Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1989 Jun;8(6):1649–1655. doi: 10.1002/j.1460-2075.1989.tb03555.x

Mitochondrial gene expression during Xenopus laevis development: a molecular study.

A el Meziane 1, J C Callen 1, J C Mounolou 1
PMCID: PMC401005  PMID: 2475342

Abstract

Mitochondrial gene expression has been analysed during embryonic development of Xenopus laevis; the relative amounts of 12S and 16S ribosomal RNAs and of most mitochondrial messenger RNAs were determined by slot-blot and Northern-blot hybridization experiments with specific mitochondrial DNA probes. The rRNA content per embryo remained constant during early development, confirming earlier results of Chase and Dawid (1972, Dev. Biol., 27, 504-518.); on the contrary, all mRNAs decreased abruptly after fertilization within a few hours (by a factor of 5-10), remained at a very low level up to the late neurula stages and increased again during organogenesis. Since the mitochondrial DNA content does not vary during this period molecular analyses as well as biological observations suggest that the mitochondrial genome is completely inactivated at the beginning of embryonic development. The amounts of rRNAs and mRNAs evolve therefore as a function of time only according to their half-lives. Mitochondrial RNA accumulation resumes subsequently with a high rate when the general transcription in the embryo is starting again, and this occurs before the resumption of DNA replication in the organelle. It appears that the Xenopus embryonic development represents a quite clear example of regulation of the mitochondrial expression at the level of transcription.

Full text

PDF
1649

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Attardi G. Animal mitochondrial DNA: an extreme example of genetic economy. Int Rev Cytol. 1985;93:93–145. doi: 10.1016/s0074-7696(08)61373-x. [DOI] [PubMed] [Google Scholar]
  2. Bogenhagen D. F., Insdorf N. F. Purification of Xenopus laevis mitochondrial RNA polymerase and identification of a dissociable factor required for specific transcription. Mol Cell Biol. 1988 Jul;8(7):2910–2916. doi: 10.1128/mcb.8.7.2910. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Callen J. C., Tourte M., Dennebouy N., Mounolou J. C. Changes in D-loop frequency and superhelicity among the mitochondrial DNA molecules in relation to organelle biogenesis in oocytes of Xenopus laevis. Exp Cell Res. 1983 Jan;143(1):115–125. doi: 10.1016/0014-4827(83)90114-3. [DOI] [PubMed] [Google Scholar]
  4. Cantatore P., Flagella Z., Fracasso F., Lezza A. M., Gadaleta M. N., de Montalvo A. Synthesis and turnover rates of four rat liver mitochondrial RNA species. FEBS Lett. 1987 Mar 9;213(1):144–148. doi: 10.1016/0014-5793(87)81480-1. [DOI] [PubMed] [Google Scholar]
  5. Cantatore P., Polosa P. L., Fracasso F., Flagella Z., Gadaleta M. N. Quantitation of mitochondrial RNA species during rat liver development: the concentration of cytochrome oxidase subunit I (CoI) mRNA increases at birth. Cell Differ. 1986 Sep;19(2):125–132. doi: 10.1016/0045-6039(86)90069-2. [DOI] [PubMed] [Google Scholar]
  6. Champagne A. M., Dennebouy N., Julien J. F., Lehegarat J. C., Mounolou J. C. Co-linear organization of Xenopus laevis and mouse mitochondrial genomes. Biochem Biophys Res Commun. 1984 Aug 16;122(3):918–924. doi: 10.1016/0006-291x(84)91178-1. [DOI] [PubMed] [Google Scholar]
  7. Chang D. D., Fisher R. P., Clayton D. A. Roles for a promoter and RNA processing in the synthesis of mitochondrial displacement-loop strands. Biochim Biophys Acta. 1987 Jul 14;909(2):85–91. doi: 10.1016/0167-4781(87)90029-7. [DOI] [PubMed] [Google Scholar]
  8. Chase J. W., Dawid I. B. Biogenesis of mitochondria during Xenopus laevis development. Dev Biol. 1972 Apr;27(4):504–518. doi: 10.1016/0012-1606(72)90189-3. [DOI] [PubMed] [Google Scholar]
  9. Chomyn A., Mariottini P., Cleeter M. W., Ragan C. I., Matsuno-Yagi A., Hatefi Y., Doolittle R. F., Attardi G. Six unidentified reading frames of human mitochondrial DNA encode components of the respiratory-chain NADH dehydrogenase. Nature. 1985 Apr 18;314(6012):592–597. doi: 10.1038/314592a0. [DOI] [PubMed] [Google Scholar]
  10. Christianson T. W., Clayton D. A. A tridecamer DNA sequence supports human mitochondrial RNA 3'-end formation in vitro. Mol Cell Biol. 1988 Oct;8(10):4502–4509. doi: 10.1128/mcb.8.10.4502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Clayton D. A. Transcription of the mammalian mitochondrial genome. Annu Rev Biochem. 1984;53:573–594. doi: 10.1146/annurev.bi.53.070184.003041. [DOI] [PubMed] [Google Scholar]
  12. Dawid I. B. Evidence for the mitochondrial origin of frog egg cytoplasmic DNA. Proc Natl Acad Sci U S A. 1966 Jul;56(1):269–276. doi: 10.1073/pnas.56.1.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Dawid I. B., Haynes S. R., Jamrich M., Jonas E., Miyatani S., Sargent T. D., Winkles J. A. Gene expression in Xenopus embryogenesis. J Embryol Exp Morphol. 1985 Nov;89 (Suppl):113–124. [PubMed] [Google Scholar]
  14. Dunon-Bluteau D., Brun G. The secondary structures of the Xenopus laevis and human mitochondrial small ribosomal subunit RNA are similar. FEBS Lett. 1986 Mar 31;198(2):333–338. doi: 10.1016/0014-5793(86)80431-8. [DOI] [PubMed] [Google Scholar]
  15. Dunon-Bluteau D., Volovitch M., Brun G. Nucleotide sequence of a Xenopus laevis mitochondrial DNA fragment containing the D-loop, flanking tRNA genes and the apocytochrome b gene. Gene. 1985;36(1-2):65–78. doi: 10.1016/0378-1119(85)90070-8. [DOI] [PubMed] [Google Scholar]
  16. Dworkin M. B., Dawid I. B. Use of a cloned library for the study of abundant poly(A)+RNA during Xenopus laevis development. Dev Biol. 1980 May;76(2):449–464. doi: 10.1016/0012-1606(80)90393-0. [DOI] [PubMed] [Google Scholar]
  17. Dworkin M. B., Hershey J. W. Cellular titers and subcellular distributions of abundant polyadenylate-containing ribonucleic acid species during early development in the frog Xenopus laevis. Mol Cell Biol. 1981 Nov;1(11):983–993. doi: 10.1128/mcb.1.11.983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Dworkin M. B., Kay B. K., Hershey J. W., Dawid I. B. Mitochondrial RNAs are abundant in the poly(A)+RNA population of early frog embryos. Dev Biol. 1981 Sep;86(2):502–504. doi: 10.1016/0012-1606(81)90208-6. [DOI] [PubMed] [Google Scholar]
  19. Gillespie F. P., Hong T. H., Eisenstadt J. M. Transcription and translation of mitochondrial DNA in interspecific somatic cell hybrids. Mol Cell Biol. 1986 Jun;6(6):1951–1957. doi: 10.1128/mcb.6.6.1951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Glaichenhaus N., Léopold P., Cuzin F. Increased levels of mitochondrial gene expression in rat fibroblast cells immortalized or transformed by viral and cellular oncogenes. EMBO J. 1986 Jun;5(6):1261–1265. doi: 10.1002/j.1460-2075.1986.tb04355.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Gurdon J. B. Changes in somatic cell nuclei inserted into growing and maturing amphibian oocytes. J Embryol Exp Morphol. 1968 Nov;20(3):401–414. [PubMed] [Google Scholar]
  22. Kadowaki T., Kitagawa Y. Enhanced transcription of mitochondrial genes after growth stimulation and glucocorticoid treatment of Reuber hepatoma H-35. FEBS Lett. 1988 Jun 6;233(1):51–56. doi: 10.1016/0014-5793(88)81354-1. [DOI] [PubMed] [Google Scholar]
  23. Mazo A. M., Minchenko A. G., Avdonina T. A., Gause G. G., Jr, Pusyriov A. T. Discrete poly(A)- RNA species from rat liver mitochondria are fragments of 16S mitochondrial rRNA carrying its 5'-termini. Mol Biol Rep. 1983 Aug;9(3):155–161. doi: 10.1007/BF00775361. [DOI] [PubMed] [Google Scholar]
  24. Nakakura N., Miura T., Yamana K., Ito A., Shiokawa K. Synthesis of heterogeneous mRNA-like RNA and low-molecular-weight RNA before the midblastula transition in embryos of Xenopus laevis. Dev Biol. 1987 Oct;123(2):421–429. doi: 10.1016/0012-1606(87)90400-3. [DOI] [PubMed] [Google Scholar]
  25. Pikó L., Taylor K. D. Amounts of mitochondrial DNA and abundance of some mitochondrial gene transcripts in early mouse embryos. Dev Biol. 1987 Oct;123(2):364–374. doi: 10.1016/0012-1606(87)90395-2. [DOI] [PubMed] [Google Scholar]
  26. Rastl E., Dawid I. B. Expression of the mitochondrial genome in Xenopus laevis: a map of transcripts. Cell. 1979 Oct;18(2):501–510. doi: 10.1016/0092-8674(79)90067-9. [DOI] [PubMed] [Google Scholar]
  27. Roe B. A., Ma D. P., Wilson R. K., Wong J. F. The complete nucleotide sequence of the Xenopus laevis mitochondrial genome. J Biol Chem. 1985 Aug 15;260(17):9759–9774. [PubMed] [Google Scholar]
  28. Williams R. S., Salmons S., Newsholme E. A., Kaufman R. E., Mellor J. Regulation of nuclear and mitochondrial gene expression by contractile activity in skeletal muscle. J Biol Chem. 1986 Jan 5;261(1):376–380. [PubMed] [Google Scholar]
  29. Young P. G., Zimmerman A. M. Synthesis of mitochondrial RNA in disaggregated embryos of Xenopus laevis. Dev Biol. 1973 Jul;33(1):196–205. doi: 10.1016/0012-1606(73)90174-7. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES