Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Nov 27;69(Pt 12):m682. doi: 10.1107/S1600536813031814

Bis[μ-N-(pyridin-2-yl)methane­sulfon­amido-κ2 N:N′]silver(I)

Hui-Ling Hu a,b, Chun-Wei Yeh b,*
PMCID: PMC4004429  PMID: 24860285

Abstract

In the title compound, [Ag2(C6H7N2O2S)2], the AgI atom is coordinated by two N atoms from two N-(pyridin-2-yl)methane­sulfonamidate anions in a slightly bent linear geometry [N—Ag—N = 166.03 (7)°]. The AgI atoms are bridged by the N-(pyridin-2-yl)methane­sulfonamidate anions, forming a centrosymmetric dinuclear mol­ecule, in which the Ag⋯Ag distance is 2.7072 (4) Å.

Related literature  

For related di(pyrid­yl/pyrimid­yl)amide structures, see: Hu et al. (2004); Hsu et al. (2008); Yeh et al. (2008); Tsai et al. (2010). For related methyl-4-(pyridin-pyrimidin-2-ylcarbamo­yl)benz­o­ate structures, see: Wu et al. (2011); Hsiao et al. (2012). For related phosphinic amide structures, see: Yeh & Chen (2011); Yeh et al. (2012).graphic file with name e-69-0m682-scheme1.jpg

Experimental  

Crystal data  

  • [Ag2(C6H7N2O2S)2]

  • M r = 558.13

  • Monoclinic, Inline graphic

  • a = 6.4406 (2) Å

  • b = 15.4580 (5) Å

  • c = 8.0789 (2) Å

  • β = 97.143 (2)°

  • V = 798.08 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.74 mm−1

  • T = 296 K

  • 0.20 × 0.10 × 0.10 mm

Data collection  

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000) T min = 0.636, T max = 0.747

  • 12917 measured reflections

  • 3569 independent reflections

  • 2732 reflections with I > 2σ(I)

  • R int = 0.048

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.036

  • wR(F 2) = 0.092

  • S = 1.05

  • 3569 reflections

  • 110 parameters

  • H-atom parameters constrained

  • Δρmax = 1.32 e Å−3

  • Δρmin = −1.22 e Å−3

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S1600536813031814/xu5753sup1.cif

e-69-0m682-sup1.cif (16KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813031814/xu5753Isup2.hkl

e-69-0m682-Isup2.hkl (175KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Ag—N1 2.1373 (19)
Ag—N2i 2.1654 (19)

Symmetry code: (i) Inline graphic.

Acknowledgments

We are grateful to the Taoyuan Innovation Institute of Technology and the National Science Council of Taiwan for support.

supplementary crystallographic information

0.1. Synthesis and crystallization

An aqueous solution (5.0 ml) of AgNO3 (1.0 mmol) was layered carefully over a methano­lic solution (5.0 ml) of N-(pyridin-2-yl)methansulfonamide (1.0 mmol) in a tube and kept it in the dark. Colourless crystals were obtained after several weeks. These were washed with methanol and collected in 78.6% yield.

0.2. Refinement

H atoms were placed in idealized positions and constrained to ride on their parent atoms with C—H = 0.93 or 0.96 Å, Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for the others.

1. Results and discussion

A series of complexes with the symmetric di(pyridyl/pyrimidyl)amide ligands (Hu et al., 2004; Hsu et al., 2008; Yeh et al., 2008; Tsai et al., 2010) and the asymmetric methyl-4-(pyridin-/pyrimidin-2-ylcarbamoyl)benzoate (Wu et al., 2011; Hsiao et al., 2012) or phosphinic amide (Yeh & Chen, 2011; Yeh et al., 2012) ligands that exhibit inter­esting structural types have been synthesized and structurally characterized. These pyridyl/pyrimidyl amide ligands coordinate to the metal centers through their pyridyl/pyrimidyl nitro­gen atoms and/or amide oxygen atoms and inter­act with each other through hydrogen bonds involving the amide groups. These inter­actions are important for molecular recognition and constructing supra­molecular arrays. .

In the title compound, [Ag(C6H7N2SO2)]2, the Ag+ cations are coordinated with one pyridyl N and one amido N atoms from twoN-(pyridin-2-yl)methane­sulfonamido (L-) anions forming a slightly bent geometry (Fig. 1). The Ag···Ag distance separated by the bridging L- group is 2.7072 (4) Å.

Figures

Fig. 1.

Fig. 1.

Crystal structure of the title compound with labeling and displacement ellipsoids drawn at 30% probability level. [Symmetry codes: (i) -x,-y + 1,-z + 1.]

Crystal data

[Ag2(C6H7N2O2S)2] F(000) = 544
Mr = 558.13 Dx = 2.323 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 6474 reflections
a = 6.4406 (2) Å θ = 2.6–35.3°
b = 15.4580 (5) Å µ = 2.74 mm1
c = 8.0789 (2) Å T = 296 K
β = 97.143 (2)° Column, colourless
V = 798.08 (4) Å3 0.20 × 0.10 × 0.10 mm
Z = 2

Data collection

Bruker APEXII CCD area-detector diffractometer 3569 independent reflections
Radiation source: fine-focus sealed tube 2732 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.048
phi and ω scans θmax = 35.4°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Bruker, 2000) h = −10→8
Tmin = 0.636, Tmax = 0.747 k = −25→22
12917 measured reflections l = −13→11

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0368P)2 + 0.3136P] where P = (Fo2 + 2Fc2)/3
3569 reflections (Δ/σ)max = 0.001
110 parameters Δρmax = 1.32 e Å3
0 restraints Δρmin = −1.22 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ag 0.13566 (3) 0.475803 (15) 0.63351 (2) 0.03999 (8)
S 0.07511 (10) 0.64837 (4) 0.14689 (7) 0.02803 (12)
C1 0.5244 (4) 0.58574 (16) 0.6741 (3) 0.0306 (4)
H1A 0.5410 0.5553 0.7742 0.037*
C2 0.6811 (4) 0.64120 (18) 0.6425 (3) 0.0354 (5)
H2A 0.8011 0.6483 0.7181 0.043*
C3 0.6530 (4) 0.68622 (16) 0.4931 (3) 0.0357 (5)
H3A 0.7560 0.7241 0.4664 0.043*
C4 0.4738 (4) 0.67511 (16) 0.3846 (3) 0.0318 (5)
H4A 0.4547 0.7060 0.2851 0.038*
C5 0.3186 (3) 0.61698 (14) 0.4237 (3) 0.0245 (4)
C6 0.2438 (5) 0.6112 (2) 0.0057 (3) 0.0422 (6)
H6A 0.2090 0.6393 −0.1001 0.063*
H6B 0.2281 0.5498 −0.0083 0.063*
H6C 0.3860 0.6243 0.0487 0.063*
N1 0.3482 (3) 0.57273 (12) 0.5690 (2) 0.0255 (3)
N2 0.1362 (3) 0.59867 (13) 0.3207 (2) 0.0274 (4)
O1 −0.1324 (3) 0.61682 (13) 0.0849 (2) 0.0406 (4)
O2 0.1003 (3) 0.74049 (12) 0.1604 (3) 0.0402 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ag 0.03197 (12) 0.05057 (14) 0.03650 (11) −0.01463 (8) 0.00059 (8) 0.01295 (8)
S 0.0278 (3) 0.0277 (3) 0.0283 (3) 0.0004 (2) 0.00232 (19) 0.00570 (19)
C1 0.0274 (11) 0.0352 (12) 0.0286 (10) −0.0003 (9) 0.0011 (8) −0.0004 (8)
C2 0.0271 (12) 0.0397 (13) 0.0381 (13) −0.0043 (10) −0.0016 (9) −0.0069 (10)
C3 0.0319 (12) 0.0328 (11) 0.0426 (13) −0.0105 (10) 0.0054 (10) −0.0031 (10)
C4 0.0300 (12) 0.0317 (11) 0.0337 (11) −0.0076 (9) 0.0040 (9) 0.0033 (9)
C5 0.0227 (10) 0.0246 (9) 0.0267 (9) −0.0013 (7) 0.0047 (7) −0.0011 (7)
C6 0.0492 (17) 0.0462 (15) 0.0330 (12) −0.0013 (12) 0.0125 (11) −0.0002 (10)
N1 0.0251 (9) 0.0272 (9) 0.0245 (8) −0.0005 (7) 0.0041 (6) 0.0009 (6)
N2 0.0242 (9) 0.0306 (9) 0.0272 (8) −0.0035 (7) 0.0017 (7) 0.0060 (7)
O1 0.0325 (10) 0.0472 (11) 0.0388 (10) −0.0050 (8) −0.0082 (8) 0.0109 (8)
O2 0.0416 (11) 0.0275 (8) 0.0506 (11) 0.0033 (7) 0.0028 (9) 0.0078 (7)

Geometric parameters (Å, º)

Ag—N1 2.1373 (19) C2—H2A 0.9300
Ag—N2i 2.1654 (19) C3—C4 1.370 (4)
Ag—Agi 2.7072 (4) C3—H3A 0.9300
S—O2 1.4359 (19) C4—C5 1.409 (3)
S—O1 1.452 (2) C4—H4A 0.9300
S—N2 1.6061 (19) C5—N1 1.351 (3)
S—C6 1.766 (3) C5—N2 1.382 (3)
C1—N1 1.345 (3) C6—H6A 0.9600
C1—C2 1.372 (4) C6—H6B 0.9600
C1—H1A 0.9300 C6—H6C 0.9600
C2—C3 1.385 (4) N2—Agi 2.1654 (19)
N1—Ag—N2i 166.03 (7) C3—C4—C5 120.1 (2)
N1—Ag—Agi 88.95 (5) C3—C4—H4A 120.0
N2i—Ag—Agi 80.07 (5) C5—C4—H4A 120.0
O2—S—O1 116.73 (12) N1—C5—N2 115.93 (19)
O2—S—N2 113.24 (11) N1—C5—C4 119.3 (2)
O1—S—N2 104.81 (11) N2—C5—C4 124.7 (2)
O2—S—C6 107.40 (13) S—C6—H6A 109.5
O1—S—C6 106.38 (14) S—C6—H6B 109.5
N2—S—C6 107.79 (13) H6A—C6—H6B 109.5
N1—C1—C2 123.9 (2) S—C6—H6C 109.5
N1—C1—H1A 118.0 H6A—C6—H6C 109.5
C2—C1—H1A 118.0 H6B—C6—H6C 109.5
C1—C2—C3 117.2 (2) C1—N1—C5 119.3 (2)
C1—C2—H2A 121.4 C1—N1—Ag 117.82 (15)
C3—C2—H2A 121.4 C5—N1—Ag 122.74 (15)
C4—C3—C2 120.2 (2) C5—N2—S 121.75 (15)
C4—C3—H3A 119.9 C5—N2—Agi 130.60 (14)
C2—C3—H3A 119.9 S—N2—Agi 106.75 (10)

Symmetry code: (i) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5753).

References

  1. Brandenburg, K. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2000). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2010). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Hsiao, H.-L., Wu, C.-J., Hsu, W., Yeh, C.-W., Xie, M.-Y., Huang, W.-J. & Chen, J.-D. (2012). CrystEngComm, 14, 8143–8152.
  5. Hsu, Y.-F., Lin, C.-H., Chen, J.-D. & Wang, J.-C. (2008). Cryst. Growth Des. 8, 1094–1096.
  6. Hu, H.-L., Yeh, C.-W. & Chen, J.-D. (2004). Eur. J. Inorg. Chem. pp. 4696–4701.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Tsai, T.-P., Huang, Y.-T., Ray, U., Chang, Y.-J., Cheng, P.-C., Wu, C.-J., Chen, J.-D. & Wang, J.-C. (2010). Polyhedron, 29, 3081–3088.
  9. Wu, C.-J., Sie, M.-J., Hsiao, H.-L. & Chen, J.-D. (2011). CrystEngComm, 13, 4121–4130.
  10. Yeh, C.-W., Chang, K.-H., Hu, C.-Y., Hsu, W. & Chen, J.-D. (2012). Polyhedron, 31, 657–664.
  11. Yeh, C.-W. & Chen, J.-D. (2011). Inorg. Chem. Commun. 14, 1212–1216.
  12. Yeh, C.-W., Chen, J.-D. & Wang, J.-C. (2008). Polyhedron, 27, 3611–3618.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S1600536813031814/xu5753sup1.cif

e-69-0m682-sup1.cif (16KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813031814/xu5753Isup2.hkl

e-69-0m682-Isup2.hkl (175KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES