Abstract
We report compressibility data on single-domain, globular proteins which suggest a general relationship between protein conformational transitions and delta kzeroS, the change in the partial specific adiabatic compressibility which accompanies the transition. Specifically, we find transitions between native and compact intermediate states to be accompanied by small increases in kzeroS of +(1-4) x 10(-6) cm3.g-1.bar-1 (1 bar = 100 kPa). By contrast, transitions between native and partially unfolded states are accompanied by small decreases in kzeroS of -(3-7) x 10(-6) cm3.g-1.bar-1, while native-to-fully unfolded transitions result in large decreases in kzeroS of -(18-20) x 10(-6) cm3.g-1.bar-1. Thus, for the single-domain, globular proteins studied here, changes in kzeroS correlate with the type of transition being monitored, independent of the specific protein. Consequently, kzeroS measurements may provide a convenient approach for detecting the existence of and for defining the nature of protein transitions, while also characterizing the hydration properties of individual protein states.
Full text
PDF


Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Chalikian T. V., Gindikin V. S., Breslauer K. J. Volumetric characterizations of the native, molten globule and unfolded states of cytochrome c at acidic pH. J Mol Biol. 1995 Jul 7;250(2):291–306. doi: 10.1006/jmbi.1995.0377. [DOI] [PubMed] [Google Scholar]
- Chalikian T. V., Sarvazyan A. P., Breslauer K. J. Hydration and partial compressibility of biological compounds. Biophys Chem. 1994 Aug;51(2-3):89–109. doi: 10.1016/0301-4622(94)85007-0. [DOI] [PubMed] [Google Scholar]
- Dill K. A., Shortle D. Denatured states of proteins. Annu Rev Biochem. 1991;60:795–825. doi: 10.1146/annurev.bi.60.070191.004051. [DOI] [PubMed] [Google Scholar]
- Dolgikh D. A., Abaturov L. V., Bolotina I. A., Brazhnikov E. V., Bychkova V. E., Gilmanshin R. I., Lebedev YuO, Semisotnov G. V., Tiktopulo E. I., Ptitsyn O. B. Compact state of a protein molecule with pronounced small-scale mobility: bovine alpha-lactalbumin. Eur Biophys J. 1985;13(2):109–121. doi: 10.1007/BF00256531. [DOI] [PubMed] [Google Scholar]
- Goto Y., Calciano L. J., Fink A. L. Acid-induced folding of proteins. Proc Natl Acad Sci U S A. 1990 Jan;87(2):573–577. doi: 10.1073/pnas.87.2.573. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kharakoz D. P., Sarvazyan A. P. Hydrational and intrinsic compressibilities of globular proteins. Biopolymers. 1993 Jan;33(1):11–26. doi: 10.1002/bip.360330103. [DOI] [PubMed] [Google Scholar]
- Kim P. S., Baldwin R. L. Intermediates in the folding reactions of small proteins. Annu Rev Biochem. 1990;59:631–660. doi: 10.1146/annurev.bi.59.070190.003215. [DOI] [PubMed] [Google Scholar]
- Lee B. Isoenthalpic and isoentropic temperatures and the thermodynamics of protein denaturation. Proc Natl Acad Sci U S A. 1991 Jun 15;88(12):5154–5158. doi: 10.1073/pnas.88.12.5154. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leung W. P., Cho K. C., Lo Y. M., Choy C. L. Adiabatic compressibility of myoglobin. Effect of axial ligand and denaturation. Biochim Biophys Acta. 1986 Mar 7;870(1):148–153. doi: 10.1016/0167-4838(86)90018-x. [DOI] [PubMed] [Google Scholar]
- Murphy K. P., Privalov P. L., Gill S. J. Common features of protein unfolding and dissolution of hydrophobic compounds. Science. 1990 Feb 2;247(4942):559–561. doi: 10.1126/science.2300815. [DOI] [PubMed] [Google Scholar]
- Ohgushi M., Wada A. 'Molten-globule state': a compact form of globular proteins with mobile side-chains. FEBS Lett. 1983 Nov 28;164(1):21–24. doi: 10.1016/0014-5793(83)80010-6. [DOI] [PubMed] [Google Scholar]
- Privalov P. L. Thermodynamic problems of protein structure. Annu Rev Biophys Biophys Chem. 1989;18:47–69. doi: 10.1146/annurev.bb.18.060189.000403. [DOI] [PubMed] [Google Scholar]
- Seshadri S., Oberg K. A., Fink A. L. Thermally denatured ribonuclease A retains secondary structure as shown by FTIR. Biochemistry. 1994 Feb 15;33(6):1351–1355. doi: 10.1021/bi00172a010. [DOI] [PubMed] [Google Scholar]
- Sosnick T. R., Trewhella J. Denatured states of ribonuclease A have compact dimensions and residual secondary structure. Biochemistry. 1992 Sep 8;31(35):8329–8335. doi: 10.1021/bi00150a029. [DOI] [PubMed] [Google Scholar]
- Tamura Y., Gekko K. Compactness of thermally and chemically denatured ribonuclease A as revealed by volume and compressibility. Biochemistry. 1995 Feb 14;34(6):1878–1884. doi: 10.1021/bi00006a008. [DOI] [PubMed] [Google Scholar]
- Tanford C. Protein denaturation. C. Theoretical models for the mechanism of denaturation. Adv Protein Chem. 1970;24:1–95. [PubMed] [Google Scholar]
- Tanford C. Protein denaturation. Adv Protein Chem. 1968;23:121–282. doi: 10.1016/s0065-3233(08)60401-5. [DOI] [PubMed] [Google Scholar]