Abstract
Extrastriate visual cortex of the ventral-posterior suprasylvian gyrus (vPS cortex) of freely behaving cats was reversibly deactivated with cooling to determine its role in performance on a battery of simple or masked two-dimensional pattern discriminations, and three-dimensional object discriminations. Deactivation of vPS cortex by cooling profoundly impaired the ability of the cats to recall the difference between all previously learned pattern and object discriminations. However, the cats' ability to learn or relearn pattern and object discriminations while vPS was deactivated depended upon the nature of the pattern or object and the cats' prior level of exposure to them. During cooling of vPS cortex, the cats could neither learn the novel object discriminations nor relearn a highly familiar masked or partially occluded pattern discrimination, although they could relearn both the highly familiar object and simple pattern discriminations. These cooling-induced deficits resemble those induced by cooling of the topologically equivalent inferotemporal cortex of monkeys and provides evidence that the equivalent regions contribute to visual processing in similar ways.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abramson B. P., Chalupa L. M. Multiple pathways from the superior colliculus to the extrageniculate visual thalamus of the cat. J Comp Neurol. 1988 May 15;271(3):397–418. doi: 10.1002/cne.902710308. [DOI] [PubMed] [Google Scholar]
- Ando Y. Visual-limbic disconnection syndrome of the non-human primate with the experimental brain lesion. Some aspects of the Klüver-Bucy's syndrome with special reference to the gnostic ability. Nagoya J Med Sci. 1969 Mar;31(3):485–507. [PubMed] [Google Scholar]
- Baizer J. S., Desimone R., Ungerleider L. G. Comparison of subcortical connections of inferior temporal and posterior parietal cortex in monkeys. Vis Neurosci. 1993 Jan-Feb;10(1):59–72. doi: 10.1017/s0952523800003229. [DOI] [PubMed] [Google Scholar]
- Baizer J. S., Ungerleider L. G., Desimone R. Organization of visual inputs to the inferior temporal and posterior parietal cortex in macaques. J Neurosci. 1991 Jan;11(1):168–190. doi: 10.1523/JNEUROSCI.11-01-00168.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baleydier C., Morel A. Segregated thalamocortical pathways to inferior parietal and inferotemporal cortex in macaque monkey. Vis Neurosci. 1992 May;8(5):391–405. doi: 10.1017/s0952523800004922. [DOI] [PubMed] [Google Scholar]
- Benevento L. A., Standage G. P. The organization of projections of the retinorecipient and nonretinorecipient nuclei of the pretectal complex and layers of the superior colliculus to the lateral pulvinar and medial pulvinar in the macaque monkey. J Comp Neurol. 1983 Jul 1;217(3):307–336. doi: 10.1002/cne.902170307. [DOI] [PubMed] [Google Scholar]
- Bowman E. M., Olson C. R. Visual and auditory association areas of the cat's posterior ectosylvian gyrus: cortical afferents. J Comp Neurol. 1988 Jun 1;272(1):30–42. doi: 10.1002/cne.902720104. [DOI] [PubMed] [Google Scholar]
- Bénita M., Condé H. Effects of local cooling upon conduction and synaptic transmission. Brain Res. 1972 Jan 14;36(1):133–151. doi: 10.1016/0006-8993(72)90771-8. [DOI] [PubMed] [Google Scholar]
- Campbell A., Jr Deficits in visual learning produced by posterior temporal lesions in cats. J Comp Physiol Psychol. 1978 Feb;92(1):45–57. doi: 10.1037/h0077442. [DOI] [PubMed] [Google Scholar]
- Cavada C., Reinoso-Suárez F. Afferent connections of area 20 in the cat studied by means of the retrograde axonal transport of horseradish peroxidase. Brain Res. 1983 Jul 4;270(2):319–324. doi: 10.1016/0006-8993(83)90606-6. [DOI] [PubMed] [Google Scholar]
- Cirillo R. A., George P. J., Horel J. A., Martin-Elkins C. An experimental test of the theory that visual information is stored in the inferotemporal cortex. Behav Brain Res. 1989 Aug 1;34(1-2):43–53. doi: 10.1016/s0166-4328(89)80089-0. [DOI] [PubMed] [Google Scholar]
- Cornwell P., Herbein S., Corso C., Eskew R., Warren J. M., Payne B. Selective sparing after lesions of visual cortex in newborn kittens. Behav Neurosci. 1989 Dec;103(6):1176–1190. doi: 10.1037//0735-7044.103.6.1176. [DOI] [PubMed] [Google Scholar]
- Cornwell P., Warren J. M. Visual discrimination defects in cats with temporal or occipital decortications. J Comp Physiol Psychol. 1981 Aug;95(4):603–614. doi: 10.1037/h0077799. [DOI] [PubMed] [Google Scholar]
- Cowey A., Gross C. G. Effects of foveal prestriate and inferotemporal lesions on visual discrimination by rhesus monkeys. Exp Brain Res. 1970;11(2):128–144. doi: 10.1007/BF00234318. [DOI] [PubMed] [Google Scholar]
- Fuster J. M., Bauer R. H., Jervey J. P. Effects of cooling inferotemporal cortex on performance of visual memory tasks. Exp Neurol. 1981 Feb;71(2):398–409. doi: 10.1016/0014-4886(81)90098-4. [DOI] [PubMed] [Google Scholar]
- Horel J. A., Pytko-Joiner D. E., Voytko M. L., Salsbury K. The performance of visual tasks while segments of the inferotemporal cortex are suppressed by cold. Behav Brain Res. 1987 Jan;23(1):29–42. doi: 10.1016/0166-4328(87)90240-3. [DOI] [PubMed] [Google Scholar]
- Horel J. A. Retrieval of active and inactive visual discriminations while temporal cortex is suppressed with cold. Behav Brain Res. 1992 Nov 15;51(2):193–201. doi: 10.1016/s0166-4328(05)80213-x. [DOI] [PubMed] [Google Scholar]
- Horel J. A., Voytko M. L., Salsbury K. G. Visual learning suppressed by cooling the temporal pole. Behav Neurosci. 1984 Apr;98(2):310–324. doi: 10.1037//0735-7044.98.2.310. [DOI] [PubMed] [Google Scholar]
- Iwai E., Mishkin M. Further evidence on the locus of the visual area in the temporal lobe of the monkey. Exp Neurol. 1969 Dec;25(4):585–594. doi: 10.1016/0014-4886(69)90101-0. [DOI] [PubMed] [Google Scholar]
- Jasper H. H., Shacter D. G., Montplaisir J. The effect of local cooling upon spontaneous and evoked electrical activity of cerebral cortex. Can J Physiol Pharmacol. 1970 Sep;48(9):640–652. doi: 10.1139/y70-094. [DOI] [PubMed] [Google Scholar]
- Lomber S. G., Cornwell P., Sun J. S., MacNeil M. A., Payne B. R. Reversible inactivation of visual processing operations in middle suprasylvian cortex of the behaving cat. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):2999–3003. doi: 10.1073/pnas.91.8.2999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lomber S. G., Payne B. R., Rosenquist A. C. The spatial relationship between the cerebral cortex and fiber trajectory through the corpus callosum of the cat. Behav Brain Res. 1994 Oct 20;64(1-2):25–35. doi: 10.1016/0166-4328(94)90116-3. [DOI] [PubMed] [Google Scholar]
- Payne B. R. Evidence for visual cortical area homologs in cat and macaque monkey. Cereb Cortex. 1993 Jan-Feb;3(1):1–25. doi: 10.1093/cercor/3.1.1. [DOI] [PubMed] [Google Scholar]
- Payne B. R., Pearson H. E., Berman N. Role of corpus callosum in functional organization of cat striate cortex. J Neurophysiol. 1984 Sep;52(3):570–594. doi: 10.1152/jn.1984.52.3.570. [DOI] [PubMed] [Google Scholar]
- Sprague J. M., Levy J., DiBerardino A., Berlucchi G. Visual cortical areas mediating form discrimination in the cat. J Comp Neurol. 1977 Apr 1;172(3):441–488. doi: 10.1002/cne.901720305. [DOI] [PubMed] [Google Scholar]
- Symonds L. L., Rosenquist A. C. Corticocortical connections among visual areas in the cat. J Comp Neurol. 1984 Oct 10;229(1):1–38. doi: 10.1002/cne.902290103. [DOI] [PubMed] [Google Scholar]
- Tusa R. J., Palmer L. A. Retinotopic organization of areas 20 and 21 in the cat. J Comp Neurol. 1980 Sep 1;193(1):147–164. doi: 10.1002/cne.901930110. [DOI] [PubMed] [Google Scholar]
- Updyke B. V. Retinotopic organization within the cat's posterior suprasylvian sulcus and gyrus. J Comp Neurol. 1986 Apr 8;246(2):265–280. doi: 10.1002/cne.902460210. [DOI] [PubMed] [Google Scholar]