Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1996 Feb 6;93(3):1298–1302. doi: 10.1073/pnas.93.3.1298

A compositional map of human chromosome band Xq28.

A De Sario 1, E M Geigl 1, G Palmieri 1, M D'Urso 1, G Bernardi 1
PMCID: PMC40074  PMID: 8577758

Abstract

The molar fractions of guanine plus cytosine (GC) in DNA were determined for 36 yeast artificial chromosomes (YACs) which almost completely cover human chromosome band Xq28, a terminal reverse band, corresponding to about 8 Mb of DNA. This allowed the construction of the most complete compositional map to date of a chromosomal band; three regions were observed: (i) a proximal 3.5-Mb region formed by GC-poor L and GC-rich H1 isochores; (ii) a middle 2,2-Mb region essentially formed by a GC-rich H2 isochore and a very GC-rich H3 isochore separated by a GC-poor L isochore, YACs from this region being characterized by a striking compositional heterogeneity and instability; and (iii) a distal 1.3-Mb region exclusively formed by GC-poor L isochores. Gene and CpG island concentrations increased with the GC levels of the isochores, as expected. Xq28 exemplifies a subset of reverse bands which are different from the two other subsets, namely from telomeric bands, which are characterized by specific cytogenetic properties and by the predominance of H2 and H3 isochores, and from the majority of reverse bands, which do not contain H2 and H3 isochores.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ambros P. F., Sumner A. T. Correlation of pachytene chromomeres and metaphase bands of human chromosomes, and distinctive properties of telomeric regions. Cytogenet Cell Genet. 1987;44(4):223–228. doi: 10.1159/000132375. [DOI] [PubMed] [Google Scholar]
  2. Aïssani B., D'Onofrio G., Mouchiroud D., Gardiner K., Gautier C., Bernardi G. The compositional properties of human genes. J Mol Evol. 1991 Jun;32(6):493–503. doi: 10.1007/BF02102651. [DOI] [PubMed] [Google Scholar]
  3. Bernardi G., Olofsson B., Filipski J., Zerial M., Salinas J., Cuny G., Meunier-Rotival M., Rodier F. The mosaic genome of warm-blooded vertebrates. Science. 1985 May 24;228(4702):953–958. doi: 10.1126/science.4001930. [DOI] [PubMed] [Google Scholar]
  4. Bernardi G. The human genome: organization and evolutionary history. Annu Rev Genet. 1995;29:445–476. doi: 10.1146/annurev.ge.29.120195.002305. [DOI] [PubMed] [Google Scholar]
  5. Bernardi G. The isochore organization of the human genome. Annu Rev Genet. 1989;23:637–661. doi: 10.1146/annurev.ge.23.120189.003225. [DOI] [PubMed] [Google Scholar]
  6. Bettecken T., Aissani B., Müller C. R., Bernardi G. Compositional mapping of the human dystrophin-encoding gene. Gene. 1992 Dec 15;122(2):329–335. doi: 10.1016/0378-1119(92)90222-b. [DOI] [PubMed] [Google Scholar]
  7. Bione S., Tamanini F., Maestrini E., Tribioli C., Poustka A., Torri G., Rivella S., Toniolo D. Transcriptional organization of a 450-kb region of the human X chromosome in Xq28. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):10977–10981. doi: 10.1073/pnas.90.23.10977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Craig J. M., Bickmore W. A. The distribution of CpG islands in mammalian chromosomes. Nat Genet. 1994 Jul;7(3):376–382. doi: 10.1038/ng0794-376. [DOI] [PubMed] [Google Scholar]
  9. Cuny G., Soriano P., Macaya G., Bernardi G. The major components of the mouse and human genomes. 1. Preparation, basic properties and compositional heterogeneity. Eur J Biochem. 1981 Apr;115(2):227–233. doi: 10.1111/j.1432-1033.1981.tb05227.x. [DOI] [PubMed] [Google Scholar]
  10. De Sario A., Aïssani B., Bernardi G. Compositional properties of telomeric regions from human chromosomes. FEBS Lett. 1991 Dec 16;295(1-3):22–26. doi: 10.1016/0014-5793(91)81375-i. [DOI] [PubMed] [Google Scholar]
  11. De Sario A., Geigl E. M., Bernardi G. A rapid procedure for the compositional analysis of yeast artificial chromosomes. Nucleic Acids Res. 1995 Oct 11;23(19):4013–4014. doi: 10.1093/nar/23.19.4013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dutrillaux B. Nouveau système de marquage chromosomique: Les bandes. Chromosoma. 1973 Apr 27;41(4):395–402. doi: 10.1007/BF00396497. [DOI] [PubMed] [Google Scholar]
  13. Ellis N., Goodfellow P. N. The mammalian pseudoautosomal region. Trends Genet. 1989 Dec;5(12):406–410. doi: 10.1016/0168-9525(89)90199-6. [DOI] [PubMed] [Google Scholar]
  14. Fukagawa T., Sugaya K., Matsumoto K., Okumura K., Ando A., Inoko H., Ikemura T. A boundary of long-range G + C% mosaic domains in the human MHC locus: pseudoautosomal boundary-like sequence exists near the boundary. Genomics. 1995 Jan 1;25(1):184–191. doi: 10.1016/0888-7543(95)80124-5. [DOI] [PubMed] [Google Scholar]
  15. Gardiner K., Aissani B., Bernardi G. A compositional map of human chromosome 21. EMBO J. 1990 Jun;9(6):1853–1858. doi: 10.1002/j.1460-2075.1990.tb08310.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ikemura T., Wada K., Aota S. Giant G+C% mosaic structures of the human genome found by arrangement of GenBank human DNA sequences according to genetic positions. Genomics. 1990 Oct;8(2):207–216. doi: 10.1016/0888-7543(90)90273-w. [DOI] [PubMed] [Google Scholar]
  17. Ikemura T., Wada K. Evident diversity of codon usage patterns of human genes with respect to chromosome banding patterns and chromosome numbers; relation between nucleotide sequence data and cytogenetic data. Nucleic Acids Res. 1991 Aug 25;19(16):4333–4339. doi: 10.1093/nar/19.16.4333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kohno K., Wada M., Schlessinger D., D'Urso M., Tanabe S., Oshiro T., Imamoto F. Stability of YACs containing ribosomal or RCP/GCP locus DNA in wild-type S. cerevisiae and RAD mutant strains. DNA Res. 1994;1(4):191–199. doi: 10.1093/dnares/1.4.191. [DOI] [PubMed] [Google Scholar]
  19. Krane D. E., Hartl D. L., Ochman H. Rapid determination of nucleotide content and its application to the study of genome structure. Nucleic Acids Res. 1991 Oct 11;19(19):5181–5185. doi: 10.1093/nar/19.19.5181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Larionov V., Graves J., Kouprina N., Resnick M. A. The role of recombination and RAD52 in mutation of chromosomal DNA transformed into yeast. Nucleic Acids Res. 1994 Oct 11;22(20):4234–4241. doi: 10.1093/nar/22.20.4234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Larionov V., Kouprina N., Nikolaishvili N., Resnick M. A. Recombination during transformation as a source of chimeric mammalian artificial chromosomes in yeast (YACs). Nucleic Acids Res. 1994 Oct 11;22(20):4154–4162. doi: 10.1093/nar/22.20.4154. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Macaya G., Thiery J. P., Bernardi G. An approach to the organization of eukaryotic genomes at a macromolecular level. J Mol Biol. 1976 Nov;108(1):237–254. doi: 10.1016/s0022-2836(76)80105-2. [DOI] [PubMed] [Google Scholar]
  23. Maestrini E., Tamanini F., Kioschis P., Gimbo E., Marinelli P., Tribioli C., D'Urso M., Palmieri G., Poustka A., Toniolo D. An archipelago of CpG islands in Xq28: identification and fine mapping of 20 new CpG islands of the human X chromosome. Hum Mol Genet. 1992 Jul;1(4):275–280. doi: 10.1093/hmg/1.4.275. [DOI] [PubMed] [Google Scholar]
  24. Mendez M. J., Abderrahim H., Noguchi M., David N. E., Hardy M. C., Green L. L., Tsuda H., Yoast S., Maynard-Currie C. E., Garza D. Analysis of the structural integrity of YACs comprising human immunoglobulin genes in yeast and in embryonic stem cells. Genomics. 1995 Mar 20;26(2):294–307. doi: 10.1016/0888-7543(95)80214-7. [DOI] [PubMed] [Google Scholar]
  25. Mouchiroud D., D'Onofrio G., Aïssani B., Macaya G., Gautier C., Bernardi G. The distribution of genes in the human genome. Gene. 1991 Apr;100:181–187. doi: 10.1016/0378-1119(91)90364-h. [DOI] [PubMed] [Google Scholar]
  26. Palmieri G., Romano G., Ciccodicola A., Casamassimi A., Campanile C., Esposito T., Cappa V., Lania A., Johnson S., Reinbold R. YAC contig organization and CpG island analysis in Xq28. Genomics. 1994 Nov 1;24(1):149–158. doi: 10.1006/geno.1994.1592. [DOI] [PubMed] [Google Scholar]
  27. Pilia G., Little R. D., Aïssani B., Bernardi G., Schlessinger D. Isochores and CpG islands in YAC contigs in human Xq26.1-qter. Genomics. 1993 Aug;17(2):456–462. doi: 10.1006/geno.1993.1347. [DOI] [PubMed] [Google Scholar]
  28. Poustka A., Dietrich A., Langenstein G., Toniolo D., Warren S. T., Lehrach H. Physical map of human Xq27-qter: localizing the region of the fragile X mutation. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8302–8306. doi: 10.1073/pnas.88.19.8302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Rogner U. C., Kioschis P., Wilke K., Gong W., Pick E., Dietrich A., Zechner U., Hameister H., Pragliola A., Herman G. E. A YAC clone map spanning 7.5 megabases of human chromosome band Xq28. Hum Mol Genet. 1994 Dec;3(12):2137–2146. doi: 10.1093/hmg/3.12.2137. [DOI] [PubMed] [Google Scholar]
  30. Sabeur G., Macaya G., Kadi F., Bernardi G. The isochore patterns of mammalian genomes and their phylogenetic implications. J Mol Evol. 1993 Aug;37(2):93–108. doi: 10.1007/BF02407344. [DOI] [PubMed] [Google Scholar]
  31. Sabeur G., Macaya G., Kadi F., Bernardi G. The isochore patterns of mammalian genomes and their phylogenetic implications. J Mol Evol. 1993 Aug;37(2):93–108. doi: 10.1007/BF02407344. [DOI] [PubMed] [Google Scholar]
  32. Saccone S., De Sario A., Della Valle G., Bernardi G. The highest gene concentrations in the human genome are in telomeric bands of metaphase chromosomes. Proc Natl Acad Sci U S A. 1992 Jun 1;89(11):4913–4917. doi: 10.1073/pnas.89.11.4913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Saccone S., De Sario A., Wiegant J., Raap A. K., Della Valle G., Bernardi G. Correlations between isochores and chromosomal bands in the human genome. Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11929–11933. doi: 10.1073/pnas.90.24.11929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Sedlacek Z., Korn B., Konecki D. S., Siebenhaar R., Coy J. F., Kioschis P., Poustka A. Construction of a transcription map of a 300 kb region around the human G6PD locus by direct cDNA selection. Hum Mol Genet. 1993 Nov;2(11):1865–1869. doi: 10.1093/hmg/2.11.1865. [DOI] [PubMed] [Google Scholar]
  35. Soriano P., Meunier-Rotival M., Bernardi G. The distribution of interspersed repeats is nonuniform and conserved in the mouse and human genomes. Proc Natl Acad Sci U S A. 1983 Apr;80(7):1816–1820. doi: 10.1073/pnas.80.7.1816. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Tazi J., Bird A. Alternative chromatin structure at CpG islands. Cell. 1990 Mar 23;60(6):909–920. doi: 10.1016/0092-8674(90)90339-g. [DOI] [PubMed] [Google Scholar]
  37. Timms K. M., Lu F., Shen Y., Pierson C. A., Muzny D. M., Gu Y., Nelson D. L., Gibbs R. A. 130 kb of DNA sequence reveals two new genes and a regional duplication distal to the human iduronate-2-sulfate sulfatase locus. Genome Res. 1995 Aug;5(1):71–78. doi: 10.1101/gr.5.1.71. [DOI] [PubMed] [Google Scholar]
  38. Whitfield L. S., Hawkins T. L., Goodfellow P. N., Sulston J. 41 kilobases of analyzed sequence from the pseudoautosomal and sex-determining regions of the short arm of the human Y chromosome. Genomics. 1995 May 20;27(2):306–311. doi: 10.1006/geno.1995.1047. [DOI] [PubMed] [Google Scholar]
  39. Yunis J. J. High resolution of human chromosomes. Science. 1976 Mar 26;191(4233):1268–1270. doi: 10.1126/science.1257746. [DOI] [PubMed] [Google Scholar]
  40. Yunis J. J. Mid-prophase human chromosomes. The attainment of 2000 bands. Hum Genet. 1981;56(3):293–298. doi: 10.1007/BF00274682. [DOI] [PubMed] [Google Scholar]
  41. Yunis J. J., Sawyer J. R., Dunham K. The striking resemblance of high-resolution G-banded chromosomes of man and chimpanzee. Science. 1980 Jun 6;208(4448):1145–1148. doi: 10.1126/science.7375922. [DOI] [PubMed] [Google Scholar]
  42. Zerial M., Salinas J., Filipski J., Bernardi G. Gene distribution and nucleotide sequence organization in the human genome. Eur J Biochem. 1986 Nov 3;160(3):479–485. doi: 10.1111/j.1432-1033.1986.tb10064.x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES