Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Mar 26;70(Pt 4):o478–o479. doi: 10.1107/S1600536814006229

2-((1E)-1-{2-[(2Z)-3,4-Diphenyl-2,3-di­hydro-1,3-thia­zol-2-yl­idene]hydrazin-1-yl­idene}eth­yl)pyridin-1-ium bromide monohydrate

Mehmet Akkurt a, Joel T Mague b, Shaaban K Mohamed c,d, Alaa A Hassan d, Mustafa R Albayati e,*
PMCID: PMC3998596  PMID: 24826173

Abstract

In the title compound, C22H19N4S+·Br·H2O, the dihedral angles between the phenyl groups and the mean plane of the thia­zolyl­idene ring are 34.69 (13) and 64.27 (13)°, respectively, while that between the thia­zolyl­idene and pyridinium rings is 14.73 (13)°. In the crystal, zigzag chains of alternating bromide ions and water mol­ecules associate through O—H⋯Br inter­actions run in channels approximately parallel to the b axis. These chains help form parallel chains of cations through N—H⋯O, C—H⋯N and C—H⋯Br hydrogen bonds.

Related literature  

For the synthesis of thia­zoles see: Zambon et al. (2008); Franklin et al. (2008); Karegoudar et al. (2008); Ochiai et al. (2003). For the biological significance of thia­zole scaffold compounds, see: Masquelin & Obrecht (2001); Hirai et al. (1980); Ali & El–Kazak (2010); Andreani et al. (1996, 2008); Budriesi et al. (2008); Walczynski et al. (2005). For similar structures, see: Mague et al. (2014); Mohamed et al. (2013a ,b ).graphic file with name e-70-0o478-scheme1.jpg

Experimental  

Crystal data  

  • C22H19N4S+·Br·H2O

  • M r = 469.40

  • Orthorhombic, Inline graphic

  • a = 21.8890 (17) Å

  • b = 5.7384 (4) Å

  • c = 16.6941 (13) Å

  • V = 2096.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.08 mm−1

  • T = 150 K

  • 0.19 × 0.08 × 0.06 mm

Data collection  

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2013) T min = 0.69, T max = 0.89

  • 35645 measured reflections

  • 5394 independent reflections

  • 4943 reflections with I > 2σ(I)

  • R int = 0.046

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.027

  • wR(F 2) = 0.060

  • S = 1.05

  • 5394 reflections

  • 263 parameters

  • 71 restraints

  • H-atom parameters constrained

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.18 e Å−3

  • Absolute structure: Flack parameter determined using 2220 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013)

  • Absolute structure parameter: 0.011 (4)

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536814006229/xu5779sup1.cif

e-70-0o478-sup1.cif (29.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814006229/xu5779Isup2.hkl

e-70-0o478-Isup2.hkl (295.7KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814006229/xu5779Isup3.cml

CCDC reference: 992782

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯Br1 0.84 2.45 3.276 (2) 170
O1—H1B⋯Br1i 0.84 2.49 3.330 (2) 174
N4—H4⋯O1ii 0.89 1.98 2.729 (3) 141
C15—H15⋯N2i 0.95 2.62 3.566 (4) 178
C20—H20⋯Br1iii 0.95 2.72 3.645 (3) 166

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

We gratefully acknowledge Manchester Metropolitan University, Tulane University and Erciyes University for supporting this study.

supplementary crystallographic information

1. Comment

Several methods for the synthesis of thiazole derivatives have been developed (Zambon et al., 2008; Franklin et al., 2008; Karegoudar et al., 2008) with the most widely used method being the Hantzsch's synthesis utilizing thioamides and α–halocarbonyl compounds as the starting materials (Ochiai et al., 2003). 1,3–Thiazole scaffold compounds are present in many pharmacologically active substances (Masquelin & Obrecht, 2001). They have found to possess strong anti–inflammatory (Hirai et al., 1980), antimicrobial (Ali & El–Kazak, 2010), antitumor (Andreani et al., 2008) and selective cardiodepressant activities (Budriesi et al., 2008). Other compounds containing the thiazole ring have been reported as being histamine H3 antagonists (Walczynski et al., 2005) and herbicidals (Andreani et al., 1996). In view of these findings and as part of our efforts (Mague et al., 2014; Mohamed et al., 2013a,b) to identify new candidates that may be of value in designing new and potent antimicrobial agents we report the synthesis and crystal structure of the title compound.

In the title compound (I, Fig. 1), the dihedral angle between the S1/N1C1–C3 thiazolylidene and N4/C18–C22 pyridinium rings is 14.73 (13)° while that between the phenyl groups C4–C9 and C10–C15 and the mean plane of the thiazolylidene ring are, respectively, 34.69 (13) and 64.27 (13)°. The N1–C3–N2–N3, C3–N2–N3–C16, N2–N3–C16–C17, N2–N3–C16–C18 and N3–C16–C18–C19 torsion angles are 174.4 (2), -172.8 (2), 5.7 (4), -174.3 (2) and 170.7 (3) °, respectively. The bond lengths and bond angles in (I) are normal and comparable to those previously reported for similar structures (Mague et al., 2014; Mohamed et al., 2013a,b).

In the crystal, zigzag chains of alternating bromide ions and water molecules associated through O—H···Br interactions run in channels approximately parallel to the b axis. These chains help form parallel chains of cations through N—H···O, C—H···N and C—H···Br hydrogen bonds (Fig. 2 and Table 1).

2. Experimental

The title compound has been prepared according to our reported method (Mohamed et al., 2013b). Orange crystals suitable for X-ray diffraction (m.p.: 507 K) have been obtained by crystallization of the crude product (I) from ethanol.

3. Refinement

H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.98 Å) while those attached to nitrogen and oxygen were placed in locations derived from a difference map and their coordinates adjusted to give N—H = 0.89 and O—H = 0.84 Å. All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

Figures

Fig. 1.

Fig. 1.

Perspective view of the asymmetric unit showing one of the O—H···Br interactions as a dotted line. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Packing viewed down the b axis showing the interionic interactions as dotted lines (O—H···Br, orange; N—H···O, blue; C—H···Br, green; C—H···N, grey.

Crystal data

C22H19N4S+·Br·H2O F(000) = 960
Mr = 469.40 Dx = 1.487 Mg m3
Orthorhombic, Pna21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2n Cell parameters from 9578 reflections
a = 21.8890 (17) Å θ = 2.2–28.6°
b = 5.7384 (4) Å µ = 2.08 mm1
c = 16.6941 (13) Å T = 150 K
V = 2096.9 (3) Å3 Column, orange
Z = 4 0.19 × 0.08 × 0.06 mm

Data collection

Bruker SMART APEX CCD diffractometer 5394 independent reflections
Radiation source: fine-focus sealed tube 4943 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.046
Detector resolution: 8.3660 pixels mm-1 θmax = 28.9°, θmin = 1.9°
φ and ω scans h = −29→29
Absorption correction: multi-scan (SADABS; Bruker, 2013) k = −7→7
Tmin = 0.69, Tmax = 0.89 l = −22→21
35645 measured reflections

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.027 w = 1/[σ2(Fo2) + (0.0251P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.060 (Δ/σ)max = 0.001
S = 1.05 Δρmax = 0.60 e Å3
5394 reflections Δρmin = −0.18 e Å3
263 parameters Absolute structure: Flack parameter determined using 2220 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
71 restraints Absolute structure parameter: 0.011 (4)

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.61850 (3) 0.09593 (11) 0.85092 (4) 0.0229 (2)
N1 0.51800 (10) 0.2131 (3) 0.78160 (14) 0.0192 (6)
N2 0.57004 (10) −0.0860 (4) 0.71385 (14) 0.0217 (6)
N3 0.61924 (10) −0.2324 (4) 0.72594 (15) 0.0205 (6)
N4 0.71202 (10) −0.5216 (4) 0.75415 (13) 0.0213 (6)
C1 0.57446 (12) 0.3189 (4) 0.89084 (17) 0.0230 (8)
C2 0.52293 (11) 0.3602 (4) 0.84921 (17) 0.0206 (7)
C3 0.56577 (11) 0.0597 (4) 0.77396 (16) 0.0194 (7)
C4 0.47512 (11) 0.5271 (4) 0.87249 (16) 0.0205 (7)
C5 0.49212 (15) 0.7326 (4) 0.91199 (19) 0.0265 (8)
C6 0.44860 (15) 0.8887 (5) 0.93869 (18) 0.0310 (9)
C7 0.38714 (15) 0.8462 (5) 0.92659 (19) 0.0314 (9)
C8 0.36944 (14) 0.6413 (5) 0.88887 (18) 0.0281 (8)
C9 0.41249 (12) 0.4834 (5) 0.86216 (16) 0.0236 (8)
C10 0.47325 (11) 0.2338 (4) 0.71884 (18) 0.0194 (7)
C11 0.43411 (12) 0.0479 (5) 0.70314 (18) 0.0259 (8)
C12 0.39293 (13) 0.0661 (5) 0.6403 (2) 0.0337 (10)
C13 0.39056 (15) 0.2685 (6) 0.5947 (2) 0.0362 (10)
C14 0.42835 (15) 0.4519 (6) 0.61191 (18) 0.0351 (10)
C15 0.47038 (12) 0.4360 (5) 0.67431 (16) 0.0247 (8)
C16 0.63290 (12) −0.3691 (5) 0.66705 (16) 0.0208 (7)
C17 0.60418 (15) −0.3685 (6) 0.58542 (18) 0.0324 (9)
C18 0.68144 (11) −0.5385 (4) 0.68431 (15) 0.0195 (7)
C19 0.69676 (14) −0.7211 (5) 0.63304 (17) 0.0252 (8)
C20 0.74126 (14) −0.8816 (5) 0.65600 (18) 0.0290 (9)
C21 0.77059 (14) −0.8562 (6) 0.7283 (2) 0.0302 (9)
C22 0.75536 (14) −0.6732 (5) 0.77747 (19) 0.0265 (9)
Br1 0.72775 (2) 0.20153 (4) 0.99633 (2) 0.0276 (1)
O1 0.71716 (11) 0.6961 (3) 0.89932 (15) 0.0354 (7)
H1 0.58560 0.40360 0.93750 0.0280*
H4 0.70300 −0.40570 0.78750 0.0260*
H5 0.53420 0.76510 0.92050 0.0320*
H6 0.46100 1.02660 0.96560 0.0370*
H7 0.35740 0.95570 0.94390 0.0380*
H8 0.32720 0.60930 0.88140 0.0340*
H9 0.39960 0.34400 0.83650 0.0280*
H11 0.43560 −0.08920 0.73500 0.0310*
H12 0.36630 −0.05990 0.62840 0.0400*
H13 0.36260 0.27960 0.55140 0.0430*
H14 0.42590 0.59080 0.58110 0.0420*
H15 0.49680 0.56290 0.68610 0.0300*
H17A 0.57680 −0.23420 0.58060 0.0490*
H17B 0.58080 −0.51260 0.57790 0.0490*
H17C 0.63620 −0.35830 0.54450 0.0490*
H19 0.67700 −0.73610 0.58270 0.0300*
H20 0.75130 −1.00820 0.62180 0.0350*
H21 0.80110 −0.96440 0.74420 0.0360*
H22 0.77530 −0.65380 0.82760 0.0320*
H1A 0.72270 0.57880 0.92850 0.0420*
H1B 0.71770 0.81980 0.92620 0.0420*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0172 (3) 0.0289 (3) 0.0225 (3) 0.0002 (3) −0.0039 (3) −0.0032 (3)
N1 0.0174 (11) 0.0204 (9) 0.0197 (12) −0.0007 (8) −0.0022 (8) −0.0024 (8)
N2 0.0199 (11) 0.0255 (11) 0.0198 (11) 0.0030 (9) −0.0001 (9) −0.0031 (9)
N3 0.0171 (11) 0.0236 (10) 0.0207 (12) −0.0002 (9) −0.0010 (9) −0.0009 (9)
N4 0.0211 (10) 0.0234 (10) 0.0193 (12) 0.0016 (9) 0.0014 (9) −0.0043 (9)
C1 0.0231 (13) 0.0260 (12) 0.0198 (14) −0.0024 (10) −0.0016 (11) −0.0049 (10)
C2 0.0211 (12) 0.0227 (11) 0.0180 (13) −0.0039 (9) 0.0015 (11) −0.0014 (10)
C3 0.0163 (12) 0.0234 (12) 0.0186 (13) −0.0019 (10) −0.0011 (10) 0.0005 (10)
C4 0.0255 (13) 0.0203 (11) 0.0157 (13) −0.0004 (10) 0.0031 (10) 0.0003 (9)
C5 0.0332 (15) 0.0244 (12) 0.0218 (15) −0.0043 (12) 0.0038 (12) −0.0016 (10)
C6 0.0455 (18) 0.0220 (13) 0.0254 (16) −0.0022 (12) 0.0086 (14) −0.0026 (11)
C7 0.0420 (18) 0.0276 (14) 0.0247 (16) 0.0114 (13) 0.0082 (14) 0.0017 (11)
C8 0.0266 (14) 0.0366 (14) 0.0210 (14) 0.0056 (12) 0.0026 (12) 0.0015 (12)
C9 0.0255 (13) 0.0264 (12) 0.0190 (14) −0.0004 (11) −0.0011 (11) −0.0012 (11)
C10 0.0175 (12) 0.0245 (12) 0.0162 (13) 0.0034 (10) −0.0018 (10) −0.0051 (10)
C11 0.0204 (13) 0.0226 (12) 0.0348 (17) 0.0012 (11) −0.0028 (11) −0.0047 (11)
C12 0.0239 (14) 0.0354 (16) 0.0417 (19) 0.0039 (13) −0.0080 (13) −0.0144 (14)
C13 0.0323 (16) 0.0530 (19) 0.0234 (16) 0.0137 (15) −0.0102 (13) −0.0095 (14)
C14 0.0458 (19) 0.0388 (17) 0.0206 (15) 0.0114 (15) −0.0038 (13) 0.0031 (12)
C15 0.0284 (14) 0.0272 (13) 0.0186 (14) 0.0025 (11) 0.0008 (11) −0.0033 (10)
C16 0.0191 (12) 0.0255 (12) 0.0178 (13) −0.0011 (10) 0.0011 (10) 0.0002 (10)
C17 0.0326 (16) 0.0433 (16) 0.0212 (16) 0.0109 (14) −0.0024 (12) −0.0033 (13)
C18 0.0188 (12) 0.0229 (11) 0.0167 (12) −0.0027 (10) 0.0036 (10) 0.0001 (10)
C19 0.0259 (14) 0.0322 (14) 0.0175 (14) 0.0014 (11) 0.0009 (11) −0.0057 (11)
C20 0.0333 (16) 0.0281 (14) 0.0256 (16) 0.0050 (12) 0.0066 (12) −0.0080 (12)
C21 0.0289 (16) 0.0307 (14) 0.0310 (17) 0.0088 (12) 0.0025 (12) −0.0009 (13)
C22 0.0240 (14) 0.0310 (15) 0.0245 (16) 0.0035 (12) −0.0009 (12) −0.0034 (11)
Br1 0.0380 (2) 0.0227 (1) 0.0221 (1) −0.0011 (1) −0.0049 (1) −0.0042 (1)
O1 0.0582 (15) 0.0222 (10) 0.0257 (12) 0.0051 (9) −0.0093 (10) −0.0045 (8)

Geometric parameters (Å, º)

S1—C1 1.735 (3) C14—C15 1.393 (4)
S1—C3 1.740 (3) C16—C18 1.469 (4)
O1—H1A 0.8400 C16—C17 1.501 (4)
O1—H1B 0.8400 C18—C19 1.394 (4)
N1—C2 1.414 (3) C19—C20 1.394 (4)
N1—C10 1.439 (4) C20—C21 1.375 (4)
N1—C3 1.373 (3) C21—C22 1.374 (5)
N2—C3 1.310 (3) C1—H1 0.9500
N2—N3 1.381 (3) C5—H5 0.9500
N3—C16 1.293 (4) C6—H6 0.9500
N4—C18 1.348 (3) C7—H7 0.9500
N4—C22 1.345 (4) C8—H8 0.9500
N4—H4 0.8900 C9—H9 0.9500
C1—C2 1.346 (4) C11—H11 0.9500
C2—C4 1.471 (3) C12—H12 0.9500
C4—C9 1.404 (4) C13—H13 0.9500
C4—C5 1.401 (4) C14—H14 0.9500
C5—C6 1.382 (4) C15—H15 0.9500
C6—C7 1.382 (5) C17—H17C 0.9800
C7—C8 1.389 (4) C17—H17A 0.9800
C8—C9 1.381 (4) C17—H17B 0.9800
C10—C11 1.393 (4) C19—H19 0.9500
C10—C15 1.379 (4) C20—H20 0.9500
C11—C12 1.387 (4) C21—H21 0.9500
C12—C13 1.390 (5) C22—H22 0.9500
C13—C14 1.369 (5)
C1—S1—C3 90.18 (12) C19—C20—C21 119.8 (3)
H1A—O1—H1B 111.00 C20—C21—C22 119.5 (3)
C2—N1—C10 125.7 (2) N4—C22—C21 119.5 (3)
C3—N1—C10 120.3 (2) S1—C1—H1 123.00
C2—N1—C3 113.5 (2) C2—C1—H1 123.00
N3—N2—C3 109.4 (2) C6—C5—H5 120.00
N2—N3—C16 116.0 (2) C4—C5—H5 120.00
C18—N4—C22 123.7 (2) C5—C6—H6 120.00
C22—N4—H4 117.00 C7—C6—H6 120.00
C18—N4—H4 119.00 C8—C7—H7 120.00
S1—C1—C2 113.4 (2) C6—C7—H7 120.00
C1—C2—C4 125.1 (2) C9—C8—H8 120.00
N1—C2—C1 111.8 (2) C7—C8—H8 120.00
N1—C2—C4 123.1 (2) C4—C9—H9 120.00
N1—C3—N2 122.3 (2) C8—C9—H9 120.00
S1—C3—N1 111.11 (18) C10—C11—H11 121.00
S1—C3—N2 126.51 (19) C12—C11—H11 121.00
C2—C4—C5 118.9 (2) C13—C12—H12 120.00
C2—C4—C9 123.1 (2) C11—C12—H12 120.00
C5—C4—C9 117.9 (2) C12—C13—H13 120.00
C4—C5—C6 121.0 (3) C14—C13—H13 120.00
C5—C6—C7 120.6 (3) C15—C14—H14 120.00
C6—C7—C8 119.2 (3) C13—C14—H14 120.00
C7—C8—C9 120.8 (3) C10—C15—H15 120.00
C4—C9—C8 120.6 (3) C14—C15—H15 120.00
C11—C10—C15 121.0 (3) C16—C17—H17B 109.00
N1—C10—C11 119.5 (2) C16—C17—H17C 109.00
N1—C10—C15 119.5 (2) H17A—C17—H17B 109.00
C10—C11—C12 119.0 (3) H17A—C17—H17C 109.00
C11—C12—C13 120.1 (3) H17B—C17—H17C 110.00
C12—C13—C14 120.3 (3) C16—C17—H17A 109.00
C13—C14—C15 120.4 (3) C18—C19—H19 120.00
C10—C15—C14 119.2 (3) C20—C19—H19 120.00
N3—C16—C17 126.3 (3) C21—C20—H20 120.00
N3—C16—C18 114.8 (2) C19—C20—H20 120.00
C17—C16—C18 118.9 (2) C20—C21—H21 120.00
C16—C18—C19 123.5 (2) C22—C21—H21 120.00
N4—C18—C19 117.8 (2) N4—C22—H22 120.00
N4—C18—C16 118.8 (2) C21—C22—H22 120.00
C18—C19—C20 119.7 (3)
C3—S1—C1—C2 0.9 (2) C1—C2—C4—C5 33.9 (4)
C1—S1—C3—N1 −0.31 (19) C1—C2—C4—C9 −141.5 (3)
C1—S1—C3—N2 177.4 (2) C2—C4—C5—C6 −176.6 (3)
C3—N1—C2—C1 1.0 (3) C9—C4—C5—C6 −1.0 (4)
C3—N1—C2—C4 −175.7 (2) C2—C4—C9—C8 176.7 (3)
C10—N1—C2—C1 −170.8 (2) C5—C4—C9—C8 1.3 (4)
C10—N1—C2—C4 12.5 (4) C4—C5—C6—C7 −0.4 (5)
C2—N1—C3—S1 −0.3 (3) C5—C6—C7—C8 1.6 (5)
C2—N1—C3—N2 −178.1 (2) C6—C7—C8—C9 −1.3 (5)
C10—N1—C3—S1 171.96 (17) C7—C8—C9—C4 −0.1 (4)
C10—N1—C3—N2 −5.8 (4) N1—C10—C11—C12 −177.3 (3)
C2—N1—C10—C11 −121.3 (3) C15—C10—C11—C12 1.7 (4)
C2—N1—C10—C15 59.7 (4) N1—C10—C15—C14 177.9 (3)
C3—N1—C10—C11 67.5 (3) C11—C10—C15—C14 −1.1 (4)
C3—N1—C10—C15 −111.5 (3) C10—C11—C12—C13 −0.8 (4)
C3—N2—N3—C16 −172.8 (2) C11—C12—C13—C14 −0.6 (5)
N3—N2—C3—S1 8.2 (3) C12—C13—C14—C15 1.2 (5)
N3—N2—C3—N1 −174.4 (2) C13—C14—C15—C10 −0.4 (4)
N2—N3—C16—C17 5.7 (4) N3—C16—C18—N4 −7.6 (4)
N2—N3—C16—C18 −174.3 (2) N3—C16—C18—C19 170.7 (3)
C22—N4—C18—C16 177.0 (3) C17—C16—C18—N4 172.4 (2)
C22—N4—C18—C19 −1.4 (4) C17—C16—C18—C19 −9.3 (4)
C18—N4—C22—C21 0.5 (4) N4—C18—C19—C20 1.7 (4)
S1—C1—C2—N1 −1.2 (3) C16—C18—C19—C20 −176.6 (3)
S1—C1—C2—C4 175.4 (2) C18—C19—C20—C21 −1.3 (4)
N1—C2—C4—C5 −149.9 (3) C19—C20—C21—C22 0.4 (5)
N1—C2—C4—C9 34.8 (4) C20—C21—C22—N4 0.0 (5)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1A···Br1 0.84 2.45 3.276 (2) 170
O1—H1B···Br1i 0.84 2.49 3.330 (2) 174
N4—H4···O1ii 0.89 1.98 2.729 (3) 141
C15—H15···N2i 0.95 2.62 3.566 (4) 178
C20—H20···Br1iii 0.95 2.72 3.645 (3) 166

Symmetry codes: (i) x, y+1, z; (ii) x, y−1, z; (iii) −x+3/2, y−3/2, z−1/2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: XU5779).

References

  1. Ali, T. E. & El–Kazak, A. M. (2010). Eur. J. Med. Chem. 1, 6–11.
  2. Andreani, A., Burnelli, S., Granaiola, M., Leoni, A., Locatelli, A., Morigi, R., Rambaldi, M., Varoli, L., Calonghi, N., Cappadone, C., Farruggia, G., Zini, M., Stefanelli, C., Masotti, L., Radin, N. S. & Shoemaker, R. H. (2008). J. Med. Chem. 51, 809–816. [DOI] [PubMed]
  3. Andreani, A., Rambaldi, M., Leoni, A., Locatelli, A., Andreani, F. & Gehret, J. C. (1996). Pharm. Acta Helv. 71, 247–252.
  4. Brandenburg, K. & Putz, H. (2012). DIAMOND Crystal Impact GbR, Bonn, Germany.
  5. Bruker (2013). APEX2, SADABS and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Budriesi, R., Ioan, P., Locatelli, A., Cosconati, S., Leoni, A., Ugenti, M. P., Andreani, A., Di Toro, R., Bedini, A., Spampinato, S., Marinelli, L., Novellino, E. & Chiarini, A. (2008). J. Med. Chem. 51, 1592–1600. [DOI] [PubMed]
  7. Franklin, P. X., Pillai, A. D., Rathod, P. D., Yerande, S., Nivsarkar, M., Padh, H., Vasu, K. K. & Sudarsanam, V. (2008). Eur. J. Med. Chem. 43, 129–134. [DOI] [PubMed]
  8. Hirai, K., Sugimoto, H. & Ishiba, T. (1980). J. Org. Chem. 45, 253–260.
  9. Karegoudar, P., Karthikeyan, M. S., Prasad, D. J., Mahalinga, M., Holla, B. S. & Kumari, N. S. (2008). Eur. J. Med. Chem. 43, 261–267. [DOI] [PubMed]
  10. Mague, J. T., Mohamed, S. K., Akkurt, M., Abd El-Alaziz, A. T. & Albayati, M. R. (2014). Acta Cryst. E70, o328–o329. [DOI] [PMC free article] [PubMed]
  11. Masquelin, T. & Obrecht, D. (2001). Tetrahedron, 6, 153–156.
  12. Mohamed, S. K., Akkurt, M., Mague, J. T., Hassan, A. A. & Albayati, M. R. (2013a). Acta Cryst. E69, o1563–o1564. [DOI] [PMC free article] [PubMed]
  13. Mohamed, S. K., Mague, J. T., Akkurt, M., Hassan, A. A. & Albayati, M. R. (2013b). Acta Cryst. E69, o1324. [DOI] [PMC free article] [PubMed]
  14. Ochiai, M., Nishi, Y., Hashimoto, S., Tsuchimoto, Y. & Chen, D. W. (2003). J. Org. Chem. 68, 7887–7888. [DOI] [PubMed]
  15. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  16. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  17. Walczynski, K., Zuiderveld, O. P. & Timmerman, H. (2005). Eur. J. Med. Chem. 40, 15–23. [DOI] [PubMed]
  18. Zambon, A., Borsato, G., Brussolo, S., Frascella, P. & Lucchini, V. (2008). Tetrahedron Lett. 49, 66–69.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536814006229/xu5779sup1.cif

e-70-0o478-sup1.cif (29.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814006229/xu5779Isup2.hkl

e-70-0o478-Isup2.hkl (295.7KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814006229/xu5779Isup3.cml

CCDC reference: 992782

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES