/v) to afford the title compound as a colourless solid [yield 71%, m.p. 392–393 K; Rf = 0.56 (hexane–ethyl acetate, 1:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of the 5% solution of the title compound in acetone at room temperature. The average crystal size was approximately 1.1 × 1.3 × 0.8 mm. (The measured crystal was cut from a large one.) The crystals are soluble in polar solvents.

3. Refinement

All the hydrogen atoms were observed in the difference electron density map. However, they were situated into the idealized positions and refined using a riding-model approximation. The used constraints: C—H = 0.95 Å for aryl, 0.98 Å for methyl and for 0.99 Å for methylene H atoms. Uiso(H) = 1.2Ueq(C) for aryl and methylene, while 1.5Ueq(C) for the methyl H atoms. The positions of methyl hydrogens were optimized using the SHELXL-97's command AFIX 137 (Sheldrick, 2008).

Figures

Fig. 1.

Fig. 1.

The title molecule with the atom numbering scheme. The displacement ellipsoids are drawn at the 50% probability level. The hydrogen atoms are presented as small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

A view of possible π···π interactions (dotted lines) in the crystal structure of the title compound. The H-atoms have been omitted for clarity. [Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) -x, -y + 1, -z + 1.]

Crystal data

C18H17ClO2S Z = 2
Mr = 332.83 F(000) = 348
Triclinic, P1 Dx = 1.408 Mg m3
Hall symbol: -P 1 Melting point = 392–393 K
a = 7.3638 (5) Å Mo Kα radiation, λ = 0.71073 Å
b = 10.2524 (6) Å Cell parameters from 8286 reflections
c = 11.8335 (7) Å θ = 2.3–28.4°
α = 68.949 (3)° µ = 0.38 mm1
β = 89.362 (3)° T = 173 K
γ = 71.460 (3)° Block, colourless
V = 785.11 (8) Å3 0.46 × 0.37 × 0.33 mm

Data collection

Bruker SMART APEXII CCD diffractometer 3759 independent reflections
Radiation source: rotating anode 3348 reflections with I > 2σ(I)
Graphite multilayer monochromator Rint = 0.031
Detector resolution: 10.0 pixels mm-1 θmax = 28.0°, θmin = 2.3°
φ and ω scans h = −9→9
Absorption correction: multi-scan (SADABS; Bruker, 2009) k = −13→13
Tmin = 0.691, Tmax = 0.746 l = −15→15
13937 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034 H-atom parameters constrained
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.0517P)2 + 0.2412P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max < 0.001
3759 reflections Δρmax = 0.31 e Å3
203 parameters Δρmin = −0.29 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.006 (2)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.02297 (6) 0.70926 (4) −0.07104 (3) 0.03932 (13)
S1 0.36271 (5) 0.19161 (4) 0.40911 (3) 0.02784 (11)
O1 0.19351 (14) 0.58273 (10) 0.44275 (8) 0.0265 (2)
O2 0.21419 (17) 0.18248 (12) 0.32973 (11) 0.0411 (3)
C1 0.29375 (19) 0.37881 (14) 0.39556 (12) 0.0251 (3)
C2 0.20899 (19) 0.50599 (14) 0.28375 (12) 0.0248 (3)
C3 0.1735 (2) 0.52797 (15) 0.16126 (13) 0.0279 (3)
H3 0.2128 0.4481 0.1335 0.033*
C4 0.0781 (2) 0.67216 (16) 0.08294 (13) 0.0290 (3)
C5 0.0153 (2) 0.79189 (15) 0.12135 (13) 0.0298 (3)
H5 −0.0515 0.8884 0.0634 0.036*
C7 0.14795 (19) 0.62695 (15) 0.31933 (12) 0.0251 (3)
C6 0.0489 (2) 0.77201 (15) 0.24256 (13) 0.0273 (3)
C8 0.28210 (19) 0.43087 (14) 0.48790 (12) 0.0249 (3)
C9 −0.0186 (2) 0.89610 (16) 0.28858 (15) 0.0343 (3)
H9A −0.1057 0.9849 0.2243 0.052*
H9B 0.0929 0.9177 0.3116 0.052*
H9C −0.0870 0.8668 0.3599 0.052*
C10 0.3426 (2) 0.36521 (15) 0.61893 (12) 0.0262 (3)
C11 0.2685 (2) 0.44896 (16) 0.69082 (13) 0.0299 (3)
H11 0.1763 0.5457 0.6543 0.036*
C12 0.3291 (2) 0.39130 (18) 0.81450 (14) 0.0343 (3)
H12 0.2787 0.4499 0.8615 0.041*
C13 0.4619 (2) 0.24959 (18) 0.87129 (13) 0.0339 (3)
C14 0.5333 (2) 0.16600 (17) 0.80041 (14) 0.0338 (3)
H14 0.6229 0.0683 0.8379 0.041*
C15 0.4761 (2) 0.22262 (16) 0.67607 (13) 0.0297 (3)
H15 0.5282 0.1639 0.6294 0.036*
C16 0.5257 (3) 0.1898 (2) 1.00639 (14) 0.0458 (4)
H16A 0.6069 0.0852 1.0331 0.069*
H16B 0.4121 0.1986 1.0509 0.069*
H16C 0.5994 0.2468 1.0229 0.069*
C17 0.5744 (2) 0.18473 (17) 0.32871 (14) 0.0336 (3)
H17A 0.6062 0.1004 0.3012 0.040*
H17B 0.5467 0.2772 0.2556 0.040*
C18 0.7460 (2) 0.16692 (17) 0.40993 (15) 0.0363 (3)
H18A 0.7127 0.2480 0.4401 0.054*
H18B 0.8561 0.1696 0.3630 0.054*
H18C 0.7798 0.0717 0.4791 0.054*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0511 (3) 0.0362 (2) 0.02820 (19) −0.01466 (18) −0.00402 (16) −0.00909 (15)
S1 0.0307 (2) 0.02136 (17) 0.03107 (19) −0.00773 (14) 0.00090 (14) −0.01020 (13)
O1 0.0277 (5) 0.0223 (5) 0.0278 (5) −0.0054 (4) 0.0023 (4) −0.0101 (4)
O2 0.0422 (7) 0.0359 (6) 0.0484 (7) −0.0158 (5) −0.0071 (5) −0.0166 (5)
C1 0.0235 (6) 0.0218 (6) 0.0280 (6) −0.0057 (5) 0.0031 (5) −0.0089 (5)
C2 0.0210 (6) 0.0230 (6) 0.0296 (7) −0.0065 (5) 0.0029 (5) −0.0098 (5)
C3 0.0274 (7) 0.0263 (6) 0.0304 (7) −0.0080 (5) 0.0016 (5) −0.0119 (5)
C4 0.0283 (7) 0.0304 (7) 0.0275 (7) −0.0106 (6) −0.0006 (5) −0.0092 (5)
C5 0.0274 (7) 0.0240 (6) 0.0334 (7) −0.0067 (5) −0.0010 (6) −0.0070 (5)
C7 0.0225 (6) 0.0241 (6) 0.0280 (6) −0.0068 (5) 0.0017 (5) −0.0100 (5)
C6 0.0226 (6) 0.0236 (6) 0.0338 (7) −0.0059 (5) 0.0019 (5) −0.0103 (5)
C8 0.0222 (6) 0.0216 (6) 0.0304 (7) −0.0068 (5) 0.0041 (5) −0.0098 (5)
C9 0.0339 (8) 0.0237 (7) 0.0410 (8) −0.0028 (6) 0.0020 (6) −0.0130 (6)
C10 0.0258 (7) 0.0275 (6) 0.0275 (6) −0.0121 (5) 0.0056 (5) −0.0102 (5)
C11 0.0320 (7) 0.0292 (7) 0.0318 (7) −0.0132 (6) 0.0080 (6) −0.0129 (6)
C12 0.0398 (8) 0.0396 (8) 0.0318 (7) −0.0199 (7) 0.0115 (6) −0.0173 (6)
C13 0.0327 (8) 0.0441 (8) 0.0278 (7) −0.0205 (7) 0.0064 (6) −0.0104 (6)
C14 0.0294 (7) 0.0340 (7) 0.0315 (7) −0.0097 (6) 0.0021 (6) −0.0058 (6)
C15 0.0270 (7) 0.0313 (7) 0.0304 (7) −0.0088 (6) 0.0042 (5) −0.0121 (6)
C16 0.0473 (10) 0.0616 (11) 0.0283 (8) −0.0238 (9) 0.0054 (7) −0.0117 (7)
C17 0.0341 (8) 0.0309 (7) 0.0331 (7) −0.0029 (6) 0.0056 (6) −0.0160 (6)
C18 0.0332 (8) 0.0325 (7) 0.0451 (9) −0.0107 (6) 0.0082 (6) −0.0172 (7)

Geometric parameters (Å, º)

Cl1—C4 1.7465 (15) C10—C15 1.397 (2)
S1—O2 1.4962 (12) C10—C11 1.4054 (19)
S1—C1 1.7686 (13) C11—C12 1.384 (2)
S1—C17 1.8129 (16) C11—H11 0.9500
O1—C7 1.3746 (16) C12—C13 1.389 (2)
O1—C8 1.3782 (15) C12—H12 0.9500
C1—C8 1.3689 (19) C13—C14 1.391 (2)
C1—C2 1.4498 (18) C13—C16 1.510 (2)
C2—C7 1.3905 (18) C14—C15 1.387 (2)
C2—C3 1.3988 (19) C14—H14 0.9500
C3—C4 1.3811 (19) C15—H15 0.9500
C3—H3 0.9500 C16—H16A 0.9800
C4—C5 1.401 (2) C16—H16B 0.9800
C5—C6 1.388 (2) C16—H16C 0.9800
C5—H5 0.9500 C17—C18 1.519 (2)
C7—C6 1.3868 (18) C17—H17A 0.9900
C6—C9 1.5006 (19) C17—H17B 0.9900
C8—C10 1.4597 (19) C18—H18A 0.9800
C9—H9A 0.9800 C18—H18B 0.9800
C9—H9B 0.9800 C18—H18C 0.9800
C9—H9C 0.9800
O2—S1—C1 106.72 (6) C15—C10—C8 122.50 (13)
O2—S1—C17 106.62 (7) C11—C10—C8 119.29 (12)
C1—S1—C17 98.27 (7) C12—C11—C10 120.40 (14)
C7—O1—C8 107.00 (10) C12—C11—H11 119.8
C8—C1—C2 107.17 (12) C10—C11—H11 119.8
C8—C1—S1 127.41 (10) C11—C12—C13 121.40 (14)
C2—C1—S1 124.75 (10) C11—C12—H12 119.3
C7—C2—C3 119.38 (12) C13—C12—H12 119.3
C7—C2—C1 104.93 (12) C12—C13—C14 118.17 (14)
C3—C2—C1 135.63 (13) C12—C13—C16 120.22 (15)
C4—C3—C2 116.30 (13) C14—C13—C16 121.61 (15)
C4—C3—H3 121.8 C15—C14—C13 121.24 (14)
C2—C3—H3 121.8 C15—C14—H14 119.4
C3—C4—C5 123.25 (13) C13—C14—H14 119.4
C3—C4—Cl1 119.41 (11) C14—C15—C10 120.58 (14)
C5—C4—Cl1 117.29 (11) C14—C15—H15 119.7
C6—C5—C4 121.19 (13) C10—C15—H15 119.7
C6—C5—H5 119.4 C13—C16—H16A 109.5
C4—C5—H5 119.4 C13—C16—H16B 109.5
O1—C7—C6 124.11 (12) H16A—C16—H16B 109.5
O1—C7—C2 110.69 (11) C13—C16—H16C 109.5
C6—C7—C2 125.17 (13) H16A—C16—H16C 109.5
C7—C6—C5 114.68 (12) H16B—C16—H16C 109.5
C7—C6—C9 122.11 (13) C18—C17—S1 111.08 (10)
C5—C6—C9 123.20 (13) C18—C17—H17A 109.4
C1—C8—O1 110.19 (12) S1—C17—H17A 109.4
C1—C8—C10 135.60 (12) C18—C17—H17B 109.4
O1—C8—C10 114.20 (11) S1—C17—H17B 109.4
C6—C9—H9A 109.5 H17A—C17—H17B 108.0
C6—C9—H9B 109.5 C17—C18—H18A 109.5
H9A—C9—H9B 109.5 C17—C18—H18B 109.5
C6—C9—H9C 109.5 H18A—C18—H18B 109.5
H9A—C9—H9C 109.5 C17—C18—H18C 109.5
H9B—C9—H9C 109.5 H18A—C18—H18C 109.5
C15—C10—C11 118.19 (13) H18B—C18—H18C 109.5
O2—S1—C1—C8 131.72 (13) C4—C5—C6—C7 0.2 (2)
C17—S1—C1—C8 −118.07 (13) C4—C5—C6—C9 −178.83 (14)
O2—S1—C1—C2 −37.66 (13) C2—C1—C8—O1 0.68 (15)
C17—S1—C1—C2 72.54 (13) S1—C1—C8—O1 −170.20 (10)
C8—C1—C2—C7 −1.27 (15) C2—C1—C8—C10 −178.15 (15)
S1—C1—C2—C7 169.92 (10) S1—C1—C8—C10 11.0 (2)
C8—C1—C2—C3 −178.44 (15) C7—O1—C8—C1 0.20 (14)
S1—C1—C2—C3 −7.3 (2) C7—O1—C8—C10 179.30 (11)
C7—C2—C3—C4 0.1 (2) C1—C8—C10—C15 15.7 (2)
C1—C2—C3—C4 176.96 (15) O1—C8—C10—C15 −163.06 (12)
C2—C3—C4—C5 −1.2 (2) C1—C8—C10—C11 −165.94 (15)
C2—C3—C4—Cl1 −178.57 (10) O1—C8—C10—C11 15.27 (18)
C3—C4—C5—C6 1.0 (2) C15—C10—C11—C12 0.8 (2)
Cl1—C4—C5—C6 178.51 (11) C8—C10—C11—C12 −177.59 (13)
C8—O1—C7—C6 176.97 (13) C10—C11—C12—C13 −0.8 (2)
C8—O1—C7—C2 −1.06 (14) C11—C12—C13—C14 0.0 (2)
C3—C2—C7—O1 179.17 (11) C11—C12—C13—C16 179.84 (14)
C1—C2—C7—O1 1.44 (15) C12—C13—C14—C15 0.9 (2)
C3—C2—C7—C6 1.2 (2) C16—C13—C14—C15 −179.02 (14)
C1—C2—C7—C6 −176.57 (13) C13—C14—C15—C10 −0.8 (2)
O1—C7—C6—C5 −179.01 (12) C11—C10—C15—C14 0.0 (2)
C2—C7—C6—C5 −1.3 (2) C8—C10—C15—C14 178.34 (13)
O1—C7—C6—C9 0.0 (2) O2—S1—C17—C18 −170.38 (10)
C2—C7—C6—C9 177.75 (13) C1—S1—C17—C18 79.34 (11)

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: FB2296).

References

  1. Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2009). APEX2, SADABS and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010a). Acta Cryst. E66, o886. [DOI] [PMC free article] [PubMed]
  4. Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010b). Acta Cryst. E66, o2277. [DOI] [PMC free article] [PubMed]
  5. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  6. Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814005601/fb2296sup1.cif

e-70-0o458-sup1.cif (25.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814005601/fb2296Isup2.hkl

e-70-0o458-Isup2.hkl (184.3KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814005601/fb2296Isup3.cml

CCDC reference: 991267

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES