Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Mar 26;70(Pt 4):o473–o474. doi: 10.1107/S160053681400525X

2-Amino-5-nitro­pyridinium hydrogen oxalate

M Ambrose Rajkumar a, S Stanly John Xavier b, S Anbarasu a, Prem Anand Devarajan a,*, M NizamMohideen c,*
PMCID: PMC3998560  PMID: 24826170

Abstract

In the cation of the title mol­ecular salt, C5H6N3O2 +·C2HO4 , the dihedral angle between the aromatic ring and the nitro group is 3.5 (3)°; in the anion, the dihedral angle between the CO2 and CO2H planes is 10.5 (2)°. In the crystal, the anions are linked into [100] chains by O—H⋯O hydrogen bonds. The cations cross-link the chains by way of N—H⋯O hydrogen bonds and the structure is consolidated by C—H⋯O inter­actions.

Related literature  

For the crystal structures of related pyridine derivatives, see: Babu et al. (2014); Anderson et al. (2005); Karle et al. (2003). For simple organic–inorganic salts containing strong inter­molecular hydrogen bonds, see: Fu et al. (2011); Sethuram et al. (2013a ,b ); Shihabuddeen Syed et al. (2013); Showrilu et al. (2013); Huq et al. (2013). For the structure of oxalic acid, see: Derissen & Smith (1974). For graph-set analysis, see: Bernstein et al.(1995). graphic file with name e-70-0o473-scheme1.jpg

Experimental  

Crystal data  

  • C5H6N3O2 +·C2HO4

  • M r = 229.16

  • Triclinic, Inline graphic

  • a = 5.5609 (2) Å

  • b = 9.2012 (4) Å

  • c = 9.2305 (4) Å

  • α = 90.245 (2)°

  • β = 98.500 (2)°

  • γ = 100.038 (2)°

  • V = 459.74 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.15 mm−1

  • T = 293 K

  • 0.35 × 0.30 × 0.30 mm

Data collection  

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004) T min = 0.950, T max = 0.957

  • 10142 measured reflections

  • 1615 independent reflections

  • 1417 reflections with I > 2σ(I)

  • R int = 0.020

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.110

  • S = 1.07

  • 1615 reflections

  • 153 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.32 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681400525X/jj2183sup1.cif

e-70-0o473-sup1.cif (18.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681400525X/jj2183Isup2.hkl

e-70-0o473-Isup2.hkl (77.9KB, hkl)

Supporting information file. DOI: 10.1107/S160053681400525X/jj2183Isup3.cml

CCDC reference: 990527

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O5i 0.93 2.48 3.323 (2) 152
C3—H3⋯O2ii 0.93 2.37 3.296 (2) 178
C5—H5⋯O1iii 0.93 2.42 3.186 (2) 140
C5—H5⋯O4iv 0.93 2.44 2.970 (2) 116
N1—H1⋯O6iv 0.86 1.94 2.7697 (18) 160
O4—H4⋯O5v 0.82 1.64 2.4486 (16) 170
N2—H2A⋯O3v 0.89 (3) 2.16 (3) 2.959 (2) 149 (2)
N2—H2A⋯O5v 0.89 (3) 2.36 (3) 3.007 (2) 130 (2)
N2—H2B⋯O3vi 0.89 (3) 1.99 (3) 2.870 (2) 173 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

Acknowledgments

MAR, DPA and SJX would like to thank the Board of Research in Nuclear Sciences, Department of Atomic Energy (BRNS-DAE) (file No. 2012/34/63/BRNS/2865; dated 01/03/2013), for funding this major research project.

supplementary crystallographic information

1. Comment

Simple organic–inorganic salts containing strong intermolecular hydrogen bonds have attracted an attention as materials which display ferroelectric-paraelectric phase transitions (Fu et al., 2011; Sethuram, et al., 2013a,b; Huq, et al., 2013; Shihabuddeen Syed, et al., 2013; Showrilu, et al., 2013). As part of our ongoing investigations of pyridine derivatives (Babu et al., 2014), the title compound was synthesized and we report herein on its crystal structure.

In the title salt, (C5H6N3O2)+, (C2HO4)-, the asymmetric unit consists of an independent 2-amino-5-nitropyridinium cation, and oxalic actetate anion, which lie on an inversion symmetry. A proton transfer from the carboxyl group of oxalic acid to atom N1 of 2-amino-5-nitro pyridinine resulted in the formation of a salt. This protonation lead to the widening of the C5-N1-C1 angle of the pyridine ring to 122.79 (14)°, compared to 115.25 (13)° in the unprotonated aminopyridine (Anderson et al., 2005). This type of protonation is observed in various aminopyridine acid complexes (Babu et al., 2014; Karle et al., 2003).

The bond lengths and bond angles of the aminopyridine are comparable to the values reported earlier for aminopyridine (Babu et al., 2014; Anderson et al., 2005). The bond lengths and bond angles of the oxalate are comparable to the values reported for oxalic acid (Derissen & Smith, 1974). The non hydrogen pyridine ring, C1/C2/C3/C4/C5/N1, is planar with a maximum deviation of 0.006 (1)Å from the least squares plane for the C3 atom, with the endocyclic angles covering range of 117.88 (16) - 122.79 (14)°. The hydrogen oxalate anion O3/O4/O5/O6/C6/C7, is less planar with a maximum deviation of -0.131 (1)Å for the O3 and O6 atoms.

The crystal packing is consolidated by intermolecular N—H···O and O—H···O hydrogen bonds and weak C—H···O intermolecular interactions (Table 1 and Fig. 2). In the crystal structure, the 2-Amino-5-nitropyridinium unit is bound to acetate anions by five distinct N—H···O hydrogen bonds. The ion pairs are joined by two N—H···O hydrogen bonds in which the N atom of the 2-amino-5-nitroPyridinium unit acts as a bifurcated donor, thus generating R12(5) ring motifs (Bernstein et al., 1995). The hydroxyl group hydrogen atom is also hydrogen-bonded to the carboxylate oxygen atom through strong intermolecular O—H···O hydrogen bonds, with the O···O distance of 2.4486 (16)Å, which is from a chain, C(5), running along the b axis (Bernstein et al., 1995). The structure is further stabilized by weak C—H···O intermolecular inteactions, forming a three-dimensional network.

2. Experimental

Crystals of the title compound were obtained by slow evaporation of a 1:1 mol. mixture of 2-amino-5-nitropyridine and oxalic acid in methanol at room temperature.

3. Refinement

The amino group NH2 H atoms of the pyridine derivatives were located in difference Fourier maps and refined in the riding mode approximation. The OH, NH(Protonated) and C-bound H-atoms were placed in calculated positions and treated as riding atoms: O-H = 0.82Å, N-H = 0.86Å, C-H = 0.93Å with Uiso(H) = 1.5Ueq(O) and = 1.2Ueq(N,C) for other H atoms.

Figures

Fig. 1.

Fig. 1.

View of the title compound showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level. H atoms are presented as a small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

The crystal packing of the title compound viewed along a axis. N—H···O, O—H···O hydrogen bonds and weak C—H···O intermolecular inteeractions are shown as dashed lines, forming a three-dimensional network. H atoms not involved in hydrogen bonding have been omitted for clarity.

Crystal data

C5H6N3O2+·C2HO4 Z = 2
Mr = 229.16 F(000) = 236
Triclinic, P1 Dx = 1.655 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 5.5609 (2) Å Cell parameters from 2794 reflections
b = 9.2012 (4) Å θ = 2.4–31.1°
c = 9.2305 (4) Å µ = 0.15 mm1
α = 90.245 (2)° T = 293 K
β = 98.500 (2)° Block, colourless
γ = 100.038 (2)° 0.35 × 0.30 × 0.30 mm
V = 459.74 (3) Å3

Data collection

Bruker Kappa APEXII CCD diffractometer 1615 independent reflections
Radiation source: fine-focus sealed tube 1417 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.020
Detector resolution: 0.1000 pixels mm-1 θmax = 25.0°, θmin = 2.2°
ω and φ scans h = −6→6
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) k = −10→10
Tmin = 0.950, Tmax = 0.957 l = −10→10
10142 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110 H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0559P)2 + 0.2329P] where P = (Fo2 + 2Fc2)/3
1615 reflections (Δ/σ)max < 0.001
153 parameters Δρmax = 0.28 e Å3
0 restraints Δρmin = −0.32 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.3486 (3) 0.30577 (19) 0.87248 (18) 0.0302 (4)
C2 0.5136 (3) 0.2468 (2) 0.97783 (19) 0.0361 (4)
H2 0.5206 0.2695 1.0768 0.043*
C3 0.6606 (3) 0.1580 (2) 0.9356 (2) 0.0380 (4)
H3 0.7711 0.1201 1.0046 0.046*
C4 0.6446 (3) 0.12349 (19) 0.78639 (19) 0.0338 (4)
C5 0.4879 (3) 0.18053 (19) 0.68547 (19) 0.0332 (4)
H5 0.4796 0.1582 0.5863 0.040*
C6 0.8206 (3) 0.61691 (18) 0.66445 (17) 0.0270 (4)
C7 1.0607 (3) 0.64305 (19) 0.59536 (17) 0.0269 (4)
N1 0.3441 (3) 0.26987 (16) 0.72996 (15) 0.0323 (4)
H1 0.2451 0.3057 0.6649 0.039*
N2 0.2009 (3) 0.39211 (19) 0.90933 (19) 0.0408 (4)
N3 0.7996 (3) 0.02858 (19) 0.73614 (19) 0.0450 (4)
O1 0.7803 (3) −0.0001 (2) 0.60645 (19) 0.0674 (5)
O2 0.9490 (4) −0.0148 (3) 0.8270 (2) 0.0882 (7)
O3 0.8197 (2) 0.56345 (16) 0.78510 (13) 0.0410 (4)
O4 0.6388 (2) 0.65291 (16) 0.58166 (14) 0.0409 (4)
H4 0.5159 0.6372 0.6226 0.061*
O5 1.2521 (2) 0.62615 (16) 0.68401 (13) 0.0395 (4)
O6 1.0537 (2) 0.67353 (14) 0.46624 (12) 0.0342 (3)
H2A 0.114 (5) 0.439 (3) 0.842 (3) 0.060 (7)*
H2B 0.208 (4) 0.407 (2) 1.005 (3) 0.051 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0316 (9) 0.0336 (9) 0.0242 (8) 0.0042 (7) 0.0024 (7) 0.0058 (7)
C2 0.0424 (10) 0.0428 (10) 0.0217 (8) 0.0085 (8) −0.0013 (7) 0.0051 (7)
C3 0.0379 (10) 0.0426 (10) 0.0313 (9) 0.0111 (8) −0.0070 (7) 0.0093 (8)
C4 0.0324 (9) 0.0333 (9) 0.0351 (10) 0.0082 (7) 0.0002 (7) 0.0039 (7)
C5 0.0387 (10) 0.0347 (9) 0.0253 (9) 0.0074 (7) 0.0010 (7) 0.0015 (7)
C6 0.0212 (8) 0.0392 (9) 0.0216 (8) 0.0085 (7) 0.0027 (6) 0.0034 (6)
C7 0.0205 (8) 0.0390 (9) 0.0221 (8) 0.0082 (6) 0.0022 (6) 0.0029 (6)
N1 0.0344 (8) 0.0391 (8) 0.0231 (7) 0.0118 (6) −0.0027 (6) 0.0064 (6)
N2 0.0464 (10) 0.0537 (10) 0.0275 (9) 0.0224 (8) 0.0064 (7) 0.0078 (7)
N3 0.0458 (10) 0.0423 (9) 0.0481 (11) 0.0169 (8) −0.0003 (8) 0.0007 (7)
O1 0.0832 (12) 0.0683 (11) 0.0567 (10) 0.0355 (9) 0.0044 (9) −0.0148 (8)
O2 0.0942 (14) 0.1202 (17) 0.0668 (12) 0.0807 (14) −0.0069 (10) 0.0069 (11)
O3 0.0313 (7) 0.0720 (9) 0.0249 (7) 0.0190 (6) 0.0090 (5) 0.0143 (6)
O4 0.0193 (6) 0.0712 (9) 0.0359 (7) 0.0150 (6) 0.0074 (5) 0.0221 (6)
O5 0.0192 (6) 0.0751 (10) 0.0257 (6) 0.0139 (6) 0.0014 (5) 0.0102 (6)
O6 0.0257 (6) 0.0560 (8) 0.0234 (6) 0.0122 (5) 0.0054 (5) 0.0099 (5)

Geometric parameters (Å, º)

C1—N2 1.315 (2) C6—O3 1.220 (2)
C1—N1 1.351 (2) C6—O4 1.268 (2)
C1—C2 1.413 (2) C6—C7 1.545 (2)
C2—C3 1.347 (3) C7—O6 1.222 (2)
C2—H2 0.9300 C7—O5 1.2759 (19)
C3—C4 1.398 (3) N1—H1 0.8600
C3—H3 0.9300 N2—H2A 0.89 (3)
C4—C5 1.352 (2) N2—H2B 0.89 (3)
C4—N3 1.448 (2) N3—O1 1.210 (2)
C5—N1 1.344 (2) N3—O2 1.211 (2)
C5—H5 0.9300 O4—H4 0.8200
N2—C1—N1 119.96 (16) O3—C6—C7 120.04 (14)
N2—C1—C2 122.16 (16) O4—C6—C7 112.84 (13)
N1—C1—C2 117.88 (16) O6—C7—O5 126.27 (14)
C3—C2—C1 120.31 (16) O6—C7—C6 120.06 (14)
C3—C2—H2 119.8 O5—C7—C6 113.64 (13)
C1—C2—H2 119.8 C5—N1—C1 122.79 (14)
C2—C3—C4 118.97 (16) C5—N1—H1 118.6
C2—C3—H3 120.5 C1—N1—H1 118.6
C4—C3—H3 120.5 C1—N2—H2A 121.5 (16)
C5—C4—C3 120.75 (17) C1—N2—H2B 115.1 (15)
C5—C4—N3 118.45 (16) H2A—N2—H2B 123 (2)
C3—C4—N3 120.79 (16) O1—N3—O2 123.01 (19)
N1—C5—C4 119.29 (16) O1—N3—C4 119.28 (16)
N1—C5—H5 120.4 O2—N3—C4 117.68 (17)
C4—C5—H5 120.4 C6—O4—H4 109.5
O3—C6—O4 127.10 (15)
N2—C1—C2—C3 179.55 (17) O3—C6—C7—O5 −10.4 (2)
N1—C1—C2—C3 0.1 (3) O4—C6—C7—O5 171.21 (16)
C1—C2—C3—C4 −0.9 (3) C4—C5—N1—C1 −0.1 (3)
C2—C3—C4—C5 1.3 (3) N2—C1—N1—C5 −179.04 (16)
C2—C3—C4—N3 179.89 (17) C2—C1—N1—C5 0.4 (3)
C3—C4—C5—N1 −0.8 (3) C5—C4—N3—O1 −1.9 (3)
N3—C4—C5—N1 −179.43 (16) C3—C4—N3—O1 179.50 (18)
O3—C6—C7—O6 168.06 (17) C5—C4—N3—O2 175.9 (2)
O4—C6—C7—O6 −10.3 (2) C3—C4—N3—O2 −2.7 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C2—H2···O5i 0.93 2.48 3.323 (2) 152
C3—H3···O2ii 0.93 2.37 3.296 (2) 178
C5—H5···O1iii 0.93 2.42 3.186 (2) 140
C5—H5···O4iv 0.93 2.44 2.970 (2) 116
N1—H1···O4iv 0.86 2.47 2.9770 (18) 119
N1—H1···O6iv 0.86 1.94 2.7697 (18) 160
O4—H4···O5v 0.82 1.64 2.4486 (16) 170
N2—H2A···O3v 0.89 (3) 2.16 (3) 2.959 (2) 149 (2)
N2—H2A···O5v 0.89 (3) 2.36 (3) 3.007 (2) 130 (2)
N2—H2B···O3vi 0.89 (3) 1.99 (3) 2.870 (2) 173 (2)

Symmetry codes: (i) −x+2, −y+1, −z+2; (ii) −x+2, −y, −z+2; (iii) −x+1, −y, −z+1; (iv) −x+1, −y+1, −z+1; (v) x−1, y, z; (vi) −x+1, −y+1, −z+2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: JJ2183).

References

  1. Anderson, F. P., Gallagher, J. F., Kenny, P. T. M. & Lough, A. J. (2005). Acta Cryst. E61, o1350–o1353.
  2. Babu, K. S. S., Peramaiyan, G., NizamMohideen, M. & Mohan, R. (2014). Acta Cryst. E70, o391–o392. [DOI] [PMC free article] [PubMed]
  3. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  4. Bruker (2004). APEX2, SAINT and XPREP Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Derissen, J. L. & Smith, P. H. (1974). Acta Cryst. B30, 2240–2242.
  6. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  7. Fu, D.-W., Zhang, W., Cai, H.-L., Ge, J.-Z., Zhang, Y. & Xiong, R.-G. (2011). Adv. Mater. 23, 5658–5662. [DOI] [PubMed]
  8. Huq, C. A. M. A., Fouzia, S. & NizamMohideen, M. (2013). Acta Cryst. E69, o1766–o1767. [DOI] [PMC free article] [PubMed]
  9. Karle, I., Gilardi, R. D., Chandrashekhar Rao, Ch., Muraleedharan, K. M. & Ranganathan, S. (2003). J. Chem. Crystallogr. 33, 727–749.
  10. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  11. Sethuram, M., Bhargavi, G., Dhandapani, M., Amirthaganesan, G. & NizamMohideen, M. (2013a). Acta Cryst. E69, o1301–o1302. [DOI] [PMC free article] [PubMed]
  12. Sethuram, M., Rajasekharan, M. V., Dhandapani, M., Amirthaganesan, G. & NizamMohideen, M. (2013b). Acta Cryst. E69, o957–o958. [DOI] [PMC free article] [PubMed]
  13. Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Shihabuddeen Syed, A., Rajarajan, K. & NizamMohideen, M. (2013). Acta Cryst. E69, i33. [DOI] [PMC free article] [PubMed]
  16. Showrilu, K., Rajarajan, K. & NizamMohideen, M. (2013). Acta Cryst. E69, m469–m470. [DOI] [PMC free article] [PubMed]
  17. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681400525X/jj2183sup1.cif

e-70-0o473-sup1.cif (18.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681400525X/jj2183Isup2.hkl

e-70-0o473-Isup2.hkl (77.9KB, hkl)

Supporting information file. DOI: 10.1107/S160053681400525X/jj2183Isup3.cml

CCDC reference: 990527

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES