Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Mar 29;70(Pt 4):o500. doi: 10.1107/S1600536814006291

(4-Methyl­piperazin-1-yl)(2,3,4-tri­meth­oxy­benzyl­idene)amine

Channappa N Kavitha a, Jerry P Jasinski b,*, Manpreet Kaur a, HS Yathirajan a
PMCID: PMC3998554  PMID: 24826188

Abstract

In the title compound, C15H23N3O3, the piperazine ring is in a slightly distorted chair conformation and is twisted from the mean plane of the benzene ring making a dihedral angle of 14.94 (6)°. The 4-meth­oxy substituent is almost co-planar with the benzene ring [C—C—O—C torsion angle = 5.4 (1)°], while the meth­oxy groups at positions 2 and 3 [C—C—O—C torsion angles of 122.6 (4) and −66.1 (4)°, respectively] are twisted away from the mean plane of the benzene ring in anti­clinical and synclinical conformations, respectively. No classical hydrogen bonds or any weak inter­molecular inter­actions are observed in the crystal structure.

Related literature  

For a review of pharmacological and toxicological information for piperazine derivatives, see: Elliott (2011). For the anti­microbial activity of Schiff base piperazine derivatives, see: Savaliya et al. (2010) and for their anti­bacterial activity, see: Xu et al. (2012). For the anti­microbial activity of piperazine derivatives, see: Kharb et al. (2012). For related structures, see: Kavitha et al. (2013a ,b ); Guo (2007); Guo & Qiu (2007); Xu et al. (2009); Zhou et al. (2011). For puckering parameters, see Cremer & Pople (1975). For standard bond lengths, see: Allen et al. (1987).graphic file with name e-70-0o500-scheme1.jpg

Experimental  

Crystal data  

  • C15H23N3O3

  • M r = 293.36

  • Orthorhombic, Inline graphic

  • a = 7.84207 (14) Å

  • b = 14.2305 (3) Å

  • c = 27.6218 (5) Å

  • V = 3082.49 (10) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 0.73 mm−1

  • T = 173 K

  • 0.30 × 0.26 × 0.18 mm

Data collection  

  • Agilent Xcalibur (Eos, Gemini) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012) T min = 0.290, T max = 1.000

  • 19693 measured reflections

  • 2978 independent reflections

  • 2643 reflections with I > 2σ(I)

  • R int = 0.051

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.113

  • S = 1.04

  • 2978 reflections

  • 195 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814006291/hg5389sup1.cif

e-70-0o500-sup1.cif (24.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814006291/hg5389Isup2.hkl

e-70-0o500-Isup2.hkl (163.6KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814006291/hg5389Isup3.cml

CCDC reference: 992877

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

CNK thanks the University of Mysore for research facilities and is also grateful to the Principal, Maharani’s Science College for Women, Mysore, for giving permission to undertake research. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

supplementary crystallographic information

1. Comment

The Schiff base ligands derived from 1-amino-4-methylpiperazine have attracted the interest due to diverse biological applications found with piperazine moiety. Schiff base piperazine derivatives were found to be designed for the study of their antimicrobial activity (Savaliya et al., 2010) and antibacterial activity (Xu et al., 2012). A valuable insight into recent advances on antimicrobial activity of piperazine derivatives is reported (Kharb et al., 2012). A review on the current pharmacological and toxicological information for piperazine derivatives is described (Elliott, 2011). The crystal structures of some related compounds, viz., 2-[(4-methylpiperazin-1-yl)iminomethyl]phenol (Guo, 2007), 1,4-bis{3-[4-(dimethylamino)benzylideneamino] propyl}piperazine (Xu et al., 2009), 2-methoxy-4-[(4-methylpiperazin-1-yl)-iminomethyl]phenol (Zhou et al., 2011) and 2,4-dibromo-6-[(4-methylpiperazin-1-yl) iminomethyl]phenol (Guo & Qiu, 2007) have been reported. The crystal structures of similar Schiff bases, viz, (1H-indol-3-yl-methylene)- (4-methyl-piperazin-1-yl)-amine (Kavitha et al., 2013a) and (4-methyl-piperazin-1-yl)-(2-nitro-benzylidene)-amine (Kavitha et al., 2013b) have been reported. The title compound is a Schiff base prepared by the reaction of 1-amino-4-methylpiperazine and 2,3,4-trimethoxy benzaldehyde. In view of the above importance of N-piperazinyl Schiff bases, the title compound, (I), C15H23N3O3, has been synthesized and the crystal structure is reported.

The title compound, (I), crystallizes with one independent molecule in the asymmetric unit. In the molecule, the piperazine ring is in a slightly disordered chair conformation (puckering parameters Q, θ, and φ = 0.5691 (15)Å, 176.10 (14)° and 160 (2)°, respectively; (Cremer & Pople, 1975) and is twisted from the mean plane of the phenyl ring with a N2/N3/C5/C6 torsion angle of 177.3 (7)° (Fig. 1). The 4-methoxy substituent with a C10/C9/O3/C15 torsion angle of 5.4 (1)° is almost planar with respect to the mean plane of the phenyl ring while the methoxy groups at positions 2 and 3, with torsion angles of 122.6 (4)° (C6/C7/O1/C13) and -66.1 (4)° (C9/C8/O2/C14), are twisted away from the mean plane of the phenyl ring in anti-clinical and -syn-clinical conformations, respectively. Bond lengths are in normal ranges (Allen et al., 1987). No classical hydrogen bonds or any weak intermolecular interactions are observed.

2. Experimental

To a solution of 2,3,4-trimethoxy benzaldehyde (0.98 g, 0.005 mol) in 5 ml of methanol an equimolar amount of (1-amino-4-methyl)piperazine (0.57 g, 0.005 mol) is added dropwise with constant stirring. The mixture was refluxed for eight hours . The solution was evaporated at room temperature to obtain the solid. The solid was then recrystallized using ethylacetate and the crystals were used as such for x-ray diffraction studies (m.p.: 365-369 K).

3. Refinement

All of the H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.93Å (CH), 0.97Å (CH2) OR 0.96Å (CH3). Isotropic displacement parameters for these atoms were set to 1.2 (CH, CH2) or 1.5 (CH3) times Ueq of the parent atom. Idealised Me refined as rotating groups.

Figures

Fig. 1.

Fig. 1.

ORTEP drawing of (I) (C12H16N2O2) showing the labeling scheme with 30% probability displacement ellipsoids.

Crystal data

C15H23N3O3 Dx = 1.264 Mg m3
Mr = 293.36 Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, Pbca Cell parameters from 8346 reflections
a = 7.84207 (14) Å θ = 4.5–71.5°
b = 14.2305 (3) Å µ = 0.73 mm1
c = 27.6218 (5) Å T = 173 K
V = 3082.49 (10) Å3 Irregular, colourless
Z = 8 0.30 × 0.26 × 0.18 mm
F(000) = 1264

Data collection

Agilent Xcalibur (Eos, Gemini) diffractometer 2978 independent reflections
Radiation source: Enhance (Cu) X-ray Source 2643 reflections with I > 2σ(I)
Detector resolution: 16.0416 pixels mm-1 Rint = 0.051
ω scans θmax = 71.3°, θmin = 3.2°
Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012) h = −9→9
Tmin = 0.290, Tmax = 1.000 k = −14→17
19693 measured reflections l = −33→33

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.040 w = 1/[σ2(Fo2) + (0.0679P)2 + 0.5881P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.113 (Δ/σ)max = 0.001
S = 1.04 Δρmax = 0.23 e Å3
2978 reflections Δρmin = −0.17 e Å3
195 parameters Extinction correction: SHELXL2012 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.00092 (14)
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.29270 (12) 0.40317 (7) 0.53704 (3) 0.0368 (2)
O2 0.27459 (11) 0.21257 (6) 0.51816 (3) 0.0335 (2)
O3 0.44344 (12) 0.08844 (6) 0.57497 (3) 0.0352 (2)
N1 0.44972 (15) 0.77433 (8) 0.70944 (4) 0.0362 (3)
N2 0.54792 (13) 0.60211 (7) 0.66430 (4) 0.0295 (2)
N3 0.54620 (13) 0.50677 (7) 0.65387 (4) 0.0302 (2)
C1 0.44272 (17) 0.76304 (9) 0.65706 (5) 0.0357 (3)
H1A 0.5484 0.7854 0.6429 0.043*
H1B 0.3503 0.8008 0.6442 0.043*
C2 0.41546 (17) 0.66106 (9) 0.64310 (5) 0.0353 (3)
H2A 0.3045 0.6404 0.6544 0.042*
H2B 0.4179 0.6550 0.6081 0.042*
C3 0.56104 (18) 0.61506 (9) 0.71668 (5) 0.0351 (3)
H3A 0.6555 0.5782 0.7291 0.042*
H3B 0.4573 0.5931 0.7321 0.042*
C4 0.58872 (19) 0.71782 (10) 0.72874 (5) 0.0372 (3)
H4A 0.5946 0.7257 0.7636 0.045*
H4B 0.6960 0.7388 0.7150 0.045*
C5 0.46406 (15) 0.47565 (9) 0.61694 (4) 0.0286 (3)
H5 0.4013 0.5165 0.5976 0.034*
C6 0.47012 (14) 0.37502 (9) 0.60550 (4) 0.0279 (3)
C7 0.38193 (14) 0.34008 (9) 0.56495 (4) 0.0276 (3)
C8 0.37692 (14) 0.24401 (9) 0.55517 (4) 0.0278 (3)
C9 0.46380 (15) 0.18119 (9) 0.58557 (4) 0.0285 (3)
C10 0.55834 (16) 0.21556 (9) 0.62441 (4) 0.0318 (3)
H10 0.6207 0.1746 0.6438 0.038*
C11 0.55890 (16) 0.31101 (9) 0.63400 (4) 0.0309 (3)
H11 0.6207 0.3331 0.6604 0.037*
C12 0.4689 (2) 0.87309 (11) 0.72222 (6) 0.0494 (4)
H12A 0.5711 0.8974 0.7078 0.074*
H12B 0.4757 0.8792 0.7568 0.074*
H12C 0.3724 0.9078 0.7105 0.074*
C13 0.3389 (2) 0.40626 (11) 0.48695 (5) 0.0441 (3)
H13A 0.2757 0.3594 0.4695 0.066*
H13B 0.4588 0.3941 0.4837 0.066*
H13C 0.3132 0.4673 0.4741 0.066*
C14 0.36197 (19) 0.16466 (11) 0.47953 (5) 0.0398 (3)
H14A 0.2870 0.1586 0.4522 0.060*
H14B 0.3962 0.1034 0.4903 0.060*
H14C 0.4610 0.2001 0.4703 0.060*
C15 0.51186 (19) 0.02173 (9) 0.60812 (5) 0.0400 (3)
H15A 0.4813 −0.0405 0.5980 0.060*
H15B 0.4666 0.0333 0.6399 0.060*
H15C 0.6338 0.0274 0.6089 0.060*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0377 (5) 0.0364 (5) 0.0363 (5) 0.0096 (4) −0.0095 (4) −0.0018 (4)
O2 0.0263 (4) 0.0382 (5) 0.0360 (5) 0.0000 (3) −0.0049 (3) −0.0069 (4)
O3 0.0389 (5) 0.0280 (5) 0.0388 (5) −0.0006 (4) −0.0020 (4) 0.0006 (4)
N1 0.0396 (6) 0.0337 (6) 0.0353 (6) −0.0016 (4) 0.0053 (4) −0.0043 (5)
N2 0.0288 (5) 0.0294 (5) 0.0303 (5) −0.0002 (4) −0.0043 (4) −0.0007 (4)
N3 0.0277 (5) 0.0297 (5) 0.0331 (5) −0.0011 (4) −0.0009 (4) −0.0004 (4)
C1 0.0374 (7) 0.0333 (7) 0.0366 (7) 0.0029 (5) −0.0056 (5) −0.0002 (5)
C2 0.0347 (6) 0.0356 (7) 0.0355 (6) 0.0017 (5) −0.0098 (5) −0.0020 (5)
C3 0.0395 (7) 0.0360 (7) 0.0298 (6) −0.0035 (5) −0.0063 (5) 0.0019 (5)
C4 0.0438 (7) 0.0399 (7) 0.0278 (6) −0.0075 (6) −0.0038 (5) −0.0022 (5)
C5 0.0250 (6) 0.0323 (6) 0.0286 (6) 0.0000 (5) 0.0003 (4) 0.0007 (5)
C6 0.0234 (5) 0.0328 (6) 0.0276 (6) −0.0008 (4) 0.0031 (4) −0.0001 (5)
C7 0.0220 (5) 0.0323 (6) 0.0285 (6) 0.0021 (4) 0.0015 (4) 0.0016 (5)
C8 0.0213 (5) 0.0352 (7) 0.0269 (6) −0.0012 (4) 0.0015 (4) −0.0022 (5)
C9 0.0260 (6) 0.0293 (6) 0.0300 (6) −0.0006 (4) 0.0045 (4) −0.0010 (5)
C10 0.0322 (6) 0.0335 (7) 0.0297 (6) 0.0031 (5) −0.0026 (5) 0.0040 (5)
C11 0.0297 (6) 0.0363 (7) 0.0267 (6) −0.0005 (5) −0.0022 (4) −0.0017 (5)
C12 0.0702 (11) 0.0380 (8) 0.0400 (8) −0.0030 (7) 0.0069 (7) −0.0063 (6)
C13 0.0510 (8) 0.0443 (8) 0.0370 (7) 0.0011 (6) −0.0104 (6) 0.0083 (6)
C14 0.0409 (7) 0.0442 (8) 0.0343 (7) 0.0017 (6) −0.0051 (5) −0.0104 (6)
C15 0.0428 (7) 0.0310 (7) 0.0462 (8) 0.0045 (6) −0.0006 (6) 0.0029 (6)

Geometric parameters (Å, º)

O1—C7 1.3747 (15) C5—H5 0.9300
O1—C13 1.4308 (17) C5—C6 1.4673 (17)
O2—C8 1.3745 (14) C6—C7 1.4071 (17)
O2—C14 1.4397 (16) C6—C11 1.3908 (18)
O3—C9 1.3614 (15) C7—C8 1.3941 (18)
O3—C15 1.4239 (16) C8—C9 1.4032 (18)
N1—C1 1.4570 (17) C9—C10 1.3928 (18)
N1—C4 1.4556 (19) C10—H10 0.9300
N1—C12 1.4567 (18) C10—C11 1.3838 (18)
N2—N3 1.3871 (14) C11—H11 0.9300
N2—C2 1.4579 (16) C12—H12A 0.9600
N2—C3 1.4623 (16) C12—H12B 0.9600
N3—C5 1.2852 (16) C12—H12C 0.9600
C1—H1A 0.9700 C13—H13A 0.9600
C1—H1B 0.9700 C13—H13B 0.9600
C1—C2 1.5167 (18) C13—H13C 0.9600
C2—H2A 0.9700 C14—H14A 0.9600
C2—H2B 0.9700 C14—H14B 0.9600
C3—H3A 0.9700 C14—H14C 0.9600
C3—H3B 0.9700 C15—H15A 0.9600
C3—C4 1.5154 (18) C15—H15B 0.9600
C4—H4A 0.9700 C15—H15C 0.9600
C4—H4B 0.9700
C7—O1—C13 115.69 (10) O1—C7—C6 117.76 (11)
C8—O2—C14 115.31 (10) O1—C7—C8 121.16 (11)
C9—O3—C15 117.64 (10) C8—C7—C6 120.97 (11)
C4—N1—C1 109.32 (10) O2—C8—C7 118.68 (11)
C4—N1—C12 111.54 (12) O2—C8—C9 121.42 (11)
C12—N1—C1 110.54 (11) C7—C8—C9 119.68 (11)
N3—N2—C2 118.20 (10) O3—C9—C8 115.60 (11)
N3—N2—C3 109.23 (10) O3—C9—C10 124.65 (11)
C2—N2—C3 112.02 (10) C10—C9—C8 119.72 (11)
C5—N3—N2 120.44 (11) C9—C10—H10 120.2
N1—C1—H1A 109.4 C11—C10—C9 119.59 (11)
N1—C1—H1B 109.4 C11—C10—H10 120.2
N1—C1—C2 111.30 (11) C6—C11—H11 118.9
H1A—C1—H1B 108.0 C10—C11—C6 122.20 (11)
C2—C1—H1A 109.4 C10—C11—H11 118.9
C2—C1—H1B 109.4 N1—C12—H12A 109.5
N2—C2—C1 110.37 (10) N1—C12—H12B 109.5
N2—C2—H2A 109.6 N1—C12—H12C 109.5
N2—C2—H2B 109.6 H12A—C12—H12B 109.5
C1—C2—H2A 109.6 H12A—C12—H12C 109.5
C1—C2—H2B 109.6 H12B—C12—H12C 109.5
H2A—C2—H2B 108.1 O1—C13—H13A 109.5
N2—C3—H3A 109.6 O1—C13—H13B 109.5
N2—C3—H3B 109.6 O1—C13—H13C 109.5
N2—C3—C4 110.43 (10) H13A—C13—H13B 109.5
H3A—C3—H3B 108.1 H13A—C13—H13C 109.5
C4—C3—H3A 109.6 H13B—C13—H13C 109.5
C4—C3—H3B 109.6 O2—C14—H14A 109.5
N1—C4—C3 110.21 (11) O2—C14—H14B 109.5
N1—C4—H4A 109.6 O2—C14—H14C 109.5
N1—C4—H4B 109.6 H14A—C14—H14B 109.5
C3—C4—H4A 109.6 H14A—C14—H14C 109.5
C3—C4—H4B 109.6 H14B—C14—H14C 109.5
H4A—C4—H4B 108.1 O3—C15—H15A 109.5
N3—C5—H5 120.3 O3—C15—H15B 109.5
N3—C5—C6 119.41 (11) O3—C15—H15C 109.5
C6—C5—H5 120.3 H15A—C15—H15B 109.5
C7—C6—C5 120.03 (11) H15A—C15—H15C 109.5
C11—C6—C5 122.24 (11) H15B—C15—H15C 109.5
C11—C6—C7 117.73 (11)
O1—C7—C8—O2 −2.82 (16) C5—C6—C7—C8 −175.85 (10)
O1—C7—C8—C9 −177.37 (10) C5—C6—C11—C10 177.07 (11)
O2—C8—C9—O3 1.80 (16) C6—C7—C8—O2 173.26 (10)
O2—C8—C9—C10 −176.27 (11) C6—C7—C8—C9 −1.30 (16)
O3—C9—C10—C11 −174.78 (11) C7—C6—C11—C10 −1.90 (18)
N1—C1—C2—N2 −55.98 (15) C7—C8—C9—O3 176.20 (10)
N2—N3—C5—C6 177.42 (10) C7—C8—C9—C10 −1.88 (17)
N2—C3—C4—N1 58.01 (14) C8—C9—C10—C11 3.11 (18)
N3—N2—C2—C1 −177.82 (10) C9—C10—C11—C6 −1.20 (19)
N3—N2—C3—C4 171.89 (10) C11—C6—C7—O1 179.34 (10)
N3—C5—C6—C7 −179.49 (11) C11—C6—C7—C8 3.14 (17)
N3—C5—C6—C11 1.57 (18) C12—N1—C1—C2 −177.65 (12)
C1—N1—C4—C3 −59.88 (14) C12—N1—C4—C3 177.56 (11)
C2—N2—N3—C5 19.32 (17) C13—O1—C7—C6 122.85 (12)
C2—N2—C3—C4 −55.19 (14) C13—O1—C7—C8 −60.96 (15)
C3—N2—N3—C5 148.93 (11) C14—O2—C8—C7 119.41 (12)
C3—N2—C2—C1 53.86 (14) C14—O2—C8—C9 −66.14 (15)
C4—N1—C1—C2 59.20 (14) C15—O3—C9—C8 −172.57 (11)
C5—C6—C7—O1 0.35 (16) C15—O3—C9—C10 5.40 (17)

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: HG5389).

References

  1. Agilent (2012). CrysAlis PRO and CrysAlis RED Agilent Technologies, Yarnton, England.
  2. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans.2 , pp. S1–19.
  3. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  4. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  5. Elliott, S. (2011). Drug Test Anal. 3, 430–438. [DOI] [PubMed]
  6. Guo, M.-L. (2007). Acta Cryst. E63, o1788–o1789.
  7. Guo, M.-L. & Qiu, Y.-N. (2007). Acta Cryst. E63, o4641.
  8. Kavitha, C. N., Jasinski, J. P., Anderson, B. J., Yathirajan, H. S. & Kaur, M. (2013a). Acta Cryst. E69, o1706. [DOI] [PMC free article] [PubMed]
  9. Kavitha, C. N., Jasinski, J. P., Anderson, B. J., Yathirajan, H. S. & Kaur, M. (2013b). Acta Cryst. E69, o1687–o1688. [DOI] [PMC free article] [PubMed]
  10. Kharb, R., Bansal, K. & Sharma, A. K. (2012). Der Pharma Chem. 4, 2470–2488.
  11. Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.
  12. Savaliya, M. D., Dobaria, J. G. & Purohit, D. M. (2010). An Indian J. 6, 267–271.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Xu, R.-B., Xu, X.-Y., Wang, D.-Q., Yang, X.-J. & Li, S. (2009). Acta Cryst. E65, o2997. [DOI] [PMC free article] [PubMed]
  15. Xu, R.-B., Zhang, N., Zhou, H.-Y., Yang, S.-P., Li, Y.-Y., Shi, D.-H., Ma, W.-X. & Xu, X.-Y. (2012). J. Chem. Crystallogr. 42, 928-932.
  16. Zhou, L.-N., Yan, L., Zhou, H.-L., Yang, Q.-F. & Hu, Q.-L. (2011). Acta Cryst. E67, o100. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814006291/hg5389sup1.cif

e-70-0o500-sup1.cif (24.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814006291/hg5389Isup2.hkl

e-70-0o500-Isup2.hkl (163.6KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814006291/hg5389Isup3.cml

CCDC reference: 992877

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES