Abstract
In the title compound, C21H24N2O2Si, the carbonyl group of the heterocyclic ring and the O atom of the silyl ether group are placed toward opposite sides and the tert-butyl and pyridazinone moieties are anti-oriented across the Si—O bond [torsion angle = −168.44 (19)°]. In the crystal, molecules are assembled into inversion dimers through co-operative N—H⋯O hydrogen bonds between the NH groups and O atoms of the pyridazinone rings of neighbouring molecules. The dimers are linked by π–π interactions involving adjacent pyridazinone rings [centroid–centroid distance = 3.8095 (19) Å], generating ladder-like chains along the b-axis direction. The chains are further linked into a two-dimensional network parallel to the ab plane through weak C—H⋯π interactions.
Related literature
For background to pyridazinone analogues displaying biological activities, see: Siddiqui et al. (2010 ▶); Costas et al. (2010 ▶); Abouzid & Bekhit (2008 ▶); Cesari et al. (2006 ▶); Rathish et al. (2009 ▶); Al-Tel (2010 ▶); Suree et al. (2009 ▶); Tao et al. (2011 ▶). For related structures, see: Costas et al. (2010 ▶); Costas-Lago et al. (2013 ▶).
Experimental
Crystal data
C21H24N2O2Si
M r = 364.51
Monoclinic,
a = 10.774 (4) Å
b = 7.988 (3) Å
c = 24.681 (10) Å
β = 100.207 (7)°
V = 2090.5 (14) Å3
Z = 4
Mo Kα radiation
μ = 0.13 mm−1
T = 293 K
0.48 × 0.41 × 0.23 mm
Data collection
Bruker SMART 1000 CCD diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996 ▶) T min = 0.707, T max = 0.746
25187 measured reflections
5045 independent reflections
3076 reflections with I > 2σ(I)
R int = 0.038
Refinement
R[F 2 > 2σ(F 2)] = 0.046
wR(F 2) = 0.148
S = 1.00
5045 reflections
242 parameters
H atoms treated by a mixture of independent and constrained refinement
Δρmax = 0.30 e Å−3
Δρmin = −0.24 e Å−3
Data collection: SMART (Bruker, 1998 ▶); cell refinement: SAINT (Bruker, 1998 ▶); data reduction: SAINT; program(s) used to solve structure: SIR2004 (Burla et al., 2005 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: PLATON (Spek, 2003 ▶) and Mercury (Macrae et al., 2006 ▶); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 ▶).
Supplementary Material
Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S1600536813032212/lr2118sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813032212/lr2118Isup2.hkl
Supplementary material file. DOI: 10.1107/S1600536813032212/lr2118Isup3.cml
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
Cg2 is the centroid of the C8′–C13′ ring
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| N2—H2⋯O3i | 0.93 (3) | 1.84 (3) | 2.764 (2) | 176 (2) |
| C6—H6⋯Cg2ii | 0.93 | 2.76 | 3.637 (3) | 138 |
Symmetry codes: (i)
; (ii)
.
Acknowledgments
This work was financially supported by the Xunta de Galicia (CN 2012/184). The authors gratefully acknowledge Dr Berta Covelo, X-ray Diffraction service of the University of Vigo, for her valuable assistance. MCC-L and NV thank the University of Vigo for their Master and PhD fellowships, respectively.
supplementary crystallographic information
1. Introduction
Pyridazin-3(2H)-one derivatives possess a wide range of biological activities, this fact together with the easy functionalization at various ring positions makes the pyridazinone nucleus a versatile pharmacophore to design and synthesize new drugs. For instance, an important number of pyridazinones have been reported as antihypertensive (Siddiqui et al., 2010), antiplatelet (Costas et al., 2010), anti-inflammatory (Abouzid & Bekhit, 2008), antinociceptive (Cesari et al., 2006), antidiabetic (Rathish et al., 2009), anticancer (Al-Tel, 2010), antimicrobial (Suree et al., 2009) or anti-histamine H3 agents (Tao et al., 2011).
2. Experimental
2.1. Synthesis and crystallization
A solution of 3-(tert-butyldiphenylsilyloxymethyl)-5-hydroxy-5H-furan-2-ona (50 mg, 0.136 mmol) and hydrazine monohydrate (14 ml, 0.284 mmol) in ethanol (2 ml) was stirred at reflux for 4 h. The solvent was evaporated under reduced pressure and residue was purified by column chromatography on silica gel (hexane/ethyl acetate 4:1) to afford a colourless oil (16 mg, 32%). Single crystals suitable for X-ray analysis were grown from a chloroform solution at room temperature.
2.2. Refinement
Crystal data, data collection and structure refinement details are summarized in Table 1. All H-atoms were positioned and refined using a riding model with d(C—H)= 0.93 Å, Uiso = 1.2Ueq(C) for aromatic C—H groups,d(C—H)= 0.97 Å, Uiso = 1.2Ueq(C) for CH2 group and d(C—H)= 0.96 Å, Uiso = 1.5Ueq(C) for CH3 group; except for the hydrogen atoms of the NH group which were located from a Fourier-difference map and refined isotropically
3. Results and discussion
The compound I, an isomer of the 5-(tert-butyldiphenylsilyloxymethyl)pyridazin-3(2H)-one (Costas-Lago et al., 2013), was prepared in order to develop new pyridazinone analogues C4-substituted as antiplatelet agents. In the titled compound, the carbonyl group of the heterocyclic ring and the oxygen atom of the silyl ether group are placed toward opposite sides, this contrasts with the geometry found in the C5-substituted regioisomer and could explain the nearly flat disposition of the sequence C4—C1'-O1'-Si, with a torsion angle of -174.30 (15)°. The pyridazinone ring forms dihedral angles of 89.10 (8)° and 77.53 (7)°, respectively, with the C2'-C7' and C8'-C13' benzene rings, while the dihedral angle between both benzene rings is 48.41 (10)°.
The geometry of titled compound lets the assembly of molecules in supramolecular organizations based on hydrogen bonding, π–π and CH···π interactions. The cooperative N—H···O hydrogen bonds between the NH group of one pyridazinone ring and the oxygen atom of an adjacent ring form supramolecular dimers (Figure 2). These dimers are joined by π–π interactions involving also neighbouring pyridazinone rings [Cg(1): N1—N2—C3—C4—C5—C6; d[Cg(1)—Cg(1)ii]: 3.8095 (19) Å; d[Cg(1)···P(1)ii]: 3.4279 (8) Å; α: 0°; symmetry code ii: 1 - x, 2 - y, -z] resulting in a ladder chain along the crystallographic b axis (Figure 3). Finally, the linear chains are linked into a two-dimensional network through weak C—H···π interactions (Figure 4) involving CH groups of the pyridazinone rings and phenyl rings from neighbouring chains [C6—H6···Cg(2)iii; Cg(2): C8'-C9'-C10'-C11'-C12'-C13'; d[H···Cg(2)iii]: 2.890 Å; γ: 17.60°; symmetry code iii: 2 - x, -2 - y, -z]. In this case the pyridazinone ring arrangement prevents the three-dimensional growth observed in the C5-substituted regioisomer (Costas-Lago et al., 2013).
Figures
Fig. 1.
The molecular structure of (I) showing the atom-numbering scheme. Displacement ellipsoids are shown at the 20% probability level.
Fig. 2.

View of supramolecular dimer generated by NH···O hydrogen bonds.
Fig. 3.

View of the ladder chain along crystallographic b axis generated by π–π interactions.
Fig. 4.

View of the two-dimensional organization generated by CH···π interactions (H atoms, no-involved in supramolecular structure, have been omitted to clarify).
Crystal data
| C21H24N2O2Si | F(000) = 776 |
| Mr = 364.51 | Dx = 1.158 Mg m−3 |
| Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
| Hall symbol: -P 2yn | Cell parameters from 5037 reflections |
| a = 10.774 (4) Å | θ = 2.7–23.0° |
| b = 7.988 (3) Å | µ = 0.13 mm−1 |
| c = 24.681 (10) Å | T = 293 K |
| β = 100.207 (7)° | Prism, colourless |
| V = 2090.5 (14) Å3 | 0.48 × 0.41 × 0.23 mm |
| Z = 4 |
Data collection
| Bruker SMART 1000 CCD diffractometer | 5045 independent reflections |
| Radiation source: fine-focus sealed tube | 3076 reflections with I > 2σ(I) |
| Graphite monochromator | Rint = 0.038 |
| φ and ω scans | θmax = 28.0°, θmin = 1.7° |
| Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −14→14 |
| Tmin = 0.707, Tmax = 0.746 | k = −10→10 |
| 25187 measured reflections | l = −32→32 |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.046 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.148 | H atoms treated by a mixture of independent and constrained refinement |
| S = 1.00 | w = 1/[σ2(Fo2) + (0.0628P)2 + 0.7126P] where P = (Fo2 + 2Fc2)/3 |
| 5045 reflections | (Δ/σ)max < 0.001 |
| 242 parameters | Δρmax = 0.30 e Å−3 |
| 0 restraints | Δρmin = −0.24 e Å−3 |
Special details
| Experimental. 1H-RMN (400 MHz, CDCl3) δ p.p.m.: 12.32 (s, 1H), 7.90 (d, 1H, J=4.0 Hz), 7.65 (m, 4H), 7.60 (m, 1H), 7.42 (m, 6H), 4.77 (d, 2H, J=1.7 Hz), 1.14 (s, 9H). |
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| Si | 0.99974 (5) | 0.99175 (7) | 0.14301 (2) | 0.04561 (17) | |
| N1 | 0.52674 (18) | 0.8319 (2) | −0.06086 (7) | 0.0653 (5) | |
| H2 | 0.487 (2) | 0.611 (4) | −0.0346 (11) | 0.086 (8)* | |
| N2 | 0.53846 (17) | 0.7036 (2) | −0.02487 (7) | 0.0574 (5) | |
| C3 | 0.62195 (19) | 0.6898 (3) | 0.02344 (8) | 0.0526 (5) | |
| O3 | 0.62352 (16) | 0.5633 (2) | 0.05259 (7) | 0.0788 (5) | |
| C4 | 0.70446 (17) | 0.8303 (2) | 0.03690 (8) | 0.0467 (4) | |
| C5 | 0.6944 (2) | 0.9595 (3) | 0.00182 (8) | 0.0560 (5) | |
| H5 | 0.7469 | 1.0521 | 0.0097 | 0.067* | |
| C6 | 0.6037 (2) | 0.9546 (3) | −0.04720 (9) | 0.0669 (6) | |
| H6 | 0.5993 | 1.0454 | −0.0710 | 0.080* | |
| C1' | 0.7958 (2) | 0.8211 (3) | 0.08991 (9) | 0.0653 (6) | |
| H1'1 | 0.7505 | 0.8207 | 0.1206 | 0.078* | |
| H1'2 | 0.8444 | 0.7185 | 0.0913 | 0.078* | |
| O1' | 0.87743 (14) | 0.96100 (19) | 0.09397 (6) | 0.0627 (4) | |
| C2' | 0.95347 (19) | 0.9463 (3) | 0.21122 (8) | 0.0543 (5) | |
| C3' | 0.8587 (3) | 1.0372 (4) | 0.22883 (12) | 0.0840 (8) | |
| H3' | 0.8172 | 1.1198 | 0.2059 | 0.101* | |
| C4' | 0.8235 (3) | 1.0095 (5) | 0.27923 (15) | 0.1019 (11) | |
| H4' | 0.7594 | 1.0733 | 0.2897 | 0.122* | |
| C5' | 0.8812 (3) | 0.8910 (5) | 0.31327 (12) | 0.0971 (11) | |
| H5' | 0.8589 | 0.8741 | 0.3476 | 0.117* | |
| C6' | 0.9719 (3) | 0.7968 (5) | 0.29721 (11) | 0.0973 (10) | |
| H6' | 1.0109 | 0.7131 | 0.3203 | 0.117* | |
| C7' | 1.0078 (2) | 0.8232 (4) | 0.24653 (10) | 0.0762 (7) | |
| H7' | 1.0702 | 0.7559 | 0.2363 | 0.091* | |
| C8' | 1.1303 (2) | 0.8497 (3) | 0.13054 (8) | 0.0552 (5) | |
| C9' | 1.1229 (3) | 0.7655 (3) | 0.08041 (10) | 0.0686 (6) | |
| H9' | 1.0508 | 0.7771 | 0.0537 | 0.082* | |
| C10' | 1.2208 (3) | 0.6650 (3) | 0.06949 (14) | 0.0907 (9) | |
| H10' | 1.2141 | 0.6115 | 0.0356 | 0.109* | |
| C11' | 1.3262 (4) | 0.6449 (4) | 0.10820 (17) | 0.1030 (11) | |
| H11' | 1.3910 | 0.5763 | 0.1009 | 0.124* | |
| C12' | 1.3376 (3) | 0.7244 (4) | 0.15767 (15) | 0.0950 (10) | |
| H12' | 1.4101 | 0.7105 | 0.1840 | 0.114* | |
| C13' | 1.2403 (2) | 0.8268 (3) | 0.16862 (10) | 0.0727 (7) | |
| H13' | 1.2492 | 0.8813 | 0.2024 | 0.087* | |
| C14' | 1.0445 (2) | 1.2154 (3) | 0.13265 (9) | 0.0551 (5) | |
| C15' | 1.0735 (3) | 1.2322 (4) | 0.07485 (11) | 0.1004 (10) | |
| H15A | 1.0925 | 1.3469 | 0.0681 | 0.151* | |
| H15B | 1.0016 | 1.1971 | 0.0486 | 0.151* | |
| H15C | 1.1446 | 1.1633 | 0.0714 | 0.151* | |
| C16' | 1.1613 (3) | 1.2610 (4) | 0.17343 (14) | 0.1250 (14) | |
| H16A | 1.1790 | 1.3780 | 0.1702 | 0.188* | |
| H16B | 1.2314 | 1.1963 | 0.1659 | 0.188* | |
| H16C | 1.1477 | 1.2377 | 0.2101 | 0.188* | |
| C17' | 0.9393 (4) | 1.3371 (4) | 0.1387 (2) | 0.1496 (19) | |
| H17A | 0.9230 | 1.3325 | 0.1756 | 0.224* | |
| H17B | 0.8643 | 1.3072 | 0.1134 | 0.224* | |
| H17C | 0.9643 | 1.4486 | 0.1308 | 0.224* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Si | 0.0432 (3) | 0.0493 (3) | 0.0416 (3) | −0.0068 (2) | 0.0000 (2) | 0.0014 (2) |
| N1 | 0.0713 (12) | 0.0678 (12) | 0.0512 (10) | −0.0148 (10) | −0.0044 (9) | 0.0040 (9) |
| N2 | 0.0613 (11) | 0.0557 (11) | 0.0497 (10) | −0.0158 (9) | −0.0052 (8) | −0.0022 (8) |
| C3 | 0.0539 (12) | 0.0536 (12) | 0.0476 (11) | −0.0110 (9) | 0.0012 (9) | −0.0008 (9) |
| O3 | 0.0872 (12) | 0.0635 (10) | 0.0720 (10) | −0.0326 (9) | −0.0229 (9) | 0.0162 (8) |
| C4 | 0.0433 (10) | 0.0514 (11) | 0.0443 (10) | −0.0101 (8) | 0.0048 (8) | −0.0012 (8) |
| C5 | 0.0542 (12) | 0.0579 (12) | 0.0537 (12) | −0.0164 (10) | 0.0032 (9) | 0.0023 (10) |
| C6 | 0.0732 (15) | 0.0685 (15) | 0.0541 (12) | −0.0161 (12) | −0.0021 (11) | 0.0137 (11) |
| C1' | 0.0649 (14) | 0.0621 (14) | 0.0607 (13) | −0.0267 (11) | −0.0119 (11) | 0.0113 (11) |
| O1' | 0.0576 (9) | 0.0637 (9) | 0.0584 (8) | −0.0250 (7) | −0.0126 (7) | 0.0132 (7) |
| C2' | 0.0464 (11) | 0.0659 (13) | 0.0495 (11) | −0.0099 (10) | 0.0057 (9) | 0.0012 (10) |
| C3' | 0.0783 (17) | 0.093 (2) | 0.0888 (19) | 0.0090 (15) | 0.0360 (15) | 0.0102 (15) |
| C4' | 0.091 (2) | 0.129 (3) | 0.098 (2) | −0.010 (2) | 0.0526 (19) | −0.014 (2) |
| C5' | 0.0764 (19) | 0.160 (3) | 0.0581 (16) | −0.042 (2) | 0.0211 (14) | −0.0041 (19) |
| C6' | 0.0731 (17) | 0.153 (3) | 0.0643 (16) | −0.0122 (19) | 0.0081 (14) | 0.0392 (18) |
| C7' | 0.0620 (14) | 0.103 (2) | 0.0648 (14) | 0.0018 (14) | 0.0150 (12) | 0.0238 (14) |
| C8' | 0.0649 (13) | 0.0515 (12) | 0.0507 (11) | 0.0008 (10) | 0.0140 (10) | 0.0082 (9) |
| C9' | 0.0959 (18) | 0.0508 (13) | 0.0650 (14) | −0.0103 (12) | 0.0308 (13) | 0.0029 (11) |
| C10' | 0.140 (3) | 0.0508 (14) | 0.099 (2) | −0.0047 (17) | 0.070 (2) | 0.0005 (14) |
| C11' | 0.126 (3) | 0.0723 (19) | 0.130 (3) | 0.0320 (19) | 0.077 (2) | 0.034 (2) |
| C12' | 0.0816 (19) | 0.105 (2) | 0.105 (2) | 0.0336 (17) | 0.0335 (17) | 0.0447 (19) |
| C13' | 0.0700 (15) | 0.0858 (18) | 0.0648 (14) | 0.0173 (13) | 0.0189 (12) | 0.0162 (13) |
| C14' | 0.0545 (12) | 0.0520 (12) | 0.0589 (12) | −0.0104 (10) | 0.0100 (10) | −0.0043 (10) |
| C15' | 0.164 (3) | 0.0717 (18) | 0.0710 (17) | −0.0341 (19) | 0.0367 (19) | 0.0069 (14) |
| C16' | 0.146 (3) | 0.107 (3) | 0.103 (2) | −0.080 (2) | −0.030 (2) | 0.0063 (19) |
| C17' | 0.137 (3) | 0.0609 (19) | 0.278 (6) | 0.0174 (19) | 0.109 (4) | 0.031 (3) |
Geometric parameters (Å, º)
| Si—O1' | 1.6420 (15) | C6'—C7' | 1.390 (4) |
| Si—C2' | 1.874 (2) | C6'—H6' | 0.9300 |
| Si—C8' | 1.874 (2) | C7'—H7' | 0.9300 |
| Si—C14' | 1.880 (2) | C8'—C13' | 1.388 (3) |
| N1—C6 | 1.290 (3) | C8'—C9' | 1.398 (3) |
| N1—N2 | 1.347 (3) | C9'—C10' | 1.389 (4) |
| N2—C3 | 1.365 (3) | C9'—H9' | 0.9300 |
| N2—H2 | 0.93 (3) | C10'—C11' | 1.358 (5) |
| C3—O3 | 1.239 (2) | C10'—H10' | 0.9300 |
| C3—C4 | 1.433 (3) | C11'—C12' | 1.363 (5) |
| C4—C5 | 1.340 (3) | C11'—H11' | 0.9300 |
| C4—C1' | 1.493 (3) | C12'—C13' | 1.393 (4) |
| C5—C6 | 1.415 (3) | C12'—H12' | 0.9300 |
| C5—H5 | 0.9300 | C13'—H13' | 0.9300 |
| C6—H6 | 0.9300 | C14'—C16' | 1.510 (3) |
| C1'—O1' | 1.415 (2) | C14'—C15' | 1.520 (3) |
| C1'—H1'1 | 0.9700 | C14'—C17' | 1.520 (4) |
| C1'—H1'2 | 0.9700 | C15'—H15A | 0.9600 |
| C2'—C7' | 1.374 (3) | C15'—H15B | 0.9600 |
| C2'—C3' | 1.385 (3) | C15'—H15C | 0.9600 |
| C3'—C4' | 1.381 (4) | C16'—H16A | 0.9600 |
| C3'—H3' | 0.9300 | C16'—H16B | 0.9600 |
| C4'—C5' | 1.344 (5) | C16'—H16C | 0.9600 |
| C4'—H4' | 0.9300 | C17'—H17A | 0.9600 |
| C5'—C6' | 1.346 (5) | C17'—H17B | 0.9600 |
| C5'—H5' | 0.9300 | C17'—H17C | 0.9600 |
| O1'—Si—C2' | 109.06 (9) | C2'—C7'—H7' | 119.2 |
| O1'—Si—C8' | 108.41 (10) | C6'—C7'—H7' | 119.2 |
| C2'—Si—C8' | 110.90 (10) | C13'—C8'—C9' | 116.3 (2) |
| O1'—Si—C14' | 103.51 (9) | C13'—C8'—Si | 122.96 (17) |
| C2'—Si—C14' | 114.95 (10) | C9'—C8'—Si | 120.66 (18) |
| C8'—Si—C14' | 109.59 (10) | C10'—C9'—C8' | 121.6 (3) |
| C6—N1—N2 | 115.14 (18) | C10'—C9'—H9' | 119.2 |
| N1—N2—C3 | 127.44 (18) | C8'—C9'—H9' | 119.2 |
| N1—N2—H2 | 116.9 (16) | C11'—C10'—C9' | 120.1 (3) |
| C3—N2—H2 | 115.5 (16) | C11'—C10'—H10' | 120.0 |
| O3—C3—N2 | 120.83 (18) | C9'—C10'—H10' | 120.0 |
| O3—C3—C4 | 124.04 (18) | C10'—C11'—C12' | 120.4 (3) |
| N2—C3—C4 | 115.12 (18) | C10'—C11'—H11' | 119.8 |
| C5—C4—C3 | 118.56 (18) | C12'—C11'—H11' | 119.8 |
| C5—C4—C1' | 124.70 (18) | C11'—C12'—C13' | 119.7 (3) |
| C3—C4—C1' | 116.74 (17) | C11'—C12'—H12' | 120.1 |
| C4—C5—C6 | 119.70 (19) | C13'—C12'—H12' | 120.1 |
| C4—C5—H5 | 120.1 | C8'—C13'—C12' | 121.8 (3) |
| C6—C5—H5 | 120.1 | C8'—C13'—H13' | 119.1 |
| N1—C6—C5 | 124.0 (2) | C12'—C13'—H13' | 119.1 |
| N1—C6—H6 | 118.0 | C16'—C14'—C15' | 108.6 (2) |
| C5—C6—H6 | 118.0 | C16'—C14'—C17' | 109.2 (3) |
| O1'—C1'—C4 | 109.16 (16) | C15'—C14'—C17' | 108.4 (3) |
| O1'—C1'—H1'1 | 109.8 | C16'—C14'—Si | 110.01 (18) |
| C4—C1'—H1'1 | 109.8 | C15'—C14'—Si | 108.18 (16) |
| O1'—C1'—H1'2 | 109.8 | C17'—C14'—Si | 112.41 (17) |
| C4—C1'—H1'2 | 109.8 | C14'—C15'—H15A | 109.5 |
| H1'1—C1'—H1'2 | 108.3 | C14'—C15'—H15B | 109.5 |
| C1'—O1'—Si | 125.32 (13) | H15A—C15'—H15B | 109.5 |
| C7'—C2'—C3' | 115.6 (2) | C14'—C15'—H15C | 109.5 |
| C7'—C2'—Si | 123.85 (18) | H15A—C15'—H15C | 109.5 |
| C3'—C2'—Si | 120.58 (18) | H15B—C15'—H15C | 109.5 |
| C4'—C3'—C2' | 122.3 (3) | C14'—C16'—H16A | 109.5 |
| C4'—C3'—H3' | 118.8 | C14'—C16'—H16B | 109.5 |
| C2'—C3'—H3' | 118.8 | H16A—C16'—H16B | 109.5 |
| C5'—C4'—C3' | 120.3 (3) | C14'—C16'—H16C | 109.5 |
| C5'—C4'—H4' | 119.8 | H16A—C16'—H16C | 109.5 |
| C3'—C4'—H4' | 119.8 | H16B—C16'—H16C | 109.5 |
| C4'—C5'—C6' | 119.3 (3) | C14'—C17'—H17A | 109.5 |
| C4'—C5'—H5' | 120.3 | C14'—C17'—H17B | 109.5 |
| C6'—C5'—H5' | 120.3 | H17A—C17'—H17B | 109.5 |
| C5'—C6'—C7' | 120.8 (3) | C14'—C17'—H17C | 109.5 |
| C5'—C6'—H6' | 119.6 | H17A—C17'—H17C | 109.5 |
| C7'—C6'—H6' | 119.6 | H17B—C17'—H17C | 109.5 |
| C2'—C7'—C6' | 121.6 (3) | ||
| C6—N1—N2—C3 | −0.3 (3) | C4'—C5'—C6'—C7' | 1.3 (5) |
| N1—N2—C3—O3 | −179.2 (2) | C3'—C2'—C7'—C6' | −2.0 (4) |
| N1—N2—C3—C4 | 0.9 (3) | Si—C2'—C7'—C6' | 178.6 (2) |
| O3—C3—C4—C5 | 179.5 (2) | C5'—C6'—C7'—C2' | 0.5 (5) |
| N2—C3—C4—C5 | −0.7 (3) | O1'—Si—C8'—C13' | −170.38 (18) |
| O3—C3—C4—C1' | −0.8 (3) | C2'—Si—C8'—C13' | −50.7 (2) |
| N2—C3—C4—C1' | 179.02 (19) | C14'—Si—C8'—C13' | 77.3 (2) |
| C3—C4—C5—C6 | 0.0 (3) | O1'—Si—C8'—C9' | 12.29 (19) |
| C1'—C4—C5—C6 | −179.7 (2) | C2'—Si—C8'—C9' | 132.00 (17) |
| N2—N1—C6—C5 | −0.5 (4) | C14'—Si—C8'—C9' | −100.04 (18) |
| C4—C5—C6—N1 | 0.7 (4) | C13'—C8'—C9'—C10' | −0.1 (3) |
| C5—C4—C1'—O1' | −6.1 (3) | Si—C8'—C9'—C10' | 177.36 (17) |
| C3—C4—C1'—O1' | 174.22 (19) | C8'—C9'—C10'—C11' | 0.8 (4) |
| C4—C1'—O1'—Si | −174.30 (15) | C9'—C10'—C11'—C12' | −0.8 (4) |
| C2'—Si—O1'—C1' | −45.6 (2) | C10'—C11'—C12'—C13' | 0.2 (5) |
| C8'—Si—O1'—C1' | 75.2 (2) | C9'—C8'—C13'—C12' | −0.5 (3) |
| C14'—Si—O1'—C1' | −168.44 (19) | Si—C8'—C13'—C12' | −178.0 (2) |
| O1'—Si—C2'—C7' | 118.5 (2) | C11'—C12'—C13'—C8' | 0.5 (4) |
| C8'—Si—C2'—C7' | −0.8 (2) | O1'—Si—C14'—C16' | −177.2 (2) |
| C14'—Si—C2'—C7' | −125.8 (2) | C2'—Si—C14'—C16' | 64.0 (2) |
| O1'—Si—C2'—C3' | −60.8 (2) | C8'—Si—C14'—C16' | −61.7 (2) |
| C8'—Si—C2'—C3' | 179.9 (2) | O1'—Si—C14'—C15' | −58.7 (2) |
| C14'—Si—C2'—C3' | 54.9 (2) | C2'—Si—C14'—C15' | −177.52 (18) |
| C7'—C2'—C3'—C4' | 1.8 (4) | C8'—Si—C14'—C15' | 56.8 (2) |
| Si—C2'—C3'—C4' | −178.8 (2) | O1'—Si—C14'—C17' | 61.0 (3) |
| C2'—C3'—C4'—C5' | −0.1 (5) | C2'—Si—C14'—C17' | −57.9 (3) |
| C3'—C4'—C5'—C6' | −1.5 (5) | C8'—Si—C14'—C17' | 176.5 (3) |
Hydrogen-bond geometry (Å, º)
Cg2 is the centroid of the C8'–C13' ring
| D—H···A | D—H | H···A | D···A | D—H···A |
| N2—H2···O3i | 0.93 (3) | 1.84 (3) | 2.764 (2) | 176 (2) |
| C6—H6···Cg2ii | 0.93 | 2.76 | 3.637 (3) | 138 |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+2, −y+2, −z.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LR2118).
References
- Abouzid, K. & Bekhit, S. A. (2008). Bioorg. Med. Chem. 16, 5547–5556. [DOI] [PubMed]
- Al-Tel, T. H. (2010). Eur. J. Med. Chem. 45, 5724–5731. [DOI] [PubMed]
- Bruker (1998). SMART and SAINT Bruker AXS Inc., Madinson, Wisconsin, USA.
- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
- Cesari, N., Biancanali, C., Vergelli, C., Dal Piaz, V., Graziano, A., Biagini, P., Chelardini, C., Galeotti, N. & Giovannoni, P. (2006). J. Med. Chem. 49, 7826–7835. [DOI] [PubMed]
- Costas, T., Besada, P., Piras, A., Acevedo, L., Yañez, M., Orallo, F., Laguna, R. & Terán, C. (2010). Bioorg. Med. Chem. Lett. 20, 6624–6627. [DOI] [PubMed]
- Costas-Lago, M. C., Costas, T., Vila, N. & Terán, C. (2013). Acta Cryst. E69, o1826–o1827. [DOI] [PMC free article] [PubMed]
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
- Rathish, I. G., Javed, K., Bano, S., Ahmad, S., Alam, M. S. & Pillai, K. K. (2009). Eur. J. Med. Chem. 44, 2673–2678. [DOI] [PubMed]
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Siddiqui, A. A., Mishra, R. & Shaharyar, M. (2010). Eur. J. Med. Chem. 45, 2283–2290. [DOI] [PubMed]
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13.
- Suree, N., Yi, S. W., Thieu, W., Marohn, M., Damoiseaux, R., Chan, A., Jung, M. E. & Club, R. T. (2009). Bioorg. Med. Chem. 17, 7174–7185. [DOI] [PMC free article] [PubMed]
- Tao, M., Raddatz, R., Aimone, L. D. & Hudkins, R. L. (2011). Bioorg. Med. Chem. Lett. 21, 6126–6130. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S1600536813032212/lr2118sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813032212/lr2118Isup2.hkl
Supplementary material file. DOI: 10.1107/S1600536813032212/lr2118Isup3.cml
Additional supplementary materials: crystallographic information; 3D view; checkCIF report

