Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Mar 5;70(Pt 4):o382–o383. doi: 10.1107/S1600536814004449

2-(3-{(3R,4R)-4-Methyl-3-[meth­yl(7H-pyrrolo­[2,3-d]pyrimidin-4-yl)amino]­piperidin-1-yl}oxetan-3-yl)aceto­nitrile monohydrate

Matthias Gehringer a, Ellen Pfaffenrot a, Peter R W E F Keck a, Dieter Schollmeyer b, Stefan A Laufer a,*
PMCID: PMC3998552  PMID: 24826108

Abstract

In the title compound, C18H24N6O·H2O, the piperidine ring adopts a chair conformation with an N—C—C—C torsion angle of 39.5 (5)° between the cis-related substituents. The pyrrole N—H group forms a water-mediated inter­molecular hydrogen bond to one of the N atoms of the annelated pyrimidine ring. The water mol­ecule connects two organic mol­ecules and is disorderd over two positions (occupancies of 0.48 and 0.52). The crystal packing shows zigzag chains of alternating organic and water mol­ecules running parallel to the a axis.

Related literature  

For the biological activity and structure–activity relationships of tofacitinib {systematic name: 3-[(3R,4R)-4-methyl-3-[meth­yl(7H-pyrrolo­[2,3-d]pyrimidin-4-yl)amino]­piperidin-1-yl]-3-oxo­propane­nitrile} derivatives, see: Flanagan et al. (2010). For a general overview on the JAK–STAT pathway, see: Shuai & Liu (2003). The use of oxetanes as carbonyl bioisosteres has been reviewed extensively by Wuitschik et al. (2010). For a recent application of this concept towards tofacitinib-derived JAK3 inhibitors, see: Gehringer et al. (2014).graphic file with name e-70-0o382-scheme1.jpg

Experimental  

Crystal data  

  • C18H24N6O·H2O

  • M r = 358.45

  • Orthorhombic, Inline graphic

  • a = 6.6088 (6) Å

  • b = 10.1483 (8) Å

  • c = 26.813 (2) Å

  • V = 1798.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 193 K

  • 0.29 × 0.27 × 0.06 mm

Data collection  

  • Stoe IPDS 2T diffractometer

  • 6672 measured reflections

  • 4184 independent reflections

  • 1716 reflections with I > 2σ(I)

  • R int = 0.079

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.062

  • wR(F 2) = 0.150

  • S = 0.90

  • 4184 reflections

  • 246 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: X-AREA (Stoe & Cie, 2010); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2010); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON.

Supplementary Material

Crystal structure: contains datablock(s) I, Global. DOI: 10.1107/S1600536814004449/bt6965sup1.cif

e-70-0o382-sup1.cif (31.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814004449/bt6965Isup2.hkl

e-70-0o382-Isup2.hkl (205.1KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814004449/bt6965Isup3.cml

CCDC reference: 988870

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1L 0.88 1.90 2.783 (8) 178
N1—H1⋯O2L 0.88 2.06 2.816 (7) 144
O1L—H1L2⋯N8i 0.84 2.27 2.868 (8) 129
O2L—H2L2⋯N8i 0.84 2.20 2.733 (7) 121
O2L—H2L2⋯N25ii 0.84 2.43 3.026 (10) 129

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank Michael Forster for fruitful discussions and suggestions and acknowledge support by the Deutsche Forschungsgemeinschaft and the Open Access Publishing Fund of Tuebingen University.

supplementary crystallographic information

1. Comment

Janus Kinases (JAKs) are non-receptor protein tyrosine kinases mediating signalling through the JAK-STAT (Signal Transducer and Activator of Transcription) pathway. Being crucial signal transducers for a variety of cytokines, growth factors, and interferons, JAKs are involved in numerous pathologies including malignancies, myeloproliferative disorders and autoimmune diseases (Shuai & Liu, 2003). Recently, Tofacitinib (CP690,550; 3-[(3R,4R)-4-methyl-3-[methyl(7H-pyrrolo[2,3-d] pyrimidin-4-yl)amino]piperidin-1-yl]-3-oxopropanenitrile) a small-molecule pan-JAK inhibitor was approved by the US Food and Drug Administration for the treatment of rheumatoid athritis (Flanagan et al., 2010). The compound also shows promising results in late stage clinical trials for psoriasis, transplant rejection, and other disorders of the immune system. In search for novel JAK inhibitors, the title compound was prepared as a Tofacitinib bioisostere with altered physicochemical properties (Wuitschik et al., 2010).

In the crystal structure of the title compound, C18H24N6O, the exocyclic amino substituent is oriented almost coplanar to the heteroaromatic ring system with a torsion angle of 0.6 (2)° for C11-N10-C5-C4. The piperidine ring adopts a chair conformation with a torsion angle of 39.5 (5) ° between the cis substituents. One of the protons (H23B) of the methylene group between the oxetane ring and the nitrile function is involved in an intermolecular C—H···π interaction while the other methylene proton forms an intermolecular C—H···N interaction with the nitrile group. The oxygen atom of the oxetane ring makes two intermolecular C—H···O contacts with two H atoms (H13A and H15B) of the piperidine ring. The heterocyclic pyrrol N—H forms an intermolecular water mediated hydrogen bond to one of the nitrogen atoms (N8) in the 6-membered pyrmidine heterocycle with a length of 2.78 (2) Å for the N—H···O and 2.86 (8) Å for the O—H···N contact. The water molecule connecting two molecules is disorderd over two positions (s.o.f. 0.48/0.52). The crystal packing is shows N—H···OH···N hydrogen bonds resulting in infinite chains parallel to the a axis.

2. Experimental

In an HPLC-vial, (3R,4R)-N,4-dimethyl-N-{7H-pyrrolo[2,3-d]pyrimidin-4- yl}piperidin-3-amine (50.0 mg, 204 µmol) and (oxetan-3-ylidene)acetonitrile (19.9 mg, 210 µmol) were dissolved in dry ethanol (400 µl) and the mixture stirred at 323 K during 48 h. The solvent was evaporated under reduced pressure and the product purified by column chromatography (SiO2, ethyl acetate + 2% methanol). The product was obtained as off-white solid (57.0 mg, 82%). Crystals of the title compound were obtained by slow evaporation of a solution in chloroform + 10% methanol at 298 K.

3. Refinement

Site occupation factors of the disordered water molecule were fixed assuming similar isotropic displacement parameters for alternative positions of the oxygen atom. Hydrogen atoms attached to carbons were placed at calculated positions with C—H = 0.95 Å (aromatic) or 0.99–1.00 Å (sp3 C-atom). All H atoms were refined with isotropic displacement parameters (set at 1.2–1.5 times of the Ueq of the parent atom). One of the H atoms of the disordered water molecule could be position to make a hydrogen bond to an N atom. The other one was positioneded with idealized geometric with respect to the first one. The absolute configuration was assigned according to the synthesis.

Figures

Fig. 1.

Fig. 1.

Crystal structure of the title compound with labeling and displacement ellipsoids drawn at the 50% probability level. Water molecules are disorderd with s.o.f. 0.52/0.48.

Crystal data

C18H24N6O·H2O F(000) = 768
Mr = 358.45 Dx = 1.324 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 6886 reflections
a = 6.6088 (6) Å θ = 2.5–27.8°
b = 10.1483 (8) Å µ = 0.09 mm1
c = 26.813 (2) Å T = 193 K
V = 1798.3 (3) Å3 Plate, colourless
Z = 4 0.29 × 0.27 × 0.06 mm

Data collection

Stoe IPDS 2T diffractometer 1716 reflections with I > 2σ(I)
Radiation source: sealed Tube Rint = 0.079
Graphite monochromator θmax = 28.0°, θmin = 3.2°
Detector resolution: 6.67 pixels mm-1 h = −7→8
rotation method scans k = −11→13
6672 measured reflections l = −29→35
4184 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150 H-atom parameters constrained
S = 0.90 w = 1/[σ2(Fo2) + (0.0523P)2] where P = (Fo2 + 2Fc2)/3
4184 reflections (Δ/σ)max < 0.001
246 parameters Δρmax = 0.19 e Å3
0 restraints Δρmin = −0.22 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
N1 0.1280 (5) 0.1062 (4) 0.42472 (12) 0.0485 (10)
H1 0.1160 0.1276 0.4564 0.058*
C2 0.2919 (7) 0.0433 (4) 0.40332 (16) 0.0485 (12)
H2 0.4106 0.0163 0.4205 0.058*
C3 0.2563 (7) 0.0264 (4) 0.35393 (15) 0.0439 (11)
H3 0.3446 −0.0139 0.3305 0.053*
C4 0.0579 (7) 0.0814 (4) 0.34361 (15) 0.0423 (11)
C5 −0.0680 (7) 0.1060 (4) 0.30217 (14) 0.0391 (10)
N6 −0.2486 (6) 0.1667 (4) 0.30983 (12) 0.0449 (9)
C7 −0.2941 (7) 0.2044 (4) 0.35573 (15) 0.0476 (11)
H7 −0.4211 0.2473 0.3591 0.057*
N8 −0.1909 (6) 0.1916 (4) 0.39726 (12) 0.0470 (9)
C9 −0.0105 (7) 0.1291 (4) 0.38869 (14) 0.0413 (10)
N10 −0.0216 (5) 0.0778 (3) 0.25423 (11) 0.0396 (8)
C11 0.1748 (6) 0.0150 (4) 0.24320 (14) 0.0451 (11)
H11A 0.1885 0.0029 0.2071 0.068*
H11B 0.1815 −0.0709 0.2598 0.068*
H11C 0.2847 0.0712 0.2554 0.068*
C12 −0.1610 (7) 0.1075 (4) 0.21317 (14) 0.0415 (10)
H12 −0.2699 0.1634 0.2281 0.050*
C13 −0.0683 (7) 0.1906 (4) 0.17183 (13) 0.0419 (11)
H13A −0.1782 0.2339 0.1528 0.050*
H13B 0.0160 0.2606 0.1870 0.050*
N14 0.0562 (5) 0.1135 (3) 0.13743 (11) 0.0401 (9)
C15 −0.0684 (7) 0.0153 (4) 0.11233 (14) 0.0437 (11)
H15A 0.0130 −0.0318 0.0870 0.052*
H15B −0.1832 0.0588 0.0953 0.052*
C16 −0.1472 (7) −0.0818 (4) 0.15091 (15) 0.0474 (11)
H16A −0.0314 −0.1284 0.1663 0.057*
H16B −0.2331 −0.1483 0.1341 0.057*
C17 −0.2698 (7) −0.0137 (4) 0.19154 (14) 0.0424 (11)
H17 −0.3970 0.0189 0.1755 0.051*
C18 −0.3324 (7) −0.1107 (5) 0.23178 (15) 0.0506 (11)
H18A −0.4324 −0.1724 0.2182 0.076*
H18B −0.3920 −0.0627 0.2599 0.076*
H18C −0.2135 −0.1598 0.2432 0.076*
C19 0.1743 (7) 0.1946 (4) 0.10400 (14) 0.0421 (10)
C20 0.3401 (7) 0.2731 (5) 0.12998 (15) 0.0528 (13)
H20A 0.3255 0.3696 0.1259 0.063*
H20B 0.3571 0.2497 0.1656 0.063*
O21 0.4946 (5) 0.2159 (3) 0.09772 (13) 0.0672 (10)
C22 0.3494 (7) 0.1203 (5) 0.07878 (17) 0.0539 (12)
H22A 0.3701 0.0303 0.0920 0.065*
H22B 0.3400 0.1190 0.0419 0.065*
C23 0.0478 (7) 0.2774 (5) 0.06772 (15) 0.0472 (12)
H23A −0.0318 0.2179 0.0460 0.057*
H23B −0.0486 0.3322 0.0869 0.057*
C24 0.1729 (8) 0.3629 (5) 0.03667 (16) 0.0484 (12)
N25 0.2739 (7) 0.4295 (4) 0.01284 (15) 0.0658 (12)
O1L 0.0901 (13) 0.1801 (9) 0.5242 (3) 0.077 (2) 0.48
H1L1 0.1783 0.2403 0.5036 0.115* 0.48
H1L2 0.1406 0.1662 0.5525 0.115* 0.48
O2L 0.1719 (14) 0.2748 (9) 0.5074 (2) 0.085 (2) 0.52
H2L1 0.0459 0.2619 0.5042 0.128* 0.52
H2L2 0.1751 0.3371 0.5283 0.128* 0.52

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.062 (3) 0.052 (3) 0.0307 (18) −0.009 (2) −0.0069 (18) 0.0009 (18)
C2 0.048 (3) 0.051 (3) 0.047 (3) 0.001 (2) 0.002 (2) −0.001 (2)
C3 0.049 (3) 0.044 (3) 0.038 (2) −0.002 (2) −0.001 (2) 0.002 (2)
C4 0.049 (3) 0.041 (3) 0.037 (2) −0.006 (2) −0.002 (2) 0.0023 (19)
C5 0.053 (3) 0.033 (2) 0.032 (2) −0.003 (2) 0.0015 (19) −0.0006 (19)
N6 0.046 (2) 0.052 (2) 0.0373 (19) 0.0060 (19) 0.0052 (17) −0.0011 (17)
C7 0.056 (3) 0.050 (3) 0.037 (2) 0.002 (2) 0.005 (2) −0.000 (2)
N8 0.059 (3) 0.048 (2) 0.0340 (18) −0.004 (2) 0.0029 (19) −0.0006 (16)
C9 0.052 (3) 0.039 (3) 0.032 (2) −0.004 (2) 0.001 (2) 0.0042 (19)
N10 0.041 (2) 0.047 (2) 0.0304 (17) 0.0066 (18) 0.0005 (15) −0.0002 (16)
C11 0.046 (3) 0.051 (3) 0.038 (2) 0.006 (2) 0.003 (2) 0.001 (2)
C12 0.044 (3) 0.043 (3) 0.037 (2) 0.005 (2) −0.003 (2) 0.001 (2)
C13 0.048 (3) 0.047 (3) 0.031 (2) 0.008 (2) −0.0015 (19) −0.001 (2)
N14 0.050 (2) 0.037 (2) 0.0333 (17) 0.0038 (19) −0.0005 (16) −0.0040 (16)
C15 0.055 (3) 0.038 (3) 0.039 (2) −0.000 (2) −0.003 (2) −0.005 (2)
C16 0.059 (3) 0.042 (3) 0.041 (2) −0.001 (2) −0.002 (2) 0.002 (2)
C17 0.046 (3) 0.042 (3) 0.040 (2) 0.002 (2) −0.001 (2) 0.001 (2)
C18 0.053 (3) 0.055 (3) 0.044 (2) 0.001 (3) −0.007 (2) 0.006 (2)
C19 0.044 (3) 0.047 (3) 0.035 (2) −0.005 (2) −0.002 (2) 0.003 (2)
C20 0.050 (3) 0.061 (3) 0.048 (3) −0.004 (3) −0.000 (2) −0.002 (2)
O21 0.045 (2) 0.081 (3) 0.076 (2) −0.002 (2) 0.0006 (18) −0.005 (2)
C22 0.054 (3) 0.055 (3) 0.052 (3) 0.010 (3) 0.009 (2) 0.002 (2)
C23 0.051 (3) 0.051 (3) 0.040 (2) −0.001 (2) −0.001 (2) 0.012 (2)
C24 0.060 (3) 0.048 (3) 0.037 (2) 0.013 (3) 0.002 (2) −0.004 (2)
N25 0.084 (3) 0.059 (3) 0.054 (2) −0.003 (2) 0.014 (2) 0.006 (2)
O1L 0.113 (7) 0.072 (6) 0.045 (4) 0.005 (5) −0.013 (4) 0.001 (4)
O2L 0.130 (7) 0.078 (6) 0.049 (4) 0.010 (5) −0.020 (5) −0.024 (4)

Geometric parameters (Å, º)

N1—C9 1.351 (5) C15—H15A 0.9900
N1—C2 1.381 (5) C15—H15B 0.9900
N1—H1 0.8800 C16—C17 1.524 (6)
C2—C3 1.356 (6) C16—H16A 0.9900
C2—H2 0.9500 C16—H16B 0.9900
C3—C4 1.452 (6) C17—C18 1.519 (6)
C3—H3 0.9500 C17—H17 1.0000
C4—C9 1.378 (5) C18—H18A 0.9800
C4—C5 1.410 (6) C18—H18B 0.9800
C5—N10 1.352 (5) C18—H18C 0.9800
C5—N6 1.359 (5) C19—C20 1.523 (6)
N6—C7 1.323 (5) C19—C23 1.534 (6)
C7—N8 1.312 (5) C19—C22 1.538 (6)
C7—H7 0.9500 C20—O21 1.458 (5)
N8—C9 1.369 (6) C20—H20A 0.9900
N10—C12 1.467 (5) C20—H20B 0.9900
N10—C11 1.476 (5) O21—C22 1.456 (6)
C11—H11A 0.9800 C22—H22A 0.9900
C11—H11B 0.9800 C22—H22B 0.9900
C11—H11C 0.9800 C23—C24 1.459 (7)
C12—C13 1.521 (6) C23—H23A 0.9900
C12—C17 1.538 (6) C23—H23B 0.9900
C12—H12 1.0000 C24—N25 1.145 (6)
C13—N14 1.463 (5) O1L—H1L1 1.0100
C13—H13A 0.9900 O1L—H1L2 0.8390
C13—H13B 0.9900 O1L—H2L1 1.0319
N14—C19 1.445 (5) O2L—H1L1 0.3669
N14—C15 1.458 (5) O2L—H2L1 0.8478
C15—C16 1.520 (6) O2L—H2L2 0.8441
C9—N1—C2 108.3 (3) H15A—C15—H15B 108.3
C9—N1—H1 125.8 C15—C16—C17 112.0 (4)
C2—N1—H1 125.8 C15—C16—H16A 109.2
C3—C2—N1 109.2 (4) C17—C16—H16A 109.2
C3—C2—H2 125.4 C15—C16—H16B 109.2
N1—C2—H2 125.4 C17—C16—H16B 109.2
C2—C3—C4 107.1 (4) H16A—C16—H16B 107.9
C2—C3—H3 126.4 C18—C17—C16 111.0 (4)
C4—C3—H3 126.4 C18—C17—C12 112.2 (3)
C9—C4—C5 115.8 (4) C16—C17—C12 112.6 (4)
C9—C4—C3 105.3 (4) C18—C17—H17 106.9
C5—C4—C3 138.7 (4) C16—C17—H17 106.9
N10—C5—N6 116.0 (4) C12—C17—H17 106.9
N10—C5—C4 125.3 (4) C17—C18—H18A 109.5
N6—C5—C4 118.6 (4) C17—C18—H18B 109.5
C7—N6—C5 118.1 (4) H18A—C18—H18B 109.5
N8—C7—N6 130.0 (4) C17—C18—H18C 109.5
N8—C7—H7 115.0 H18A—C18—H18C 109.5
N6—C7—H7 115.0 H18B—C18—H18C 109.5
C7—N8—C9 110.8 (4) N14—C19—C20 113.7 (3)
N1—C9—N8 123.3 (4) N14—C19—C23 114.2 (4)
N1—C9—C4 110.1 (4) C20—C19—C23 113.3 (4)
N8—C9—C4 126.5 (4) N14—C19—C22 113.6 (4)
C5—N10—C12 121.8 (3) C20—C19—C22 85.2 (3)
C5—N10—C11 118.8 (3) C23—C19—C22 113.6 (3)
C12—N10—C11 119.4 (3) O21—C20—C19 91.4 (3)
N10—C11—H11A 109.5 O21—C20—H20A 113.4
N10—C11—H11B 109.5 C19—C20—H20A 113.4
H11A—C11—H11B 109.5 O21—C20—H20B 113.4
N10—C11—H11C 109.5 C19—C20—H20B 113.4
H11A—C11—H11C 109.5 H20A—C20—H20B 110.7
H11B—C11—H11C 109.5 C22—O21—C20 90.6 (3)
N10—C12—C13 114.1 (3) O21—C22—C19 90.9 (3)
N10—C12—C17 114.3 (3) O21—C22—H22A 113.5
C13—C12—C17 110.9 (3) C19—C22—H22A 113.5
N10—C12—H12 105.5 O21—C22—H22B 113.5
C13—C12—H12 105.5 C19—C22—H22B 113.5
C17—C12—H12 105.5 H22A—C22—H22B 110.8
N14—C13—C12 112.9 (4) C24—C23—C19 112.2 (4)
N14—C13—H13A 109.0 C24—C23—H23A 109.2
C12—C13—H13A 109.0 C19—C23—H23A 109.2
N14—C13—H13B 109.0 C24—C23—H23B 109.2
C12—C13—H13B 109.0 C19—C23—H23B 109.2
H13A—C13—H13B 107.8 H23A—C23—H23B 107.9
C19—N14—C15 114.1 (3) N25—C24—C23 178.8 (5)
C19—N14—C13 113.0 (3) H1L1—O1L—H1L2 111.5
C15—N14—C13 109.8 (3) H1L1—O1L—H2L1 52.4
N14—C15—C16 108.8 (3) H1L2—O1L—H2L1 135.9
N14—C15—H15A 109.9 H1L1—O2L—H2L1 86.4
C16—C15—H15A 109.9 H1L1—O2L—H2L2 153.9
N14—C15—H15B 109.9 H2L1—O2L—H2L2 102.0
C16—C15—H15B 109.9
C9—N1—C2—C3 −0.2 (5) C12—C13—N14—C19 −169.0 (3)
N1—C2—C3—C4 −0.2 (5) C12—C13—N14—C15 62.3 (4)
C2—C3—C4—C9 0.5 (5) C19—N14—C15—C16 167.6 (4)
C2—C3—C4—C5 174.8 (5) C13—N14—C15—C16 −64.4 (4)
C9—C4—C5—N10 174.1 (4) N14—C15—C16—C17 58.3 (5)
C3—C4—C5—N10 0.2 (8) C15—C16—C17—C18 −175.4 (4)
C9—C4—C5—N6 −3.7 (6) C15—C16—C17—C12 −48.6 (5)
C3—C4—C5—N6 −177.5 (5) N10—C12—C17—C18 39.5 (5)
N10—C5—N6—C7 −175.4 (4) C13—C12—C17—C18 170.1 (4)
C4—C5—N6—C7 2.6 (6) N10—C12—C17—C16 −86.7 (4)
C5—N6—C7—N8 −0.7 (7) C13—C12—C17—C16 44.0 (5)
N6—C7—N8—C9 0.1 (7) C15—N14—C19—C20 −166.0 (4)
C2—N1—C9—N8 −179.3 (4) C13—N14—C19—C20 67.7 (5)
C2—N1—C9—C4 0.5 (5) C15—N14—C19—C23 61.8 (5)
C7—N8—C9—N1 178.2 (4) C13—N14—C19—C23 −64.6 (5)
C7—N8—C9—C4 −1.5 (6) C15—N14—C19—C22 −70.7 (5)
C5—C4—C9—N1 −176.4 (4) C13—N14—C19—C22 162.9 (3)
C3—C4—C9—N1 −0.7 (5) N14—C19—C20—O21 123.8 (4)
C5—C4—C9—N8 3.3 (6) C23—C19—C20—O21 −103.5 (4)
C3—C4—C9—N8 179.1 (4) C22—C19—C20—O21 10.2 (3)
N6—C5—N10—C12 −1.8 (6) C19—C20—O21—C22 −10.7 (3)
C4—C5—N10—C12 −179.6 (4) C20—O21—C22—C19 10.6 (3)
N6—C5—N10—C11 178.5 (4) N14—C19—C22—O21 −124.0 (4)
C4—C5—N10—C11 0.6 (6) C20—C19—C22—O21 −10.2 (3)
C5—N10—C12—C13 125.6 (4) C23—C19—C22—O21 103.2 (4)
C11—N10—C12—C13 −54.6 (5) N14—C19—C23—C24 176.8 (4)
C5—N10—C12—C17 −105.3 (4) C20—C19—C23—C24 44.4 (5)
C11—N10—C12—C17 74.5 (5) C22—C19—C23—C24 −50.7 (5)
N10—C12—C13—N14 79.8 (4) C19—C23—C24—N25 −12 (26)
C17—C12—C13—N14 −51.0 (5)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1L 0.88 1.90 2.783 (8) 178
N1—H1···O2L 0.88 2.06 2.816 (7) 144
O1L—H1L2···N8i 0.84 2.27 2.868 (8) 129
O2L—H2L2···N8i 0.84 2.20 2.733 (7) 121
O2L—H2L2···N25ii 0.84 2.43 3.026 (10) 129

Symmetry codes: (i) x+1/2, −y+1/2, −z+1; (ii) −x+1/2, −y+1, z+1/2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: BT6965).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  2. Flanagan, M. E., Blumenkopf, T. A., Brissette, W. H., Brown, M. F., Casavant, J. M., Shang-Poa, C., Doty, J. L., Elliott, E. A., Fisher, M. B., Hines, M., Kent, C., Kudlacz, E. M., Lillie, B. M., Magnuson, K. S., McCurdy, S. P., Munchhof, M. J., Perry, B. D., Sawyer, P. S., Strelevitz, T. J., Subramanyam, C., Sun, J., Whipple, D. A. & Changelian, P. S. (2010). J. Med. Chem. 53, 8468–8484. [DOI] [PubMed]
  3. Gehringer, M., Pfaffenrot, E., Bauer, S. & Laufer, S. A. (2014). ChemMedChem, 9, 277–281. [DOI] [PubMed]
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Shuai, K. & Liu, B. (2003). Nat. Rev. Immunol. 3, 900–911. [DOI] [PubMed]
  6. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  7. Stoe & Cie (2010). X-RED and X-AREA Stoe & Cie, Darmstadt, Germany.
  8. Wuitschik, G., Carreira, E. M., Wagner, B., Fischer, H., Parrilla, I., Schuler, F., Rogers-Evans, M. & Mueller, K. J. (2010). J. Med. Chem. 53, 3227–3246. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, Global. DOI: 10.1107/S1600536814004449/bt6965sup1.cif

e-70-0o382-sup1.cif (31.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814004449/bt6965Isup2.hkl

e-70-0o382-Isup2.hkl (205.1KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814004449/bt6965Isup3.cml

CCDC reference: 988870

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES