Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Mar 12;70(Pt 4):o423. doi: 10.1107/S1600536814004802

1,5-Bis(2-hy­droxy-3-meth­oxy­benzyl­idene)carbonohydrazide methanol 0.47-solvate

Mouhamadou Moustapha Sow a, Ousmane Diouf a, Matar Seck b, Aliou Hamady Barry c, Mohamed Gaye a,*
PMCID: PMC3998575  PMID: 24826134

Abstract

In the title compound, C17H18N4O5·0.47CH3OH, the virtually planar (r.m.s. deviation = 0.128 Å) carbonohydrazide mol­ecule is located on a twofold axis and conformation of its C=N bonds is E. There are short intra­molecular O—H⋯N hydrogen bonds between the hy­droxy groups and hydrazide N atoms. In the crystal, bifurcated N—H⋯(O,O) hydrogen bonds assemble the carbonohydrazide mol­ecules into a three-dimensional network. There are C 2 symmetric voids in this network, 47% of which are occupied by disordered methanol mol­ecules.

Related literature  

For related structures, see: Du & Zhang (2010); He et al. (2010); Kong et al. (2010). For the biological activity of carbonohydrazides, see: Bacchi et al. (1999); El-Gammal et al. (2012).graphic file with name e-70-0o423-scheme1.jpg

Experimental  

Crystal data  

  • C17H18N4O5·0.47CH4O

  • M r = 373.40

  • Orthorhombic, Inline graphic

  • a = 9.4470 (7) Å

  • b = 17.5850 (9) Å

  • c = 22.8714 (12) Å

  • V = 3799.5 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.1 × 0.08 × 0.05 mm

Data collection  

  • Enraf–Nonius CAD-4 diffractometer

  • 9573 measured reflections

  • 862 independent reflections

  • 658 reflections with I > 2σ(I)

  • R int = 0.105

  • 2 standard reflections every 120 min intensity decay: 2%

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.111

  • S = 1.25

  • 862 reflections

  • 146 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick,2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536814004802/gk2603sup1.cif

e-70-0o423-sup1.cif (19.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814004802/gk2603Isup2.hkl

e-70-0o423-Isup2.hkl (42.2KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814004802/gk2603Isup3.cml

CCDC reference: 989432

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯N1 0.91 (5) 1.86 (5) 2.703 (5) 152 (5)
N2—H2N⋯O3i 0.94 (6) 2.38 (5) 3.044 (6) 128 (4)
N2—H2N⋯O1i 0.94 (6) 2.33 (6) 3.204 (6) 155 (4)

Symmetry code: (i) Inline graphic.

supplementary crystallographic information

1. Comment

Carbonohydrazide derivatives give rise to a large spectrum of biological properties such as antioxidant (El-Gammal et al., 2012) and anticancer activities (Bacchi et al., 1999). We report here the crystal structure of the title compound synthesized according to literature (He et al., 2010; Du et al., 2010). All parameters are within normal ranges and comparable with the related structures (Kong et al., 2010).

The molecular structure of the title compound is shown in Fig. 1. The complete carbonohydrazide molecule is generated by a twofold crystallographic axis passing throuth the atoms C8 and O2. A three-center O···(N)H···O intermolecular hydrogen bond involving the amido H atoms and the phenoxo and methoxy O atoms is observed (Fig. 2). There are voids in a three dimensional network containing solvent methanol molecules. Only one methanol molecule can be accommodated in a small void that has C2 symmetry. This leads to disorder of methanol molecules. In addition refinement of occupancy factors of methanol O and C atoms converged at 0.234 (1), indicating that 47% of voids are occupied by the solvent.

2. Experimental

In a round bottomed flask, carbonohydrazide (1.0 g, 11.11 mmol) was introduced with methanol (10 ml). o-Vanillin (3.3 g, 22.22 mmol) dissolved in 10 ml of the same solvent was added. Two drops of glacial acetic acid were added while stirring. After one hour under reflux, the precipitate formed that after cooling to room temperature was filtered off and washed with cold methanol. The resulting solid was dried in air. The filtrate was left at room temperature. Slow evaporation of the solvent gave colorless crystals after one day. Yield: 95%; m.p. 378 K. Anal. Calc. for [C17H18N4O5] (%): C, 56.98; H, 5.06, N, 15.63. Found: C, 56.96; H, 5.04; N, 15.60. Selected IR data (cm-1, KBr pellet): 3291, 2942, 1696, 1553, 1200, 1167. 1H-NMR (DMSO-d6) δ: 3.8 (s, 6H, O—CH3); 6.7 – 7.1 (m, 6H, HAromatic); 8.5 (s, 2H, H—C═N); 7.3 (s, 1H, H—N); 11 (s, 2H, H—O) p.p.m. 13C-NMR (DMSO-d6) d: 151.8 (C═O); 147.8, 146.1, 119.5, 119.4, 118.8, 112.8 (CAromatic); 58,7 (–O—CH3).

3. Refinement

H atoms of the NH and OH groups were located in the Fourier difference maps and refined without restraints. Otherg H atoms were geometrically optimized and refined as riding on their carriers with Uiso(H) = 1.2Ueq(C)(1.5 for CH3 groups). Considerable disorder was detected for the solvent methanol molecule. The occupancy factor of the C and O atoms of methanol refined at 0.234 (1). Thus, there are 0.46 methanol molecules per one carbonohydrazide molecule in the crystal. Owing to a negligible anomalous dispersion effect the Friedel pairs were merged and the absolute structure was not determined.

Figures

Fig. 1.

Fig. 1.

An ORTEP view of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are plotted at the 50% probability level. Only one position of the disordered solvent methanol molecule is shown for clarity. The symmetry code for generating primed atoms is 2-x,-y,z

Fig. 2.

Fig. 2.

Intramoleculr and intermolecular hydrogen bonds. Solvent methanol molecules are omitted as they do not form hydrogen bonds.

Crystal data

C17H18N4O5·0.47CH4O F(000) = 1571.4
Mr = 373.40 Dx = 1.306 Mg m3
Orthorhombic, Fdd2 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: F 2 -2d Cell parameters from 25 reflections
a = 9.4470 (7) Å θ = 11–15°
b = 17.5850 (9) Å µ = 0.10 mm1
c = 22.8714 (12) Å T = 293 K
V = 3799.5 (4) Å3 Prismatic, colorless
Z = 8 0.1 × 0.08 × 0.05 mm

Data collection

Enraf–Nonius CAD-4 diffractometer Rint = 0.105
Radiation source: fine-focus sealed tube θmax = 25.0°, θmin = 2.6°
Graphite monochromator h = −11→11
non–profiled ω/2θ scans k = −1→20
9573 measured reflections l = −27→27
862 independent reflections 2 standard reflections every 120 min
658 reflections with I > 2σ(I) intensity decay: 2%

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111 H atoms treated by a mixture of independent and constrained refinement
S = 1.25 w = 1/[σ2(Fo2) + (0.0306P)2 + 5.2614P] where P = (Fo2 + 2Fc2)/3
862 reflections (Δ/σ)max < 0.001
146 parameters Δρmax = 0.17 e Å3
1 restraint Δρmin = −0.19 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1 0.6805 (4) 0.1635 (2) 0.02775 (15) 0.0559 (10)
O2 1.0000 0.0000 0.0525 (2) 0.0641 (14)
O3 0.4920 (4) 0.2637 (2) −0.00424 (17) 0.0680 (12)
N1 0.8123 (4) 0.0896 (2) 0.11591 (18) 0.0471 (10)
N2 0.9127 (5) 0.0436 (2) 0.1418 (2) 0.0533 (11)
C1 0.6048 (5) 0.1974 (3) 0.0728 (2) 0.0459 (12)
C2 0.5016 (5) 0.2512 (3) 0.0560 (2) 0.0512 (13)
C3 0.4200 (5) 0.2864 (3) 0.0996 (3) 0.0567 (14)
H3 0.3505 0.3211 0.0888 0.068*
C4 0.4409 (5) 0.2704 (3) 0.1594 (3) 0.0595 (15)
H4 0.3856 0.2946 0.1874 0.071*
C5 0.5434 (5) 0.2189 (3) 0.1765 (2) 0.0528 (13)
H5 0.5580 0.2087 0.2159 0.063*
C6 0.6269 (5) 0.1813 (3) 0.1329 (2) 0.0423 (11)
C7 0.7364 (5) 0.1284 (3) 0.1531 (2) 0.0459 (12)
H7 0.7519 0.1223 0.1930 0.055*
C8 1.0000 0.0000 0.1068 (3) 0.0467 (17)
C9 0.4052 (7) 0.3261 (4) −0.0244 (3) 0.0779 (19)
H9A 0.4081 0.3283 −0.0663 0.117*
H9B 0.4405 0.3729 −0.0086 0.117*
H9C 0.3093 0.3185 −0.0118 0.117*
O4 0.579 (2) 0.1913 (12) 0.3182 (9) 0.098 (9) 0.234 (11)
H1M 0.5601 0.1599 0.3453 0.148* 0.234 (11)
C10 0.703 (3) 0.2337 (18) 0.3207 (10) 0.075 (10) 0.234 (11)
H10A 0.7221 0.2638 0.3554 0.113* 0.234 (11)
H10B 0.7221 0.2638 0.2861 0.113* 0.234 (11)
H10C 0.7632 0.1890 0.3207 0.113* 0.234 (11)
H1O 0.743 (5) 0.134 (3) 0.048 (2) 0.057 (15)*
H2N 0.916 (5) 0.040 (3) 0.183 (3) 0.052 (15)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.062 (2) 0.055 (2) 0.051 (2) 0.0187 (18) −0.0048 (18) −0.0067 (17)
O2 0.077 (4) 0.069 (3) 0.047 (3) 0.019 (3) 0.000 0.000
O3 0.076 (3) 0.063 (2) 0.066 (3) 0.026 (2) −0.0196 (19) −0.001 (2)
N1 0.043 (2) 0.045 (2) 0.053 (2) 0.004 (2) −0.0026 (19) 0.0038 (19)
N2 0.054 (3) 0.059 (2) 0.047 (3) 0.020 (2) −0.001 (2) 0.004 (2)
C1 0.038 (3) 0.044 (2) 0.056 (3) 0.000 (2) −0.002 (2) −0.005 (2)
C2 0.046 (3) 0.042 (2) 0.065 (3) 0.004 (2) −0.010 (3) 0.001 (3)
C3 0.039 (3) 0.049 (3) 0.082 (4) 0.006 (2) −0.001 (3) −0.005 (3)
C4 0.047 (3) 0.052 (3) 0.080 (4) 0.002 (3) 0.017 (3) −0.008 (3)
C5 0.046 (3) 0.053 (3) 0.059 (3) −0.002 (2) 0.014 (2) 0.002 (3)
C6 0.039 (3) 0.035 (2) 0.052 (3) −0.001 (2) 0.004 (2) −0.002 (2)
C7 0.047 (3) 0.044 (3) 0.046 (3) −0.001 (2) 0.000 (2) 0.006 (2)
C8 0.047 (4) 0.040 (4) 0.053 (5) 0.003 (3) 0.000 0.000
C9 0.082 (4) 0.058 (3) 0.094 (5) 0.015 (3) −0.025 (4) 0.014 (3)
O4 0.117 (19) 0.087 (15) 0.091 (17) 0.004 (12) 0.030 (13) 0.010 (12)
C10 0.07 (2) 0.10 (3) 0.057 (16) 0.021 (19) −0.001 (11) −0.018 (15)

Geometric parameters (Å, º)

O1—C1 1.389 (6) C4—H4 0.9300
O1—H1O 0.91 (5) C5—C6 1.433 (7)
O2—C8 1.243 (8) C5—H5 0.9300
O3—C2 1.397 (6) C6—C7 1.466 (6)
O3—C9 1.445 (6) C7—H7 0.9300
N1—C7 1.305 (6) C8—N2i 1.381 (6)
N1—N2 1.381 (5) C9—H9A 0.9600
N2—C8 1.381 (6) C9—H9B 0.9600
N2—H2N 0.94 (6) C9—H9C 0.9600
C1—C2 1.413 (6) O4—C10 1.39 (3)
C1—C6 1.418 (7) O4—H1M 0.8500
C2—C3 1.405 (8) C10—C10ii 1.06 (5)
C3—C4 1.411 (8) C10—H10A 0.9700
C3—H3 0.9300 C10—H10B 0.9700
C4—C5 1.382 (7) C10—H10C 0.9700
C1—O1—H1O 102 (3) N1—C7—C6 121.0 (4)
C2—O3—C9 118.1 (4) N1—C7—H7 119.5
C7—N1—N2 113.9 (4) C6—C7—H7 119.5
N1—N2—C8 119.1 (5) O2—C8—N2 125.4 (3)
N1—N2—H2N 120 (3) O2—C8—N2i 125.4 (3)
C8—N2—H2N 121 (3) N2—C8—N2i 109.2 (7)
O1—C1—C2 116.1 (5) O3—C9—H9A 109.5
O1—C1—C6 123.9 (4) O3—C9—H9B 109.5
C2—C1—C6 120.0 (5) H9A—C9—H9B 109.5
O3—C2—C3 126.5 (5) O3—C9—H9C 109.5
O3—C2—C1 114.8 (5) H9A—C9—H9C 109.5
C3—C2—C1 118.7 (5) H9B—C9—H9C 109.5
C2—C3—C4 121.7 (5) C10—O4—H1M 119.9
C2—C3—H3 119.2 C10ii—C10—O4 177.6 (17)
C4—C3—H3 119.2 C10ii—C10—H10A 63.1
C5—C4—C3 120.2 (5) O4—C10—H10A 118.9
C5—C4—H4 119.9 C10ii—C10—H10B 63.1
C3—C4—H4 119.9 O4—C10—H10B 114.5
C4—C5—C6 119.4 (5) H10A—C10—H10B 109.6
C4—C5—H5 120.3 C10ii—C10—H10C 87.1
C6—C5—H5 120.3 O4—C10—H10C 93.3
C1—C6—C5 120.1 (4) H10A—C10—H10C 109.6
C1—C6—C7 122.3 (4) H10B—C10—H10C 109.6
C5—C6—C7 117.5 (4)

Symmetry codes: (i) −x+2, −y, z; (ii) −x+3/2, −y+1/2, z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1O···N1 0.91 (5) 1.86 (5) 2.703 (5) 152 (5)
N2—H2N···O3iii 0.94 (6) 2.38 (5) 3.044 (6) 128 (4)
N2—H2N···O1iii 0.94 (6) 2.33 (6) 3.204 (6) 155 (4)

Symmetry code: (iii) x+1/4, −y+1/4, z+1/4.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: GK2603).

References

  1. Bacchi, A., Carcelli, M., Pelagatti, P., Pelizzi, C., Pelizzi, G. & Zani, F. (1999). J. Inorg. Biochem. 75, 123–133. [DOI] [PubMed]
  2. Du, L. & Zhang, W. (2010). Acta Cryst. E66, o2645. [DOI] [PMC free article] [PubMed]
  3. El-Gammal, O. A., Abu El-Reash, G. M., Ghazy, S. E. & Radwan, A. H. (2012). J. Mol. Struct. 1020, 6–15.
  4. Enraf–Nonius (1994). CAD-4 EXPRESS Enraf–Nonius, Delft, The Netherlands.
  5. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  6. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  7. He, Q.-P., Tan, B. & Lu, Z.-H. (2010). Acta Cryst. E66, o2968. [DOI] [PMC free article] [PubMed]
  8. Kong, L., Qiao, Y., Gao, Z. & Ju, X. (2010). Acta Cryst. E66, o2901. [DOI] [PMC free article] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536814004802/gk2603sup1.cif

e-70-0o423-sup1.cif (19.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814004802/gk2603Isup2.hkl

e-70-0o423-Isup2.hkl (42.2KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814004802/gk2603Isup3.cml

CCDC reference: 989432

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES