Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Mar 26;70(Pt 4):o483–o484. doi: 10.1107/S1600536814006072

N′-[(E)-(3-Fluoro­pyridin-2-yl)methyl­idene]pyridine-3-carbohydrazide dihydrate

Yamuna Nair a, M Sithambaresan b,*, S Muraleedharan Nair a, M R Prathapachandra Kurup c
PMCID: PMC3998601  PMID: 24826177

Abstract

The organic molecule in the title dihydrate, C12H9FN4O·2H2O, exists in the E conformation with respect to the azo­methane C=N double bond. The mol­ecule is approximately planar, with a maximum deviation of 0.117 (1) Å for the carbonyl O atom from the mean plane of the mol­ecule. Both pyridine rings are essentially coplanar with the central C(=O)N2C unit [dihedral angles = 1.99 (7) and 5.71 (8)°], exhibiting a significant difference in dihedral angles from its benzohydrazide analogue. The crystal packing features N—H⋯O, O—H⋯N and O—H⋯O hydrogen-bond inter­actions, which lead to the formation of a chain along the c-axis direction through one of the water mol­ecules present, and these chains are stacked one over the other by means of π–π inter­actions [with centroid–centroid distances of 3.7099 (10) and 3.6322 (10) Å] between the aromatic rings in neighbouring anti­parallel mol­ecules, building a three-dimensional supra­molecular network.

Related literature  

For the biological activity of carbohydrazide derivatives, see: Sreeja et al. (2004); Havanur et al. (2010); Despaigne et al. (2010). For the synthesis of related compounds, see: Kuriakose et al. (2007). For a related structure, see Nair et al. (2012).graphic file with name e-70-0o483-scheme1.jpg

Experimental  

Crystal data  

  • C12H9FN4O·2H2O

  • M r = 280.26

  • Monoclinic, Inline graphic

  • a = 7.3023 (7) Å

  • b = 14.4031 (17) Å

  • c = 12.6422 (13) Å

  • β = 94.842 (3)°

  • V = 1324.9 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 K

  • 0.41 × 0.21 × 0.20 mm

Data collection  

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004) T min = 0.963, T max = 0.969

  • 9779 measured reflections

  • 3237 independent reflections

  • 2339 reflections with I > 2σ(I)

  • R int = 0.030

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.048

  • wR(F 2) = 0.149

  • S = 1.04

  • 3237 reflections

  • 202 parameters

  • 7 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) Global, I. DOI: 10.1107/S1600536814006072/bv2232sup1.cif

e-70-0o483-sup1.cif (22.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814006072/bv2232Isup2.hkl

e-70-0o483-Isup2.hkl (158.8KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814006072/bv2232Isup3.cml

CCDC reference: 992525

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3′⋯O1S 0.88 (1) 2.04 (1) 2.8821 (19) 160 (2)
O1S—H1A⋯N4i 0.87 (1) 2.09 (1) 2.946 (2) 170 (3)
O2S—H2A⋯N1i 0.87 (1) 2.10 (1) 2.965 (2) 177 (2)
O2S—H2B⋯O1i 0.86 (1) 1.97 (1) 2.816 (2) 172 (2)

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors are thankful to Dr Shibu M. Eapen, SAIF, Cochin University of Science and Technology, for the single-crystal XRD measurements.

supplementary crystallographic information

1. Comment

Carbohydrazides have attracted much attention for their excellent biological properties. Moreover, carbohydrazides derived from 2-acetylpyridine are known to inhibit the proliferation of tumour cells to a greater extent compared to standard anticancer agents (Havanur et al., 2010; Sreeja et al., 2004). In addition, metal complexes with carbohydrazides exhibit antimicrobial, DNA-binding and cytotoxic activities. It has also been shown that these metal complexes can be potent inhibitors of cell growth and DNA synthesis (Despaigne et al., 2010). We report herein the crystal structure of the title compound, a new carbohydrazide.

This molecule adopts an E configuration (Fig. 1) with respect to the C6=N2 bond and it exists in the amido form with a C7=O1 bond length of 1.2211 (18) Å which is very close to the reported C=O bond length of similar structure of benzene analogue (Nair et al., 2012). The O1 and N2 atoms are in a Z configuration with respect to C7–N3 having a tortional angle of -0.6 (3)°. The molecule is almost planar with maximum deviation of 0.117 (1) Å for the atom O1 from the mean plane of the molecule (r.m.s. deviation, 0.0513). The pyridyl ring having F atom is essentially coplanar with the central C(=O)N2C unit (dihedral angle 5.71 (8)°), the other pyridyl ring exhibits a torsion angle of 1.99 (7)°.

Whilst one of the water molecules connects two adjacent molecules through two O–H···N and N–H···O H-bonding interactions with D···A distances of 2.946 (2) and 2.882 (1) Å respectively, the other water molecule forms two O–H···N and O–H···O H-bonds with D···A distances of 2.965 (2) and 2.816 (2) Å with the same molecule (Fig. 2, Table 1). One of the water molecules acts as both a hydrogen bond acceptor as well as a donor towards another carbohydrazide molecule while the other acts only as hydrogen bond donor. By means of these interactions the molecules are chained through one of the water molecules to form infinite chains parallel to the c axis of the unit cell (Fig. 3). These parallel chains are stacked one over the other by means of two π–π interactions between the two aromatic rings of the neighbouring anti parallel molecules (Fig. 4) with centeroid-centeroid distances of 3.7099 (10) and 3.6322 (10) Å. Fig. 5 shows the stacked packing of the molecules along a axis in the unit cell.

2. Experimental

The title compound was prepared by adapting a reported procedure (Kuriakose et al., 2007). A solution of 3-fluoropyridine-2-carbaldehyde (1.25 g,1 mmol) in ethanol (10 ml) was mixed with an ethanolic solution (10 ml) of pyridine-3-carbohydrazide (1.37 g,1 mmol). The mixture was boiled under reflux for 12 h after adding few drops of glacial acetic acid and then cooled to room temperature. Colorless needle shaped crystals, suitable for single-crystal analysis, were obtained after slow evaporation of the solution in air for a few days.

3. Refinement

The atoms H3', H1A, H1B, H2A and H2B were located from a difference Fourier map and refined isotropically. The N3—H3' bond distance was restrained to 0.88±0.01 Å. The O—H distances of water were restrained to 0.86±0.01 Å and H···H distances to 1.36±0.02 Å. The remaining hydrogen atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C–H distances of 0.93 Å, and with isotropic displacement parameters 1.2 times that of the parent carbon atoms.

Figures

Fig. 1.

Fig. 1.

ORTEP diagram of N'-[(E)-(3-fluoropyridin-2-yl)methylidene]pyridine-3-carbohydrazide dihydrate with 50% probability ellipsoids.

Fig. 2.

Fig. 2.

Hydrogen-bonding interactions showing the interconnection of the molecules via one of the water molecules in the lattice.

Fig. 3.

Fig. 3.

Hydrogen-bonding interactions showing the chain progressing along c axis.

Fig. 4.

Fig. 4.

Hydrogen-bonding and π–π interactions in the lattice.

Fig. 5.

Fig. 5.

Packing diagram showing the stacked packing arrangement of the molecules along a axis.

Crystal data

C12H9FN4O·2H2O F(000) = 584
Mr = 280.26 Dx = 1.405 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 4225 reflections
a = 7.3023 (7) Å θ = 2.8–28.0°
b = 14.4031 (17) Å µ = 0.11 mm1
c = 12.6422 (13) Å T = 296 K
β = 94.842 (3)° Needle, colorless
V = 1324.9 (2) Å3 0.41 × 0.21 × 0.20 mm
Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer 3237 independent reflections
Radiation source: fine-focus sealed tube 2339 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.030
Detector resolution: 8.33 pixels mm-1 θmax = 28.2°, θmin = 2.8°
ω and φ scan h = −9→9
Absorption correction: multi-scan (SADABS; Bruker, 2004) k = −17→19
Tmin = 0.963, Tmax = 0.969 l = −16→16
9779 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.149 w = 1/[σ2(Fo2) + (0.0712P)2 + 0.3471P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max < 0.001
3237 reflections Δρmax = 0.29 e Å3
202 parameters Δρmin = −0.20 e Å3
7 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.079 (6)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O2S 0.5863 (3) 0.45901 (12) 0.25212 (11) 0.0835 (5)
F1 0.77433 (17) 1.26247 (8) 0.16447 (8) 0.0683 (4)
O1 0.7242 (2) 0.88186 (10) −0.13894 (9) 0.0770 (5)
O1S 0.7875 (3) 0.96417 (11) 0.24957 (11) 0.0792 (5)
N1 0.60794 (18) 1.20176 (10) −0.10083 (10) 0.0470 (3)
C6 0.7337 (2) 1.10213 (11) 0.04205 (11) 0.0427 (4)
H6 0.7710 1.0945 0.1137 0.051*
N2 0.73006 (18) 1.03335 (9) −0.02053 (10) 0.0440 (3)
N4 0.8628 (2) 0.62144 (10) −0.03962 (11) 0.0543 (4)
C1 0.5563 (2) 1.28602 (13) −0.13628 (13) 0.0530 (4)
H1 0.5071 1.2915 −0.2063 0.064*
C2 0.5718 (2) 1.36560 (12) −0.07482 (15) 0.0548 (4)
H2 0.5331 1.4226 −0.1031 0.066*
C3 0.6450 (3) 1.35901 (12) 0.02835 (14) 0.0540 (4)
H3 0.6583 1.4109 0.0721 0.065*
C4 0.6980 (2) 1.27194 (11) 0.06413 (12) 0.0455 (4)
C5 0.6785 (2) 1.19411 (10) 0.00027 (11) 0.0396 (3)
N3 0.78095 (19) 0.94872 (9) 0.02199 (10) 0.0435 (3)
C7 0.7743 (2) 0.87503 (11) −0.04464 (11) 0.0452 (4)
C8 0.8311 (2) 0.78321 (10) 0.00146 (11) 0.0396 (3)
C9 0.8966 (2) 0.76657 (11) 0.10573 (12) 0.0475 (4)
H9 0.9101 0.8151 0.1543 0.057*
C10 0.9414 (2) 0.67696 (12) 0.13635 (13) 0.0514 (4)
H10 0.9836 0.6638 0.2062 0.062*
C11 0.9223 (2) 0.60731 (12) 0.06144 (14) 0.0530 (4)
H11 0.9528 0.5471 0.0828 0.064*
C12 0.8172 (2) 0.70823 (12) −0.06745 (12) 0.0479 (4)
H12 0.7734 0.7191 −0.1376 0.057*
H3' 0.809 (3) 0.9462 (13) 0.0910 (8) 0.057 (5)*
H2A 0.597 (3) 0.4119 (11) 0.2949 (16) 0.088 (8)*
H1A 0.807 (4) 0.9453 (19) 0.3148 (10) 0.110 (9)*
H2B 0.623 (4) 0.5053 (11) 0.2904 (17) 0.097 (9)*
H1B 0.902 (2) 0.962 (3) 0.233 (3) 0.19 (2)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O2S 0.1384 (15) 0.0589 (9) 0.0478 (7) −0.0012 (9) −0.0228 (8) −0.0033 (7)
F1 0.1063 (9) 0.0553 (6) 0.0417 (5) 0.0069 (6) −0.0038 (5) −0.0027 (4)
O1 0.1404 (14) 0.0510 (8) 0.0373 (6) 0.0225 (8) −0.0057 (7) −0.0003 (5)
O1S 0.1276 (15) 0.0674 (9) 0.0409 (7) 0.0091 (9) −0.0028 (8) 0.0039 (6)
N1 0.0501 (7) 0.0474 (8) 0.0426 (7) 0.0026 (6) −0.0009 (5) 0.0049 (6)
C6 0.0482 (8) 0.0418 (8) 0.0377 (7) 0.0021 (6) 0.0007 (6) 0.0040 (6)
N2 0.0547 (8) 0.0379 (7) 0.0393 (6) 0.0069 (5) 0.0033 (5) 0.0047 (5)
N4 0.0634 (9) 0.0430 (8) 0.0545 (8) 0.0091 (6) −0.0071 (6) −0.0092 (6)
C1 0.0532 (10) 0.0578 (10) 0.0474 (8) 0.0067 (8) 0.0002 (7) 0.0133 (7)
C2 0.0565 (10) 0.0453 (9) 0.0638 (10) 0.0106 (7) 0.0123 (8) 0.0164 (8)
C3 0.0659 (11) 0.0395 (9) 0.0584 (10) 0.0046 (7) 0.0159 (8) 0.0007 (7)
C4 0.0525 (9) 0.0449 (8) 0.0397 (7) 0.0033 (7) 0.0069 (6) 0.0023 (6)
C5 0.0403 (8) 0.0389 (8) 0.0400 (7) 0.0023 (6) 0.0061 (6) 0.0042 (6)
N3 0.0568 (8) 0.0372 (7) 0.0360 (6) 0.0067 (5) 0.0011 (5) 0.0033 (5)
C7 0.0582 (9) 0.0418 (8) 0.0359 (7) 0.0072 (7) 0.0060 (6) 0.0005 (6)
C8 0.0404 (8) 0.0397 (8) 0.0390 (7) 0.0041 (6) 0.0048 (6) −0.0008 (6)
C9 0.0596 (10) 0.0420 (8) 0.0406 (8) 0.0068 (7) 0.0021 (7) −0.0035 (6)
C10 0.0610 (10) 0.0500 (9) 0.0419 (8) 0.0113 (7) −0.0033 (7) 0.0036 (7)
C11 0.0577 (10) 0.0408 (9) 0.0589 (10) 0.0112 (7) −0.0036 (8) 0.0016 (7)
C12 0.0540 (9) 0.0465 (9) 0.0417 (8) 0.0070 (7) −0.0041 (6) −0.0045 (6)

Geometric parameters (Å, º)

O2S—H2A 0.866 (9) C2—C3 1.371 (2)
O2S—H2B 0.855 (9) C2—H2 0.9300
F1—C4 1.3486 (18) C3—C4 1.377 (2)
O1—C7 1.2211 (18) C3—H3 0.9300
O1S—H1A 0.869 (10) C4—C5 1.382 (2)
O1S—H1B 0.881 (10) N3—C7 1.3534 (19)
N1—C1 1.337 (2) N3—H3' 0.880 (9)
N1—C5 1.3417 (18) C7—C8 1.490 (2)
C6—N2 1.267 (2) C8—C9 1.385 (2)
C6—C5 1.470 (2) C8—C12 1.386 (2)
C6—H6 0.9300 C9—C10 1.379 (2)
N2—N3 1.3707 (17) C9—H9 0.9300
N4—C11 1.330 (2) C10—C11 1.379 (2)
N4—C12 1.333 (2) C10—H10 0.9300
C1—C2 1.384 (3) C11—H11 0.9300
C1—H1 0.9300 C12—H12 0.9300
H2A—O2S—H2B 104.5 (17) C4—C5—C6 120.63 (13)
H1A—O1S—H1B 97.5 (19) C7—N3—N2 117.32 (12)
C1—N1—C5 117.95 (14) C7—N3—H3' 125.3 (13)
N2—C6—C5 119.32 (13) N2—N3—H3' 117.3 (13)
N2—C6—H6 120.3 O1—C7—N3 122.44 (14)
C5—C6—H6 120.3 O1—C7—C8 120.26 (14)
C6—N2—N3 117.37 (13) N3—C7—C8 117.29 (13)
C11—N4—C12 116.80 (14) C9—C8—C12 117.69 (14)
N1—C1—C2 123.80 (15) C9—C8—C7 126.03 (13)
N1—C1—H1 118.1 C12—C8—C7 116.28 (13)
C2—C1—H1 118.1 C10—C9—C8 118.94 (14)
C3—C2—C1 118.92 (15) C10—C9—H9 120.5
C3—C2—H2 120.5 C8—C9—H9 120.5
C1—C2—H2 120.5 C11—C10—C9 118.72 (15)
C2—C3—C4 116.87 (16) C11—C10—H10 120.6
C2—C3—H3 121.6 C9—C10—H10 120.6
C4—C3—H3 121.6 N4—C11—C10 123.68 (15)
F1—C4—C3 118.90 (15) N4—C11—H11 118.2
F1—C4—C5 118.79 (14) C10—C11—H11 118.2
C3—C4—C5 122.30 (15) N4—C12—C8 124.16 (14)
N1—C5—C4 120.16 (14) N4—C12—H12 117.9
N1—C5—C6 119.21 (13) C8—C12—H12 117.9
C5—C6—N2—N3 −179.37 (13) N2—N3—C7—O1 −0.6 (3)
C5—N1—C1—C2 0.1 (3) N2—N3—C7—C8 179.54 (13)
N1—C1—C2—C3 0.4 (3) O1—C7—C8—C9 177.57 (17)
C1—C2—C3—C4 −0.3 (3) N3—C7—C8—C9 −2.5 (2)
C2—C3—C4—F1 178.65 (15) O1—C7—C8—C12 −2.0 (2)
C2—C3—C4—C5 −0.3 (3) N3—C7—C8—C12 177.88 (14)
C1—N1—C5—C4 −0.8 (2) C12—C8—C9—C10 −1.2 (2)
C1—N1—C5—C6 179.01 (14) C7—C8—C9—C10 179.25 (15)
F1—C4—C5—N1 −178.09 (13) C8—C9—C10—C11 1.1 (3)
C3—C4—C5—N1 0.9 (2) C12—N4—C11—C10 −1.1 (3)
F1—C4—C5—C6 2.1 (2) C9—C10—C11—N4 0.0 (3)
C3—C4—C5—C6 −178.89 (15) C11—N4—C12—C8 1.1 (3)
N2—C6—C5—N1 6.6 (2) C9—C8—C12—N4 0.0 (3)
N2—C6—C5—C4 −173.62 (15) C7—C8—C12—N4 179.68 (16)
C6—N2—N3—C7 179.03 (14)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N3—H3′···O1S 0.88 (1) 2.04 (1) 2.8821 (19) 160 (2)
O2S—H2A···N1i 0.87 (1) 2.10 (1) 2.965 (2) 177 (2)
O1S—H1A···N4i 0.87 (1) 2.09 (1) 2.946 (2) 170 (3)
O2S—H2B···O1i 0.86 (1) 1.97 (1) 2.816 (2) 172 (2)

Symmetry code: (i) x, −y+3/2, z+1/2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: BV2232).

References

  1. Brandenburg, K. (2010). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2004). APEX2, SADABS, SAINT and XPREP Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Despaigne, A. A. R., Vieira, L. F., Mendes, I. C., da Costa, F. B., Speziali, N. L. & Beraldo, H. (2010). J. Braz. Chem. Soc. 21, 1247–1257.
  4. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  5. Havanur, V. C., Badiger, D. S., Ligade, S. G. & Gudasi, K. B. (2010). Pharma Chem. 2, 390–404.
  6. Kuriakose, M., Kurup, M. R. P. & Suresh, E. (2007). Polyhedron, 26, 2713–2718.
  7. Nair, Y., Sithambaresan, M. & Kurup, M. R. P. (2012). Acta Cryst. E68, o2709. [DOI] [PMC free article] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Sreeja, P. B., Kurup, M. R. P., Kishore, A. & Jasmin, C. (2004). Polyhedron, 23, 575–581.
  10. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) Global, I. DOI: 10.1107/S1600536814006072/bv2232sup1.cif

e-70-0o483-sup1.cif (22.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814006072/bv2232Isup2.hkl

e-70-0o483-Isup2.hkl (158.8KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814006072/bv2232Isup3.cml

CCDC reference: 992525

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES