Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Mar 12;70(Pt 4):o421–o422. doi: 10.1107/S160053681400498X

Tri­phenyl­tellurium chloride

Ambika Chopra a, Shalini Jain a, Sanjay K Srivastava a,*, Sushil K Gupta a, Ray J Butcher b
PMCID: PMC3998628  PMID: 24826133

Abstract

The asymmetric unit of the title compound, C18H15ClTe, contains two mol­ecules which are in inverted orientations. The compound displays a tetra­hedral geometry around the Te atom in spite of there being five electron domains. This is attributed to the fact that the lone pair is not sterically active. The dihedral angles between the three phenyl rings are 76.51 (16)/73.75 (16)/71.06 (17) and 78.60 (17)/77.67 (16)/79.11 (16)° in the two mol­ecules. The crystal packing features eight C—H⋯π inter­actions.

Related literature  

For the first synthesis of the title compound, see: Günther et al. (1974). For related compounds, see: Klapötke et al. (2001); Naumann et al. (2002). For chalcogen-bearing compounds, see: Srivastava et al. (2010, 2011); Rastogi et al. (2011). For organotellurium(IV) derivatives that form metal complexes and supra­molecular aggregations, see: Santos et al. (2007); Teikink & Zukerman-Schpector (2010). For their applications as anti­leishmanial and anti­bacterial agents, see: Lima et al. (2009); Soni et al. (2005).graphic file with name e-70-0o421-scheme1.jpg

Experimental  

Crystal data  

  • C18H15ClTe

  • M r = 394.35

  • Monoclinic, Inline graphic

  • a = 18.7514 (3) Å

  • b = 9.60800 (15) Å

  • c = 18.4367 (3) Å

  • β = 105.2453 (16)°

  • V = 3204.74 (9) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 16.07 mm−1

  • T = 123 K

  • 0.25 × 0.12 × 0.08 mm

Data collection  

  • Agilent Xcalibur (Ruby, Gemini) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) T min = 0.215, T max = 1.000

  • 12435 measured reflections

  • 6446 independent reflections

  • 5854 reflections with I > 2σ(I)

  • R int = 0.051

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.034

  • wR(F 2) = 0.077

  • S = 1.04

  • 6446 reflections

  • 361 parameters

  • H-atom parameters constrained

  • Δρmax = 0.98 e Å−3

  • Δρmin = −1.24 e Å−3

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S160053681400498X/jj2184sup1.cif

e-70-0o421-sup1.cif (455.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681400498X/jj2184Isup2.hkl

e-70-0o421-Isup2.hkl (353.2KB, hkl)

Supporting information file. DOI: 10.1107/S160053681400498X/jj2184Isup3.cml

CCDC reference: 990042

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1, Cg2, Cg3, Cg4, Cg5 and Cg6 are the centroids of the C1A–C6A, C7A–C12A, C13A–C18A, C1B–C6B, C7B–C12B and C13B–C18B phenyl rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C2A—H2AACg2i 0.95 2.96 3.587 (4) 125
C5A—H5AACg4 0.95 2.65 3.497 (4) 149
C10A—H10ACg1ii 0.95 2.83 3.580 (4) 137
C5B—H5BACg5iii 0.95 2.76 3.532 (4) 139
C11A—H11ACg3iv 0.95 2.91 3.601 (4) 131
C12B—H12BCg6v 0.95 2.95 3.671 (3) 134
C14B—H14BCg4vi 0.95 2.86 3.589 (4) 134
C17B—H17BCg2 0.95 2.78 3.679 (4) 158

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

Acknowledgments

AC and SJ thank the JUG for the award of a University Fellowship. RJB acknowledges the NSF–MRI program (grant No. CHE0619278) for funds to purchase the X-ray diffractometer.

supplementary crystallographic information

1. Introduction

In recent years organotellurium compounds have been widely used as ligands forming complexes with supra­molecular behaviour (Santos et al., 2007; Teikink et al., 2010; Srivastava et al., 2011). These compounds have inter­esting applications as anti­leishmanial and anti­bacterial agents (Lima et al., 2009; Soni et al., 2005). The crystal structures of related compounds, tris­(penta­fluoro­phenyl)­tellurium chloride, (C6H5)3TeCl and tris­(penta­fluoro­phenyl)­tellurium bromide, (C6H5)3TeBr have been reported earlier (Klapötke et al., 2001; Naumann et al., 2002). As part of our investigations on the chalcogen bearing compounds (Srivastava et al. 2010; Rastogi et al. 2011), we herein report the synthesis and X-ray crystal structure analysis of the title compound, tri­phenyl­tellurium chloride.

2. Experimental

2.1. Synthesis and crystallization

The title compound was prepared by the modified procedure described earlier (Günther et al.,1974). A mixture of TeCl4 (26.8 g, 0.1 mol) and AlCl3 (39.9 g, 0.3 mol) in 300 mL dry benzene was placed into a 500 mL two-necked, round-bottom flask equipped with a magnetic stirring bar, a nitro­gen inlet and a reflux condenser. The reflux condenser was connected with Tygon tubing to a gas dispersion tube immersed in water containing phenolphthalein indicator. The reaction mixture was heated to reflux under nitro­gen. Vigorous hydrogen chloride evolution occurred immediately. The hydrogen chloride was swept through the condenser into phenolphthalein solution by nitro­gen and titrated with NaOH solution. The reaction mixture was poured into 400 mL of ice and water, when three equivalents of HCl had evolved. A dark colored solid was separated by filtration of the quenched reaction mixture and dissolved in minimum amount of boiling water. The hot mixture was then quickly filtered to give a clear colorless solution. On cooling the filtrate, a white crystalline solid of tri­phenyl­tellurium chloride separated out. The compound was crystallized in ethanol and chloro­form mixture (60:40) to give white crystals suitable for X-ray analysis in 72% yield. M.P. 249-250 °C. Anal. calc. for C18H15ClTe(%): C,54.82; H,3.83; Cl,8.99; Te,32.35. Found: C,54.88; H,3.86; Cl,9.16; Te,32.30.

2.2. Refinement

H atoms were positioned geometrically and refined using the riding model, with C–H distance of 0.95 Å, with Uiso (H) = 1.20 Ueq (C) atoms.

3. Results and discussion

The molecular structure of the title compound, C18H15ClTe, is shown in Fig.1. The asymmetric unit of the structure contains two molecules which are in inverted orientations. The molecule displays a tetra­hedral geometry around the Te atom (sum of bond angles, 436.56°) in spite of being five electron domains. This attributes the fact that the lone pair is not sterically active. This is in contrast with the reported structure of distorted o­cta­hedral geometry for (C6F5)3TeCl (Klapotke et al., 2001) and trigonal bipyramidal geometry for (C6F5)3TeBr (Naumann et al., 2002). This clearly indicates that there is no effect of free electron pair at Te in the present structure. The dihedral angles between the mean planes of the three phenyl rings C7A–C12A, C1A–C6A, C13A–C18A in molecule A and C7B–C12B, C1B–C6B, C13B–C18B in molecule B are 76.51 (16)/73.75 (16) and 78.60 (17)/77.67 (16)°, respectively, in the two molecules indicating that there is no conjugation between three aromatic rings. The two phenyl rings at C7 and C13 are inclined at an angle of 71.06 (17)° in molecule A and 79.11 (16)° in molecule B. The crystal packing is stabilized by eight C—H···π inter­molecular inter­actions (Table 1, Fig.2).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound showing atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Packing diagram of C18H15ClTe viewed along b axis.

Crystal data

C18H15ClTe F(000) = 1536
Mr = 394.35 Dx = 1.635 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54184 Å
a = 18.7514 (3) Å Cell parameters from 8646 reflections
b = 9.60800 (15) Å θ = 3.0–75.3°
c = 18.4367 (3) Å µ = 16.07 mm1
β = 105.2453 (16)° T = 123 K
V = 3204.74 (9) Å3 Prism, colorless
Z = 8 0.25 × 0.12 × 0.08 mm

Data collection

Agilent Xcalibur (Ruby, Gemini) diffractometer 6446 independent reflections
Radiation source: Enhance(Cu)X-ray Source 5854 reflections with I > 2σ(I)
Detector resolution: 10.5081 pixels mm-1 Rint = 0.051
ω scans θmax = 75.5°, θmin = 4.9°
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) h = −23→22
Tmin = 0.215, Tmax = 1.000 k = −11→11
12435 measured reflections l = −15→22

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034 H-atom parameters constrained
wR(F2) = 0.077 w = 1/[σ2(Fo2) + (0.0353P)2] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max = 0.002
6446 reflections Δρmax = 0.98 e Å3
361 parameters Δρmin = −1.24 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Te1 0.94906 (2) 0.68564 (2) 0.31239 (2) 0.01281 (7)
Cl1A 0.89902 (5) 0.50007 (10) 0.36822 (5) 0.02617 (18)
C1A 0.90760 (17) 0.8720 (3) 0.34765 (15) 0.0117 (5)
C2A 0.95451 (18) 0.9705 (4) 0.39152 (17) 0.0174 (6)
H2AA 1.0060 0.9520 0.4089 0.021*
C3A 0.9264 (2) 1.0956 (4) 0.40997 (19) 0.0221 (7)
H3AA 0.9586 1.1625 0.4395 0.027*
C4A 0.8510 (2) 1.1227 (4) 0.38521 (19) 0.0203 (7)
H4AA 0.8318 1.2084 0.3976 0.024*
C5A 0.80402 (18) 1.0247 (4) 0.34240 (17) 0.0177 (6)
H5AA 0.7525 1.0427 0.3260 0.021*
C6A 0.83215 (17) 0.9001 (4) 0.32338 (16) 0.0136 (6)
H6AA 0.7997 0.8337 0.2936 0.016*
C7A 0.90531 (16) 0.6542 (4) 0.19509 (16) 0.0132 (6)
C8A 0.9106 (2) 0.7593 (4) 0.14490 (18) 0.0192 (6)
H8AA 0.9337 0.8449 0.1632 0.023*
C9A 0.8819 (2) 0.7394 (4) 0.06757 (18) 0.0241 (7)
H9AA 0.8860 0.8112 0.0334 0.029*
C10A 0.8474 (2) 0.6147 (4) 0.04067 (18) 0.0253 (8)
H10A 0.8277 0.6015 −0.0119 0.030*
C11A 0.84169 (19) 0.5095 (4) 0.0903 (2) 0.0217 (7)
H11A 0.8182 0.4243 0.0717 0.026*
C12A 0.87045 (18) 0.5289 (4) 0.16747 (19) 0.0175 (6)
H12A 0.8664 0.4569 0.2014 0.021*
C13A 1.06448 (16) 0.6564 (3) 0.35559 (16) 0.0113 (5)
C14A 1.11265 (18) 0.6647 (4) 0.30923 (16) 0.0157 (6)
H14A 1.0936 0.6821 0.2570 0.019*
C15A 1.18813 (18) 0.6477 (4) 0.33918 (18) 0.0183 (6)
H15A 1.2206 0.6547 0.3076 0.022*
C16A 1.21641 (18) 0.6202 (4) 0.41587 (19) 0.0196 (7)
H16A 1.2681 0.6082 0.4363 0.023*
C17A 1.16919 (19) 0.6103 (4) 0.46211 (17) 0.0175 (6)
H17A 1.1884 0.5911 0.5141 0.021*
C18A 1.09335 (18) 0.6286 (3) 0.43220 (16) 0.0143 (6)
H18A 1.0611 0.6220 0.4641 0.017*
Te2 0.45436 (2) 0.55648 (2) 0.33256 (2) 0.01326 (7)
Cl1B 0.40664 (5) 0.72841 (10) 0.39883 (5) 0.02692 (18)
C1B 0.40378 (16) 0.5962 (4) 0.21742 (16) 0.0139 (6)
C2B 0.4015 (2) 0.4914 (4) 0.16450 (18) 0.0191 (6)
H2BA 0.4224 0.4030 0.1806 0.023*
C3B 0.3690 (2) 0.5145 (4) 0.08827 (18) 0.0216 (7)
H3BA 0.3680 0.4424 0.0528 0.026*
C4B 0.33825 (19) 0.6434 (4) 0.06456 (18) 0.0207 (7)
H4BA 0.3159 0.6593 0.0127 0.025*
C5B 0.33996 (18) 0.7490 (4) 0.11611 (18) 0.0186 (6)
H5BA 0.3191 0.8373 0.0995 0.022*
C6B 0.37254 (17) 0.7257 (3) 0.19282 (17) 0.0146 (6)
H6BA 0.3734 0.7980 0.2282 0.017*
C7B 0.56983 (16) 0.5920 (3) 0.36148 (16) 0.0110 (5)
C8B 0.60684 (17) 0.5895 (4) 0.30504 (15) 0.0138 (6)
H8BA 0.5800 0.5717 0.2546 0.017*
C9B 0.68260 (19) 0.6128 (4) 0.32186 (17) 0.0182 (6)
H9BA 0.7073 0.6108 0.2830 0.022*
C10B 0.72222 (18) 0.6392 (4) 0.39582 (18) 0.0188 (6)
H10B 0.7740 0.6550 0.4075 0.023*
C11B 0.68595 (18) 0.6424 (4) 0.45235 (17) 0.0164 (6)
H11B 0.7130 0.6611 0.5027 0.020*
C12B 0.60982 (18) 0.6181 (4) 0.43578 (16) 0.0148 (6)
H12B 0.5853 0.6194 0.4748 0.018*
C13B 0.41530 (17) 0.3643 (3) 0.36394 (15) 0.0121 (6)
C14B 0.46223 (18) 0.2532 (4) 0.39384 (17) 0.0173 (6)
H14B 0.5143 0.2645 0.4044 0.021*
C15B 0.4328 (2) 0.1266 (4) 0.40814 (19) 0.0229 (7)
H15B 0.4649 0.0514 0.4281 0.027*
C16B 0.3565 (2) 0.1092 (4) 0.39335 (18) 0.0219 (7)
H16B 0.3365 0.0222 0.4027 0.026*
C17B 0.30978 (19) 0.2199 (4) 0.36487 (18) 0.0205 (7)
H17B 0.2578 0.2090 0.3557 0.025*
C18B 0.33869 (17) 0.3461 (4) 0.34975 (16) 0.0145 (6)
H18B 0.3063 0.4208 0.3296 0.017*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Te1 0.01195 (10) 0.01092 (11) 0.01414 (9) 0.00276 (7) 0.00093 (7) 0.00010 (6)
Cl1A 0.0262 (4) 0.0210 (4) 0.0342 (4) 0.0001 (3) 0.0131 (3) 0.0099 (3)
C1A 0.0140 (14) 0.0102 (14) 0.0114 (11) 0.0027 (11) 0.0043 (10) −0.0017 (10)
C2A 0.0125 (14) 0.0214 (18) 0.0168 (13) −0.0011 (13) 0.0010 (11) −0.0029 (12)
C3A 0.0222 (17) 0.0186 (18) 0.0268 (16) −0.0052 (14) 0.0085 (13) −0.0093 (14)
C4A 0.0259 (17) 0.0130 (16) 0.0254 (15) 0.0060 (13) 0.0131 (13) −0.0020 (12)
C5A 0.0143 (15) 0.0195 (17) 0.0197 (13) 0.0084 (13) 0.0051 (11) 0.0036 (12)
C6A 0.0124 (14) 0.0135 (15) 0.0131 (12) 0.0006 (12) 0.0004 (10) −0.0001 (11)
C7A 0.0080 (13) 0.0125 (15) 0.0176 (13) 0.0057 (11) 0.0008 (10) −0.0012 (11)
C8A 0.0234 (17) 0.0118 (16) 0.0191 (14) 0.0002 (13) 0.0001 (12) −0.0017 (12)
C9A 0.0317 (19) 0.0200 (18) 0.0170 (14) 0.0076 (15) 0.0002 (13) 0.0034 (13)
C10A 0.0245 (17) 0.029 (2) 0.0171 (14) 0.0161 (16) −0.0045 (12) −0.0083 (14)
C11A 0.0174 (16) 0.0165 (17) 0.0271 (16) 0.0042 (13) −0.0014 (12) −0.0115 (13)
C12A 0.0133 (14) 0.0129 (16) 0.0249 (15) 0.0009 (12) 0.0026 (12) −0.0050 (12)
C13A 0.0082 (12) 0.0096 (14) 0.0134 (12) 0.0003 (11) −0.0019 (10) −0.0023 (10)
C14A 0.0189 (15) 0.0152 (16) 0.0122 (12) 0.0010 (12) 0.0027 (11) −0.0017 (11)
C15A 0.0134 (14) 0.0190 (17) 0.0240 (15) 0.0018 (13) 0.0071 (12) −0.0047 (13)
C16A 0.0110 (14) 0.0183 (17) 0.0250 (15) 0.0030 (13) −0.0030 (12) −0.0043 (13)
C17A 0.0177 (15) 0.0157 (16) 0.0136 (12) 0.0049 (13) −0.0057 (11) −0.0012 (11)
C18A 0.0165 (15) 0.0129 (15) 0.0130 (12) 0.0007 (12) 0.0031 (11) −0.0015 (11)
Te2 0.01147 (10) 0.01182 (11) 0.01491 (10) −0.00067 (7) 0.00070 (7) 0.00025 (6)
Cl1B 0.0253 (4) 0.0222 (4) 0.0349 (4) 0.0029 (3) 0.0109 (3) −0.0098 (3)
C1B 0.0070 (13) 0.0157 (16) 0.0165 (13) −0.0049 (12) −0.0012 (10) −0.0002 (12)
C2B 0.0233 (17) 0.0115 (16) 0.0204 (14) −0.0034 (13) 0.0020 (12) 0.0003 (12)
C3B 0.0301 (18) 0.0161 (17) 0.0172 (14) −0.0052 (14) 0.0038 (13) −0.0037 (12)
C4B 0.0191 (16) 0.0219 (18) 0.0175 (14) −0.0076 (14) −0.0019 (12) 0.0066 (13)
C5B 0.0135 (15) 0.0165 (17) 0.0224 (15) −0.0028 (12) −0.0012 (12) 0.0078 (13)
C6B 0.0111 (13) 0.0098 (15) 0.0203 (14) −0.0022 (12) −0.0004 (11) 0.0013 (11)
C7B 0.0076 (12) 0.0088 (14) 0.0144 (12) 0.0018 (11) −0.0011 (10) 0.0018 (10)
C8B 0.0166 (15) 0.0140 (15) 0.0091 (11) −0.0023 (12) 0.0003 (10) 0.0027 (10)
C9B 0.0186 (15) 0.0202 (18) 0.0171 (14) −0.0020 (13) 0.0070 (11) 0.0059 (12)
C10B 0.0139 (14) 0.0168 (17) 0.0228 (15) −0.0017 (13) −0.0002 (12) 0.0007 (12)
C11B 0.0138 (14) 0.0162 (16) 0.0157 (13) −0.0014 (12) −0.0024 (11) −0.0029 (11)
C12B 0.0166 (15) 0.0159 (16) 0.0119 (12) 0.0028 (12) 0.0035 (11) −0.0021 (11)
C13B 0.0152 (14) 0.0121 (15) 0.0081 (11) −0.0024 (12) 0.0016 (10) 0.0029 (10)
C14B 0.0152 (15) 0.0185 (17) 0.0187 (13) 0.0029 (13) 0.0052 (11) 0.0033 (12)
C15B 0.0334 (19) 0.0160 (17) 0.0208 (14) 0.0064 (15) 0.0100 (13) 0.0056 (12)
C16B 0.0321 (19) 0.0182 (17) 0.0181 (14) −0.0100 (14) 0.0116 (13) −0.0001 (12)
C17B 0.0178 (16) 0.0253 (19) 0.0187 (13) −0.0090 (14) 0.0056 (12) −0.0025 (13)
C18B 0.0116 (14) 0.0165 (16) 0.0143 (12) 0.0000 (12) 0.0017 (10) −0.0006 (11)

Geometric parameters (Å, º)

Te1—C13A 2.119 (3) Te2—C7B 2.117 (3)
Te1—C1A 2.121 (3) Te2—C1B 2.120 (3)
Te1—C7A 2.123 (3) Te2—C13B 2.122 (3)
Te1—Cl1A 2.3720 (9) Te2—Cl1B 2.3659 (9)
C1A—C6A 1.394 (4) C1B—C2B 1.395 (5)
C1A—C2A 1.396 (4) C1B—C6B 1.399 (5)
C2A—C3A 1.390 (5) C2B—C3B 1.395 (5)
C2A—H2AA 0.9500 C2B—H2BA 0.9500
C3A—C4A 1.390 (5) C3B—C4B 1.387 (5)
C3A—H3AA 0.9500 C3B—H3BA 0.9500
C4A—C5A 1.386 (5) C4B—C5B 1.385 (5)
C4A—H4AA 0.9500 C4B—H4BA 0.9500
C5A—C6A 1.390 (5) C5B—C6B 1.403 (4)
C5A—H5AA 0.9500 C5B—H5BA 0.9500
C6A—H6AA 0.9500 C6B—H6BA 0.9500
C7A—C8A 1.390 (5) C7B—C8B 1.395 (4)
C7A—C12A 1.400 (5) C7B—C12B 1.401 (4)
C8A—C9A 1.398 (4) C8B—C9B 1.390 (5)
C8A—H8AA 0.9500 C8B—H8BA 0.9500
C9A—C10A 1.390 (6) C9B—C10B 1.394 (5)
C9A—H9AA 0.9500 C9B—H9BA 0.9500
C10A—C11A 1.386 (6) C10B—C11B 1.387 (5)
C10A—H10A 0.9500 C10B—H10B 0.9500
C11A—C12A 1.396 (5) C11B—C12B 1.398 (5)
C11A—H11A 0.9500 C11B—H11B 0.9500
C12A—H12A 0.9500 C12B—H12B 0.9500
C13A—C18A 1.399 (4) C13B—C14B 1.401 (5)
C13A—C14A 1.400 (4) C13B—C18B 1.402 (4)
C14A—C15A 1.387 (5) C14B—C15B 1.389 (5)
C14A—H14A 0.9500 C14B—H14B 0.9500
C15A—C16A 1.399 (5) C15B—C16B 1.395 (6)
C15A—H15A 0.9500 C15B—H15B 0.9500
C16A—C17A 1.384 (5) C16B—C17B 1.390 (6)
C16A—H16A 0.9500 C16B—H16B 0.9500
C17A—C18A 1.395 (5) C17B—C18B 1.386 (5)
C17A—H17A 0.9500 C17B—H17B 0.9500
C18A—H18A 0.9500 C18B—H18B 0.9500
C13A—Te1—C1A 114.64 (12) C7B—Te2—C1B 112.45 (11)
C13A—Te1—C7A 116.54 (11) C7B—Te2—C13B 118.37 (12)
C1A—Te1—C7A 110.95 (11) C1B—Te2—C13B 109.51 (11)
C13A—Te1—Cl1A 102.64 (9) C7B—Te2—Cl1B 104.96 (9)
C1A—Te1—Cl1A 106.43 (9) C1B—Te2—Cl1B 105.13 (10)
C7A—Te1—Cl1A 104.14 (10) C13B—Te2—Cl1B 105.20 (9)
C6A—C1A—C2A 119.1 (3) C2B—C1B—C6B 118.8 (3)
C6A—C1A—Te1 119.2 (2) C2B—C1B—Te2 119.6 (2)
C2A—C1A—Te1 121.6 (2) C6B—C1B—Te2 121.6 (2)
C3A—C2A—C1A 120.4 (3) C1B—C2B—C3B 121.0 (3)
C3A—C2A—H2AA 119.8 C1B—C2B—H2BA 119.5
C1A—C2A—H2AA 119.8 C3B—C2B—H2BA 119.5
C2A—C3A—C4A 120.0 (3) C4B—C3B—C2B 119.7 (3)
C2A—C3A—H3AA 120.0 C4B—C3B—H3BA 120.2
C4A—C3A—H3AA 120.0 C2B—C3B—H3BA 120.2
C5A—C4A—C3A 119.9 (3) C5B—C4B—C3B 120.3 (3)
C5A—C4A—H4AA 120.0 C5B—C4B—H4BA 119.8
C3A—C4A—H4AA 120.0 C3B—C4B—H4BA 119.8
C4A—C5A—C6A 120.1 (3) C4B—C5B—C6B 120.0 (3)
C4A—C5A—H5AA 119.9 C4B—C5B—H5BA 120.0
C6A—C5A—H5AA 119.9 C6B—C5B—H5BA 120.0
C5A—C6A—C1A 120.4 (3) C1B—C6B—C5B 120.2 (3)
C5A—C6A—H6AA 119.8 C1B—C6B—H6BA 119.9
C1A—C6A—H6AA 119.8 C5B—C6B—H6BA 119.9
C8A—C7A—C12A 119.3 (3) C8B—C7B—C12B 119.3 (3)
C8A—C7A—Te1 119.9 (2) C8B—C7B—Te2 119.1 (2)
C12A—C7A—Te1 120.7 (2) C12B—C7B—Te2 121.6 (2)
C7A—C8A—C9A 120.3 (3) C9B—C8B—C7B 120.7 (3)
C7A—C8A—H8AA 119.9 C9B—C8B—H8BA 119.6
C9A—C8A—H8AA 119.9 C7B—C8B—H8BA 119.6
C10A—C9A—C8A 120.0 (3) C8B—C9B—C10B 119.9 (3)
C10A—C9A—H9AA 120.0 C8B—C9B—H9BA 120.1
C8A—C9A—H9AA 120.0 C10B—C9B—H9BA 120.1
C11A—C10A—C9A 120.2 (3) C11B—C10B—C9B 119.9 (3)
C11A—C10A—H10A 119.9 C11B—C10B—H10B 120.0
C9A—C10A—H10A 119.9 C9B—C10B—H10B 120.0
C10A—C11A—C12A 119.9 (3) C10B—C11B—C12B 120.4 (3)
C10A—C11A—H11A 120.0 C10B—C11B—H11B 119.8
C12A—C11A—H11A 120.0 C12B—C11B—H11B 119.8
C11A—C12A—C7A 120.3 (3) C11B—C12B—C7B 119.8 (3)
C11A—C12A—H12A 119.9 C11B—C12B—H12B 120.1
C7A—C12A—H12A 119.9 C7B—C12B—H12B 120.1
C18A—C13A—C14A 119.1 (3) C14B—C13B—C18B 119.0 (3)
C18A—C13A—Te1 119.4 (2) C14B—C13B—Te2 123.0 (2)
C14A—C13A—Te1 121.5 (2) C18B—C13B—Te2 117.9 (2)
C15A—C14A—C13A 120.3 (3) C15B—C14B—C13B 120.2 (3)
C15A—C14A—H14A 119.8 C15B—C14B—H14B 119.9
C13A—C14A—H14A 119.8 C13B—C14B—H14B 119.9
C14A—C15A—C16A 120.1 (3) C14B—C15B—C16B 120.4 (3)
C14A—C15A—H15A 120.0 C14B—C15B—H15B 119.8
C16A—C15A—H15A 120.0 C16B—C15B—H15B 119.8
C17A—C16A—C15A 120.1 (3) C17B—C16B—C15B 119.6 (3)
C17A—C16A—H16A 119.9 C17B—C16B—H16B 120.2
C15A—C16A—H16A 119.9 C15B—C16B—H16B 120.2
C16A—C17A—C18A 119.9 (3) C18B—C17B—C16B 120.3 (3)
C16A—C17A—H17A 120.0 C18B—C17B—H17B 119.9
C18A—C17A—H17A 120.0 C16B—C17B—H17B 119.9
C17A—C18A—C13A 120.5 (3) C17B—C18B—C13B 120.5 (3)
C17A—C18A—H18A 119.8 C17B—C18B—H18B 119.7
C13A—C18A—H18A 119.8 C13B—C18B—H18B 119.7
C6A—C1A—C2A—C3A −0.7 (5) C6B—C1B—C2B—C3B 0.2 (5)
Te1—C1A—C2A—C3A 176.0 (3) Te2—C1B—C2B—C3B −179.6 (3)
C1A—C2A—C3A—C4A 0.5 (5) C1B—C2B—C3B—C4B −0.2 (6)
C2A—C3A—C4A—C5A 0.3 (5) C2B—C3B—C4B—C5B 0.3 (5)
C3A—C4A—C5A—C6A −0.8 (5) C3B—C4B—C5B—C6B −0.4 (5)
C4A—C5A—C6A—C1A 0.6 (5) C2B—C1B—C6B—C5B −0.3 (5)
C2A—C1A—C6A—C5A 0.2 (5) Te2—C1B—C6B—C5B 179.5 (2)
Te1—C1A—C6A—C5A −176.6 (2) C4B—C5B—C6B—C1B 0.4 (5)
C12A—C7A—C8A—C9A −0.6 (5) C12B—C7B—C8B—C9B −0.1 (5)
Te1—C7A—C8A—C9A 180.0 (3) Te2—C7B—C8B—C9B 179.8 (3)
C7A—C8A—C9A—C10A 0.6 (6) C7B—C8B—C9B—C10B −0.1 (5)
C8A—C9A—C10A—C11A −0.4 (6) C8B—C9B—C10B—C11B −0.1 (6)
C9A—C10A—C11A—C12A 0.2 (5) C9B—C10B—C11B—C12B 0.5 (6)
C10A—C11A—C12A—C7A −0.2 (5) C10B—C11B—C12B—C7B −0.7 (5)
C8A—C7A—C12A—C11A 0.4 (5) C8B—C7B—C12B—C11B 0.5 (5)
Te1—C7A—C12A—C11A 179.8 (2) Te2—C7B—C12B—C11B −179.4 (3)
C18A—C13A—C14A—C15A −1.0 (5) C18B—C13B—C14B—C15B 0.8 (4)
Te1—C13A—C14A—C15A 178.8 (3) Te2—C13B—C14B—C15B −175.3 (2)
C13A—C14A—C15A—C16A 0.9 (5) C13B—C14B—C15B—C16B −0.4 (5)
C14A—C15A—C16A—C17A −0.2 (6) C14B—C15B—C16B—C17B −0.7 (5)
C15A—C16A—C17A—C18A −0.3 (6) C15B—C16B—C17B—C18B 1.3 (5)
C16A—C17A—C18A—C13A 0.2 (5) C16B—C17B—C18B—C13B −0.9 (5)
C14A—C13A—C18A—C17A 0.5 (5) C14B—C13B—C18B—C17B −0.2 (4)
Te1—C13A—C18A—C17A −179.4 (3) Te2—C13B—C18B—C17B 176.1 (2)

Hydrogen-bond geometry (Å, º)

Cg1, Cg2, Cg3, Cg4, Cg5 and Cg6 are the centroids of the C1A–C6A, C7A–C12A, C13A–C18A, C1B–C6B, C7B–C12B and C13B–C18B phenyl rings, respectively.

D—H···A D—H H···A D···A D—H···A
C2A—H2AA···Cg2i 0.95 2.96 3.587 (4) 125
C5A—H5AA···Cg4 0.95 2.65 3.497 (4) 149
C10A—H10A···Cg1ii 0.95 2.83 3.580 (4) 137
C5B—H5BA···Cg5iii 0.95 2.76 3.532 (4) 139
C11A—H11A···Cg3iv 0.95 2.91 3.601 (4) 131
C12B—H12B···Cg6v 0.95 2.95 3.671 (3) 134
C14B—H14B···Cg4vi 0.95 2.86 3.589 (4) 134
C17B—H17B···Cg2 0.95 2.78 3.679 (4) 158

Symmetry codes: (i) −x, y+1/2, −z+1/2; (ii) x, −y−1/2, z−1/2; (iii) −x+1, y+1/2, −z+1/2; (iv) −x, y−1/2, −z+1/2; (v) −x+1, −y+1, −z+1; (vi) −x+1, y−1/2, −z+1/2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: JJ2184).

References

  1. Agilent (2012). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Günther, W. H. H., Nepywoda, J. & Chu, J. Y. C. (1974). J. Organomet. Chem. 74, 79–84.
  3. Klapötke, T. M., Krumm, B., Mayer, P., Polborn, K. & Ruscitti, O. P. (2001). J. Fluorine Chem. 112, 207–212. [DOI] [PubMed]
  4. Lima, C. B. C., Silva, W. W. A., Oliveira, R. L., Cunha, R. & Criorgio, S. (2009). Korean J. Parasitol. 47, 213–218. [DOI] [PMC free article] [PubMed]
  5. Naumann, D., Tyrra, W., Herrmann, R., Pantenburg, I. & Wickleder, M. S. (2002). Z. Anorg. Allg. Chem. 628, 833–842.
  6. Rastogi, R., Srivastava, S. K., Butcher, R. J. & Jasinski, J. P. (2011). J. Chem. Crystallogr. 41, 391–400.
  7. Santos, S. S., Lang, E. S. & Oliveira, G. M. (2007). J. Organomet. Chem. 692, 3081–3088.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Soni, D., Gupta, P. K., Kumar, Y. & Chandrashekhar, T. G. (2005). Indian J. Biochem. Biophys. 42, 398–400. [PubMed]
  10. Srivastava, S. K., Rastogi, R., Rajaram, P., Butcher, R. J. & Jasinski, J. P. (2010). Phosphorus Sulfur Silicon Relat. Elem. 185, 455–462.
  11. Srivastava, K., Shah, P., Singh, H. B. & Butcher, R. J. (2011). Organometallics, 30, 534–546.
  12. Teikink, E. R. T. & Zukerman-Schpector, J. (2010). Coord. Chem. Rev. 254, 46–76.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S160053681400498X/jj2184sup1.cif

e-70-0o421-sup1.cif (455.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681400498X/jj2184Isup2.hkl

e-70-0o421-Isup2.hkl (353.2KB, hkl)

Supporting information file. DOI: 10.1107/S160053681400498X/jj2184Isup3.cml

CCDC reference: 990042

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES