Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Nov 23;69(Pt 12):o1811. doi: 10.1107/S1600536813031140

(−)-Benzyl 2,3-dide­oxy-β-d-erythro-hex-2-eno­pyran­oside

Shigeru Ohba a,*, Hayato Okazaki b, Yuji Ueda b, Kengo Hanaya b, Mitsuru Shoji b, Takeshi Sugai b
PMCID: PMC4004438  PMID: 24860294

Abstract

In the title compound, C13H16O4, the six-membered ring of the sugar moiety shows a half-chair conformation. In the crystal, mol­ecules are connected via O—H⋯O hydrogen bonds, forming columns around twofold screw axes along the b-axis direction. There is a disorder of the benz­yloxy group, which has two possible orientations with the phenyl group lying on a common plane [site-occupancy factors = 0.589 (9) and 0.411 (9)].

Related literature  

For the phenolic Ferrier reaction, see: Ferrier & Prasad (1969); Noshita et al. (1995). For the structure of the related compound α-glycoside, see: Wingert et al. (1984). For the synthesis of β-glycoside, see: Di Bussolo et al. (2002, 2004). For the enzymatic regioselective acyl­ation of d-glucal, see: Calveras et al. (2010).graphic file with name e-69-o1811-scheme1.jpg

Experimental  

Crystal data  

  • C13H16O4

  • M r = 236.26

  • Monoclinic, Inline graphic

  • a = 19.500 (9) Å

  • b = 5.291 (2) Å

  • c = 6.0809 (15) Å

  • β = 94.27 (3)°

  • V = 625.7 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 292 K

  • 0.60 × 0.40 × 0.20 mm

Data collection  

  • Rigaku AFC-7R diffractometer

  • 1713 measured reflections

  • 1585 independent reflections

  • 786 reflections with F 2 > 2σ(F 2)

  • R int = 0.034

  • 3 standard reflections every 150 reflections intensity decay: 0.8%

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.056

  • wR(F 2) = 0.255

  • S = 1.04

  • 1579 reflections

  • 193 parameters

  • 33 restraints

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: WinAFC Diffractometer Control Software (Rigaku, 1999); cell refinement: WinAFC Diffractometer Control Software (Rigaku, 1999); data reduction: CrystalStructure (Rigaku, 2010); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).

Supplementary Material

Crystal structure: contains datablock(s) General, I. DOI: 10.1107/S1600536813031140/is5321sup1.cif

e-69-o1811-sup1.cif (28.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813031140/is5321Isup2.hkl

e-69-o1811-Isup2.hkl (77.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813031140/is5321Isup3.cdx

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O3i 0.82 1.95 2.692 (8) 151
O3—H3⋯O2ii 0.82 1.89 2.614 (8) 147

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was supported by the Keio Gijuku Academic Development Funds.

supplementary crystallographic information

1. Experimental

1.1. Synthesis and crystallization

To a solution of 1c (669 mg, 2.17 mmol) in CH3CN (22 ml) were added Cs2CO3 (1.41 g, 4.33 mmol) and BnOH (4.53 ml, 43.5 mmol) and the mixture was stirred for 8 h at room temperature. The mixture was diluted H2O and organic materials were extracted with CHCl3. The combined extract was washed with brine, dried over Na2SO4, and concentrated in vacuo. The residue was purified by silica gel column chromatography (20 g). Elution with hexane-EtOAc (2:1) afforded the title compound (I) as a colorless solid (414 mg, 81%). The plate-like crystals of (I) were grown by slow cooling of a t-butyl­methyl­ether/hexane solution from ca 340 K to the room temperature. The specific rotation [α]D of (I) at 295 K is -107° (c 1.33, EtOH).

1.2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. The absolute structure was assigned based on the known absolute configuration around the C6 atom, which originated from (+)-D-glucose. In the absence of significant anomalous scattering effects, Friedel pairs were averaged before the final refinement. There is an orientational disorder of the benzyl­oxy group, where the split phenyl group moieties lie on a common plane. The site occupation factor of the major part (O4A, C11A—C17A) was refined to 58.9 (9)%. All the H atoms were positioned geometrically, and refined as riding, with C—H = 0.93–0.98 Å and O—H = 0.82 Å, and with Uiso(H) = 1.2Ueq(C,O). The hy­droxy groups were allowed to rotate but not to tip.

2. Comment

Glycosidic bond formation on glycals such as (1a in Fig. 3) accompanied with the migration of double bond from C1—C2 to C2—C3 had been recognized as Ferrier reaction to give 2-eno­pyran­osides (2) (Ferrier & Prasad, 1969; Noshita et al., 1995). Generally, α-glycosides predominate by the well known oxygen anomeric stabilizing effect, and the anomeric stereochemistry was elucidated by X-ray structure analysis of 2a (Wingert et al., 1984). In contrast, Di Bussolo et al.(2002, 2004) have demonstrated unique β-selective approach, starting from glycals such as 3 with leaving group at C4—OH. By neighboring group participation with free C3—OH, via an epoxide inter­mediate (4), Ferrier-like rearrangement occurred to give 5. Their proposed mechanism is shown in Fig. 3. In this case, a hydrogen bonding between ep­oxy ring in 4 and nucleophile dominates the stereochemistry to β rather than α. We submitted 3,6-di-O-acetyl-D-glucal (1b), which is very easily available by an enzymatic regioselective acyl­ation of D-glucal (Calveras et al., 2010), to Crotti's protocol. Introduction of methyl­sulfonyl group on free C4—OH (1c) and subsequent nuleophilic attack with benzyl alcohol provided the title compound, (I)(81%).

In the present study, the regio- and stereochemistry of (I) has been determined, although there is a complicated disorder. The benzyl­oxy group has two possible orientations, O4A/C11A—C17A and O4B/C11B—C17B, and their site occupation factors are 58.9 (9) and 41.1 (9)%, respectively. The C10—O4A and C10—O4B bond directions make an angle of 25.4 (7)°.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound with anisotropic displacement parameters drawn at the 30% probability level. The minor part of the disordered benzyloxy group was omitted for clarity.

Fig. 2.

Fig. 2.

Crystal packing viewed along the b axis with intermolecular O—H···O hydrogen bonds as dashed lines. The minor part of the disordered benzyloxy group was omitted for clarity.

Fig. 3.

Fig. 3.

Ferrier reaction and synthesis of the title compound.

Crystal data

C13H16O4 F(000) = 252.00
Mr = 236.26 Dx = 1.254 Mg m3
Monoclinic, P21 Melting point = 353–354 K
Hall symbol: P 2yb Mo Kα radiation, λ = 0.71069 Å
a = 19.500 (9) Å Cell parameters from 25 reflections
b = 5.291 (2) Å θ = 10.1–12.5°
c = 6.0809 (15) Å µ = 0.09 mm1
β = 94.27 (3)° T = 292 K
V = 625.7 (4) Å3 Plate, colorless
Z = 2 0.60 × 0.40 × 0.20 mm

Data collection

Rigaku AFC-7R diffractometer Rint = 0.034
Radiation source: Rigaku rotating Mo anode θmax = 27.5°
Graphite plate monochromator h = −9→25
ω–2θ scans k = 0→6
1713 measured reflections l = −7→7
1585 independent reflections 3 standard reflections every 150 reflections
786 reflections with F2 > 2σ(F2) intensity decay: 0.8%

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056 H-atom parameters constrained
wR(F2) = 0.255 w = 1/[σ2(Fo2) + (0.1473P)2 + 0.0601P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max = 0.001
1579 reflections Δρmax = 0.16 e Å3
193 parameters Δρmin = −0.17 e Å3
33 restraints Absolute structure: see text
Primary atom site location: structure-invariant direct methods

Special details

Experimental. Spectroscopic data: IR ν max: 3292, 2937, 2872, 1377, 1325, 1176, 1144, 1122, 1051, 970, 951, 876, 787, 744, 696 cm-1; 1H NMR (CDCl3): δ = 7.26–7.40 (m, 5H), 6.14 (ddd, J = 1.3, 4.6, 10.0 Hz, 1H), 5.89 (ddd, J = 1.0, 1.1, 10.0 Hz, 1H), 5.18 (ddd, J = 1.1, 1.3, 1.5 Hz, 1H), 4.92 (d, J = 11.8 Hz, 1H), 4.70 (d, J = 11.8 Hz, 1H), 4.02–4.09 (m, 1H), 3.97 (ddd, J = 5.9, 6.7, 12.0 Hz, 1H), 3.88 (ddd, J = 4.3, 7.3, 12.0 Hz, 1H), 3.79 (ddd, J = 3.1, 4.3, 6.7 Hz, 1H), 2.21 (dd, J = 5.9, 7.3 Hz, 1H), 1.97 (d, J = 10.6 Hz, 1H); 13C NMR (CDCl3): δ = 137.2, 130.9, 130.2, 128.4, 128.0, 127.9, 96.5, 75.1, 70.3, 62.9, 62.5.
Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1 0.3098 (2) 0.1914 (7) 0.7411 (7) 0.0920 (13)
O2 0.4326 (4) −0.2905 (9) 0.9178 (11) 0.152 (3)
O3 0.4652 (2) 0.2679 (10) 0.7637 (8) 0.0988 (14)
O4A 0.2323 (7) 0.485 (3) 0.5340 (18) 0.090 (4) 0.589 (9)
O4B 0.2402 (8) 0.476 (4) 0.638 (2) 0.068 (4) 0.411 (9)
C5 0.3777 (5) −0.1093 (15) 0.9332 (13) 0.116 (3)
C6 0.3606 (3) 0.0062 (11) 0.7108 (10) 0.0822 (15)
C7 0.4216 (3) 0.1300 (14) 0.6082 (9) 0.0837 (16)
C8 0.3960 (3) 0.2985 (17) 0.4253 (8) 0.0933 (19)
C9 0.3317 (3) 0.3656 (15) 0.3939 (10) 0.096 (2)
C10 0.2796 (3) 0.2768 (14) 0.5335 (12) 0.0946 (17)
C11A 0.1683 (5) 0.409 (3) 0.605 (3) 0.097 (4) 0.589 (9)
C11B 0.1941 (7) 0.406 (4) 0.797 (4) 0.107 (6) 0.411 (9)
C12A 0.1400 (7) 0.603 (3) 0.754 (2) 0.078 (4) 0.589 (9)
C12B 0.1432 (11) 0.611 (4) 0.826 (4) 0.078 (4) 0.411 (9)
C13A 0.1743 (7) 0.635 (3) 0.960 (2) 0.108 (4) 0.589 (9)
C13B 0.1432 (12) 0.747 (5) 1.019 (4) 0.108 (4) 0.411 (9)
C14A 0.1520 (9) 0.811 (4) 1.107 (3) 0.153 (8) 0.589 (9)
C14B 0.0960 (16) 0.938 (7) 1.038 (5) 0.153 (8) 0.411 (9)
C15A 0.0936 (10) 0.947 (4) 1.041 (3) 0.143 (8) 0.589 (9)
C15B 0.0485 (15) 0.990 (5) 0.867 (4) 0.143 (8) 0.411 (9)
C16A 0.0592 (8) 0.927 (3) 0.837 (3) 0.109 (4) 0.589 (9)
C16B 0.0481 (10) 0.852 (4) 0.674 (3) 0.109 (4) 0.411 (9)
C17A 0.0842 (9) 0.750 (3) 0.696 (3) 0.095 (4) 0.589 (9)
C17B 0.0940 (15) 0.661 (5) 0.659 (5) 0.095 (4) 0.411 (9)
H2 0.4679 −0.2355 0.9822 0.1820*
H3 0.4543 0.4176 0.7592 0.1185*
H51 0.3919 0.0215 1.0387 0.1391*
H52 0.3374 −0.1926 0.9836 0.1391*
H6 0.3411 −0.1243 0.6103 0.0986*
H7 0.4491 −0.0040 0.5463 0.1005*
H8 0.4271 0.3589 0.3291 0.1120*
H9 0.3188 0.4743 0.2779 0.1150*
H10A 0.2558 0.1336 0.4596 0.1135* 0.589 (9)
H10B 0.2496 0.1490 0.4601 0.1135* 0.411 (9)
H11A 0.1737 0.2499 0.6832 0.1165* 0.589 (9)
H11B 0.1361 0.3836 0.4779 0.1165* 0.589 (9)
H11C 0.2197 0.3725 0.9365 0.1280* 0.411 (9)
H11D 0.1701 0.2528 0.7494 0.1280* 0.411 (9)
H13A 0.2127 0.5360 1.0006 0.1298* 0.589 (9)
H13B 0.1750 0.7105 1.1365 0.1298* 0.411 (9)
H14A 0.1753 0.8367 1.2442 0.1836* 0.589 (9)
H14B 0.0965 1.0323 1.1672 0.1836* 0.411 (9)
H15A 0.0767 1.0598 1.1409 0.1720* 0.589 (9)
H15B 0.0164 1.1182 0.8812 0.1720* 0.411 (9)
H16A 0.0211 1.0264 0.7962 0.1307* 0.589 (9)
H16B 0.0168 0.8893 0.5555 0.1307* 0.411 (9)
H17A 0.0621 0.7311 0.5564 0.1141* 0.589 (9)
H17B 0.0920 0.5625 0.5324 0.1141* 0.411 (9)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.089 (3) 0.071 (3) 0.121 (3) 0.007 (2) 0.040 (3) −0.013 (3)
O2 0.198 (6) 0.072 (3) 0.169 (5) 0.023 (4) −0.094 (5) −0.033 (3)
O3 0.083 (3) 0.091 (3) 0.117 (3) 0.003 (3) −0.029 (2) −0.023 (3)
O4A 0.079 (6) 0.079 (5) 0.111 (8) 0.007 (5) 0.009 (7) 0.007 (8)
O4B 0.051 (6) 0.067 (6) 0.087 (9) 0.012 (5) 0.010 (7) 0.010 (9)
C5 0.132 (6) 0.088 (5) 0.128 (5) 0.001 (5) 0.010 (5) 0.019 (5)
C6 0.089 (4) 0.060 (3) 0.097 (4) 0.007 (3) 0.003 (3) −0.022 (3)
C7 0.076 (3) 0.093 (4) 0.082 (3) 0.020 (3) −0.000 (3) −0.032 (3)
C8 0.080 (4) 0.128 (6) 0.073 (3) 0.004 (4) 0.012 (3) −0.012 (4)
C9 0.086 (4) 0.118 (6) 0.083 (3) 0.005 (4) −0.001 (3) −0.008 (4)
C10 0.067 (3) 0.075 (4) 0.141 (5) 0.010 (4) 0.005 (4) −0.015 (4)
C11A 0.057 (5) 0.094 (8) 0.141 (9) −0.013 (6) 0.016 (6) −0.026 (8)
C11B 0.060 (8) 0.116 (13) 0.146 (15) 0.024 (9) 0.023 (9) 0.042 (13)
C12A 0.062 (4) 0.084 (4) 0.088 (10) 0.003 (4) 0.002 (6) 0.018 (6)
C12B 0.062 (4) 0.084 (4) 0.088 (10) 0.003 (4) 0.002 (6) 0.018 (6)
C13A 0.107 (9) 0.109 (10) 0.106 (8) 0.002 (7) −0.009 (7) −0.000 (8)
C13B 0.107 (9) 0.109 (10) 0.106 (8) 0.002 (7) −0.009 (7) −0.000 (8)
C14A 0.159 (14) 0.19 (2) 0.107 (10) −0.077 (16) 0.007 (9) −0.040 (11)
C14B 0.159 (14) 0.19 (2) 0.107 (10) −0.077 (16) 0.007 (9) −0.040 (11)
C15A 0.169 (16) 0.104 (10) 0.171 (17) 0.018 (11) 0.109 (13) 0.011 (11)
C15B 0.169 (16) 0.104 (10) 0.171 (17) 0.018 (11) 0.109 (13) 0.011 (11)
C16A 0.096 (7) 0.100 (9) 0.134 (11) 0.022 (7) 0.031 (8) −0.012 (7)
C16B 0.096 (7) 0.100 (9) 0.134 (11) 0.022 (7) 0.031 (8) −0.012 (7)
C17A 0.076 (7) 0.087 (13) 0.121 (7) 0.032 (8) 0.004 (6) 0.004 (8)
C17B 0.076 (7) 0.087 (13) 0.121 (7) 0.032 (8) 0.004 (6) 0.004 (8)

Geometric parameters (Å, º)

O1—C6 1.416 (8) C16B—C17B 1.36 (4)
O1—C10 1.426 (8) O2—H2 0.820
O2—C5 1.445 (11) O3—H3 0.820
O3—C7 1.424 (8) C5—H51 0.970
O4A—C10 1.438 (17) C5—H52 0.970
O4A—C11A 1.409 (18) C6—H6 0.980
O4B—C10 1.477 (19) C7—H7 0.980
O4B—C11B 1.42 (3) C8—H8 0.930
C5—C6 1.499 (10) C9—H9 0.930
C6—C7 1.531 (9) C10—H10A 0.980
C7—C8 1.483 (9) C10—H10B 0.980
C8—C9 1.304 (9) C11A—H11A 0.970
C9—C10 1.449 (9) C11A—H11B 0.970
C11A—C12A 1.499 (19) C11B—H11C 0.970
C11B—C12B 1.49 (3) C11B—H11D 0.970
C12A—C13A 1.388 (18) C13A—H13A 0.930
C12A—C17A 1.36 (3) C13B—H13B 0.930
C12B—C13B 1.38 (3) C14A—H14A 0.930
C12B—C17B 1.37 (4) C14B—H14B 0.930
C13A—C14A 1.38 (3) C15A—H15A 0.930
C13B—C14B 1.38 (4) C15B—H15B 0.930
C14A—C15A 1.38 (3) C16A—H16A 0.930
C14B—C15B 1.37 (4) C16B—H16B 0.930
C15A—C16A 1.37 (3) C17A—H17A 0.930
C15B—C16B 1.39 (3) C17B—H17B 0.930
C16A—C17A 1.38 (3)
C6—O1—C10 110.5 (5) C7—C6—H6 108.989
C10—O4A—C11A 111.4 (12) O3—C7—H7 108.061
C10—O4B—C11B 118.8 (16) C6—C7—H7 108.071
O2—C5—C6 109.1 (7) C8—C7—H7 108.069
O1—C6—C5 106.0 (6) C7—C8—H8 118.624
O1—C6—C7 109.3 (5) C9—C8—H8 118.631
C5—C6—C7 114.5 (6) C8—C9—H9 118.863
O3—C7—C6 113.1 (5) C10—C9—H9 118.877
O3—C7—C8 109.9 (6) O1—C10—H10A 108.127
C6—C7—C8 109.5 (5) O1—C10—H10B 112.184
C7—C8—C9 122.7 (6) O4A—C10—H10A 108.127
C8—C9—C10 122.3 (6) O4B—C10—H10B 112.183
O1—C10—O4A 117.6 (7) C9—C10—H10A 108.128
O1—C10—O4B 92.3 (7) C9—C10—H10B 112.184
O1—C10—C9 111.1 (5) O4A—C11A—H11A 109.342
O4A—C10—C9 103.3 (8) O4A—C11A—H11B 109.349
O4B—C10—C9 115.4 (9) C12A—C11A—H11A 109.342
O4A—C11A—C12A 111.4 (11) C12A—C11A—H11B 109.335
O4B—C11B—C12B 110.7 (18) H11A—C11A—H11B 107.980
C11A—C12A—C13A 117.0 (12) O4B—C11B—H11C 109.503
C11A—C12A—C17A 123.9 (12) O4B—C11B—H11D 109.498
C13A—C12A—C17A 119.1 (14) C12B—C11B—H11C 109.496
C11B—C12B—C13B 121.7 (19) C12B—C11B—H11D 109.495
C11B—C12B—C17B 119 (2) H11C—C11B—H11D 108.069
C13B—C12B—C17B 119 (2) C12A—C13A—H13A 119.650
C12A—C13A—C14A 120.7 (13) C14A—C13A—H13A 119.655
C12B—C13B—C14B 120 (2) C12B—C13B—H13B 120.088
C13A—C14A—C15A 117.1 (15) C14B—C13B—H13B 120.082
C13B—C14B—C15B 120 (3) C13A—C14A—H14A 121.432
C14A—C15A—C16A 124.1 (18) C15A—C14A—H14A 121.427
C14B—C15B—C16B 120 (3) C13B—C14B—H14B 119.853
C15A—C16A—C17A 116.3 (15) C15B—C14B—H14B 119.850
C15B—C16B—C17B 119 (2) C14A—C15A—H15A 117.945
C12A—C17A—C16A 122.6 (15) C16A—C15A—H15A 117.953
C12B—C17B—C16B 122 (3) C14B—C15B—H15B 120.031
C5—O2—H2 109.474 C16B—C15B—H15B 120.027
C7—O3—H3 109.475 C15A—C16A—H16A 121.839
O2—C5—H51 109.847 C17A—C16A—H16A 121.842
O2—C5—H52 109.853 C15B—C16B—H16B 120.433
C6—C5—H51 109.854 C17B—C16B—H16B 120.424
C6—C5—H52 109.864 C12A—C17A—H17A 118.712
H51—C5—H52 108.286 C16A—C17A—H17A 118.718
O1—C6—H6 108.978 C12B—C17B—H17B 119.115
C5—C6—H6 108.981 C16B—C17B—H17B 119.099
C6—O1—C10—O4A −173.3 (5) C8—C9—C10—O4A 147.8 (7)
C6—O1—C10—O4B −173.0 (4) C8—C9—C10—O4B 124.1 (7)
C6—O1—C10—C9 −54.6 (6) O4A—C11A—C12A—C13A −68.8 (15)
C10—O1—C6—C5 −168.0 (4) O4A—C11A—C12A—C17A 109.9 (13)
C10—O1—C6—C7 68.1 (5) O4B—C11B—C12B—C13B −111.9 (19)
C10—O4A—C11A—C12A 139.3 (9) O4B—C11B—C12B—C17B 70 (2)
C11A—O4A—C10—O1 −74.9 (11) C11A—C12A—C13A—C14A 179.4 (11)
C11A—O4A—C10—O4B −75.6 (14) C11A—C12A—C17A—C16A 179.8 (12)
C11A—O4A—C10—C9 162.3 (9) C13A—C12A—C17A—C16A −2 (3)
C10—O4B—C11B—C12B −160.8 (10) C17A—C12A—C13A—C14A 1 (2)
C11B—O4B—C10—O1 −58.0 (13) C11B—C12B—C13B—C14B 178.8 (17)
C11B—O4B—C10—O4A 121 (3) C11B—C12B—C17B—C16B −177.4 (19)
C11B—O4B—C10—C9 −172.7 (11) C13B—C12B—C17B—C16B 4 (4)
O2—C5—C6—O1 −176.5 (5) C17B—C12B—C13B—C14B −3 (4)
O2—C5—C6—C7 −56.0 (7) C12A—C13A—C14A—C15A 2 (3)
O1—C6—C7—O3 77.9 (6) C12B—C13B—C14B—C15B 1 (4)
O1—C6—C7—C8 −45.0 (6) C13A—C14A—C15A—C16A −3 (3)
C5—C6—C7—O3 −40.7 (8) C13B—C14B—C15B—C16B −1 (5)
C5—C6—C7—C8 −163.7 (5) C14A—C15A—C16A—C17A 3 (3)
O3—C7—C8—C9 −111.7 (7) C14B—C15B—C16B—C17B 2 (4)
C6—C7—C8—C9 13.0 (9) C15A—C16A—C17A—C12A −0 (3)
C7—C8—C9—C10 −1.1 (11) C15B—C16B—C17B—C12B −4 (4)
C8—C9—C10—O1 20.8 (10)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O2—H2···O3i 0.82 1.95 2.692 (8) 151
O3—H3···O2ii 0.82 1.89 2.614 (8) 147

Symmetry codes: (i) −x+1, y−1/2, −z+2; (ii) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS5321).

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
  2. Calveras, J., Nagai, Y., Sultana, I., Ueda, Y., Higashi, T., Shoji, M. & Sugai, T. (2010). Tetrahedron, 66, 4284–4291.
  3. Di Bussolo, V., Caselli, M., Pineschi, M. & Crotti, P. (2002). Org. Lett. 4, 3695–3698. [DOI] [PubMed]
  4. Di Bussolo, V., Caselli, M., Romano, M. R., Pineschi, M. & Crotti, P. (2004). J. Org. Chem. 69, 8702–8708. [DOI] [PubMed]
  5. Ferrier, R. J. & Prasad, N. (1969). J. Chem. Soc. C, pp. 570–575.
  6. Johnson, C. K. (1976). ORTEPII Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
  7. Noshita, T., Sugiyama, T., Kitazumi, Y. & Oritani, T. (1995). Biosci. Biotechnol. Biochem. 59, 2052–2055.
  8. Rigaku (1999). WinAFC Diffractometer Control Software Rigaku Corporation, Tokyo, Japan.
  9. Rigaku (2010). CrystalStructure Rigaku Corporation, Tokyo, Japan.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Wingert, L. M., Ruble, J. R. & Jeffrey, G. A. (1984). Carbohydr. Res. 128, 1–10. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) General, I. DOI: 10.1107/S1600536813031140/is5321sup1.cif

e-69-o1811-sup1.cif (28.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813031140/is5321Isup2.hkl

e-69-o1811-Isup2.hkl (77.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813031140/is5321Isup3.cdx

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES