Skip to main content
Frontiers in Plant Science logoLink to Frontiers in Plant Science
. 2014 Apr 29;5:163. doi: 10.3389/fpls.2014.00163

Respiratory electron transfer pathways in plant mitochondria

Peter Schertl 1, Hans-Peter Braun 1,*
PMCID: PMC4010797  PMID: 24808901

Abstract

The respiratory electron transport chain (ETC) couples electron transfer from organic substrates onto molecular oxygen with proton translocation across the inner mitochondrial membrane. The resulting proton gradient is used by the ATP synthase complex for ATP formation. In plants, the ETC is especially intricate. Besides the “classical” oxidoreductase complexes (complex I–IV) and the mobile electron transporters cytochrome c and ubiquinone, it comprises numerous “alternative oxidoreductases.” Furthermore, several dehydrogenases localized in the mitochondrial matrix and the mitochondrial intermembrane space directly or indirectly provide electrons for the ETC. Entry of electrons into the system occurs via numerous pathways which are dynamically regulated in response to the metabolic state of a plant cell as well as environmental factors. This mini review aims to summarize recent findings on respiratory electron transfer pathways in plants and on the involved components and supramolecular assemblies.

Keywords: plant mitochondria, electron transport chain, dehydrogenase, alternative oxidase, respiratory supercomplex

Introduction

During cellular respiration, organic compounds are oxidized to generate usable chemical energy in the form of ATP. The respiratory electron transport chain (ETC) of mitochondria is at the center of this process. Its core consists of four oxidoreductase complexes, the NADH dehydrogenase (complex I), the succinate dehydrogenase (complex II), the cytochrome c reductase (complex III) and the cytochrome c oxidase (complex IV), as well as of two mobile electron transporters, cytochrome c, and the lipid ubiquinone. Overall, electrons are transferred from the coenzymes NADH or FADH2 onto molecular oxygen which is reduced to water. Three of the four oxidoreductase complexes (complexes I, III and IV) couple their electron transfer reactions with proton translocation across the inner mitochondrial membrane. As a result, a proton gradient is formed which can be used by the ATP synthase complex (complex V) for the phosphorylation of ADP. In its classically described form, cellular respiration is based on a linear ETC (from NADH via complexes I, III, and IV to molecular oxygen). However, electrons can enter and leave the ETC at several alternative points. This is especially true for the plant ETC system, which is highly branched. In this review we aim to integrate current knowledge on the ETC system in plants with respect to its components, electron transport pathways and supramolecular structure.

Components of the plant ETC system

The “classical” oxidoreductase complexes of the respiratory chain (given in dark blue in Figure 1) resemble their homologues in animal mitochondria but at the same time have some clear distinctive features (reviewed in Millar et al., 2008, 2011; Rasmusson and Moller, 2011; van Dongen et al., 2011; Jacoby et al., 2012). Complex I is especially large in plant mitochondria and includes nearly 50 different subunits (Braun et al., 2014). Compared to its homologs from bacteria and other eukaryotic lineages it has an extra domain which includes carbonic anhydrase-like proteins. The function of this additional domain is currently unclear but it has been suggested to be important in the context of an inner-cellular CO2 transfer mechanism to provide mitochondrial CO2 for carbon fixation in chloroplasts (Braun and Zabaleta, 2007; Zabaleta et al., 2012). Complex II is composed of four subunits in bacteria and mitochondria of animals and fungi. In plants complex II includes homologs of these subunits but additionally four extra proteins of unknown function (Millar et al., 2004; Huang and Millar, 2013). In contrast, the subunit composition of complex III from plants is highly similar to the ones in yeast and bovine mitochondria (Braun and Schmitz, 1995a). The two largest subunits of this protein complex, termed “core proteins” in animals and fungi, are homologous to the two subunits of the mitochondrial processing peptidase (MPP) which removes pre-sequences of nuclear-encoded mitochondrial proteins after their import into mitochondria. In animal mitochondria, the core proteins are proteolytically inactive. Instead, an active MPP is present within the mitochondrial matrix. In contrast, the core subunits of complex III from plants have intact active sites (Braun et al., 1992; Glaser et al., 1994). Indeed, complex III isolated from plant mitochondria efficiently removes pre-sequences of mitochondrial pre-proteins. The differing functional states of complex III in diverse eukaryotic lineages might reflect different evolutionary stages of this protein complex (Braun and Schmitz, 1995b). Also complex IV has some extra subunits in mitochondria of plants (Millar et al., 2004). Eight subunits are homologous to complex IV subunits from other groups of eukaryotes and another six putative subunits represent proteins of unknown functions.

Figure 1.

Figure 1

Mitochondrial dehydrogenases and the respiratory chain. Within the mitochondrial matrix (M) numerous dehydrogenases generate NADH by oxidizing various carbon compounds. NADH subsequently is re-oxidized at the inner mitochondrial membrane (IM) by the respiratory electron transfer chain (ETC). The electrons of NADH can enter the ETC through complex I or at the ubiquinone level via alternative NAD(P)H-dehydrogenases. Besides, some dehydrogenases of the mitochondrial matrix transfer electrons to ubiquinone via the ETF/ETFQOR system. Proline dehydrogenase possibly directly transfers electrons onto ubiquinone. In the intermembrane space (IMS), electrons from NAD(P)H generated in the cytoplasm can be inserted into the ETC via alternative NAD(P)H dehydrogenases. Furthermore, some dehydrogenases of the IMS can directly transfer electrons onto ubiquinone or cytochrome c. Color code—dark blue, protein complexes of the ETC; blue, AOX; purple, ETF/ETFQQ system; light green, alternative NAD(P)H dehydrogenases of the ETC; green, dehydrogenases; red, ubiquinone and cytochrome c; yellow, NADH produced by dehydrogenases of the mitochondrial matrix/NADH re-oxidized by complex I or internal alternative NADH dehydrogenases; dark gray, ATP synthase complex; light green background, NADH producing dehydrogenases of the mitochondrial matrix. Abbreviations—alphabetically ordered. I, complex I; II, complex II; III, complex III; IV, complex IV; V, complex V; α-KGDH, α-ketoglutarate dehydrogenase; AOX, alternative oxidase; BCKDH, branched-chain α-ketoacid dehydrogenase complex; c, cytochrome c; D-2HGDH, D-2-hydroxyglutarate dehydrogenase; DHODH, dihydroorotate dehydrogenase; DLDH, D-lactate dehydrogenase; ETF, electron transfer flavoprotein; ETFQOR, electron transfer flavoprotein ubiquinone oxidoreductase; FDH, formate dehydrogenase; GDC, glycine dehydrogenase; GDH, glutamate dehydrogenase; GLDH, L-galactono-1,4-lactone dehydrogenase; G3-PDH, glyceraldehyde 3-phosphate dehydrogenase; HDH, histidinol dehydrogenase; IDH, isocitrate dehydrogenase; IVDH, isovaleryl-coenzyme A dehydrogenase; MDH, malate dehydrogenase; ME, malic enzyme; MMSDH, methylmalonate-semialdehyde dehydrogenase; NDA1/2, NDB2/3/4, alternative NADH dehydrogenase; NDC1, NDB1, alternative NADPH dehydrogenase; P5CDH, pyrroline-5-carboxylate dehydrogenase; PDH, pyruvate dehydrogenase; ProDH, proline dehydrogenase; SPDH, saccharopine dehydrogenase; SSADH, succinic semialdehyde dehydrogenase; UQ, ubiquinone. For further information of the enzymes see Table 1.

The ETC of plant mitochondria additionally includes several so-called “alternative oxidoreductases”: the alternative oxidase (AOX; light blue in Figure 1) and several functionally distinguishable alternative NAD(P)H dehydrogenases (alternative NDs, light green in Figure 1). Findings on their functional roles have been reviewed recently (Rasmusson et al., 2008; Rasmusson and Moller, 2011; Moore et al., 2013). AOX directly transfers electrons from ubiquinol to molecular oxygen and therefore constitutes an alternative electron exit point of the ETC. As a result, complexes III and IV are excluded from respiratory electron transport. The alternative NAD(P)H dehydrogenases serve as alternative electron entry points of the plant ETC and may substitute complex I. They differ with respect to co-factor requirement and localization at the outer or inner surface of the inner mitochondrial membrane (external alternative NDs, internal alternative NDs). Some of the genes encoding alternative NDs are activated by light (Rasmusson et al., 2008; Rasmusson and Moller, 2011). The latter enzymes are considered to be important during photorespiration and all alternative enzymes during various stress conditions. Since none of the alternative oxidoreductases couple electron transfer with proton translocation across the inner mitochondrial membrane, their enzymatic function is believed to be important in the context of an overflow protection mechanism for the ETC which is especially relevant during high-light conditions.

Finally, dehydrogenases (dark green in Figure 1; Table 1) can directly or indirectly insert electrons into the respiratory chain (Rasmusson et al., 2008; Rasmusson and Moller, 2011). Numerous dehydrogenases of the mitochondrial matrix generate NADH which is re-oxidized by complex I and the internal alternative NDs. However, some dehydrogenases directly transfer electrons onto ubiquinone [dihydroorotate dehydrogenase (DHODH), glyceraldehyde 3-phosphate dehydrogenase (G3-PDH) and possibly proline dehydrogenase (ProDH)] or onto cytochrome c [L-galactone-1,4-lactone dehydrogenase (GLDH) and D-lactate dehydrogenase (DLDH)]. Furthermore, at least two dehydrogenases [isovaleryl-coenzyme A dehydrogenase (IVDH) and D-2-hydroxyglutarate dehydrogenase (D-2HGDH)] transfer electrons onto ubiquinone via a short electron transfer chain composed of the “electron transfer flavoprotein” and the “electron transfer flavoprotein-ubiquinone oxidoreductase” (ETF and ETFQ-OR, purple in Figure 1) (Ishizaki et al., 2005, 2006; Araújo et al., 2010). IVDH is involved in the branched chain amino acid catabolism and D-2HGDH in the catabolism of lysine. In plants, degradation of amino acids for respiration was shown to be especially important during carbon starvation conditions, e.g., extended darkness (Araújo et al., 2011). In contrast to animal mitochondria, fatty acid oxidation does not take place in plant mitochondria and the involved dehydrogenases consequently are absent. Instead, additional metabolic pathways occur in plants, e.g., the final step of an ascorbic acid biosynthesis pathway, which is catalyzed by GLDH. Electrons of L-galactono-1,4-lactone (GL) oxidation are inserted into the ETC via cytochrome c (Bartoli et al., 2000). Proline, besides being a building block for protein biosynthesis, is used as an osmolyte in plant cells. Proline is catabolized in mitochondria by a two-step process involving pyrroline-5-carboxylate dehydrogenase (P5CDH) and ProDH (Szabados and Savouré, 2010). P5CDH produces NADH, whereas ProDH represents a flavoenzyme which is assumed to transfer electrons directly or indirectly onto ubiquinone. Some additional dehydrogenases occur in plant mitochondria in the mitochondrial matrix and the intermembrane space which also contribute electrons to the ETC (Figure 1, Table 1). However, in some cases their mitochondrial localization is not entirely certain and should be further investigated by future research.

Table 1.

Mitochondrial dehydrogenases in Arabidopsis thalianaa.

Enzyme Accession no.b subunits isoforms etc. Catalysed reaction Oligomeric state Native mass/monomer mass according to GelMapc (according to other data in the literature) Publicationd for Arabidopsis (for other plants)
Malate dehydrogenase At1g53240 Malate + NAD+ ⇔ Oxaloacetate + NADH At1g53240: 89 kDa/42 kDa Journet et al., 1981
At3g15020 At3g47520: 157 kDa/38 kDa Gietl, 1992
Krömer, 1995
Nunes-Nesi et al., 2005
Lee et al., 2008
Tomaz et al., 2010
Isocitrate dehydrogenase At4g35260 Isocitrate + NAD+ ⇔ α-Ketoglutarate + CO2 + NADH At4g35260: 89 kDa/42 kDa Behal and Oliver, 1998
At5g14590 At5g14590: 140 kDa/53 kDa Lancien et al., 1998
At4g35650 At3g09810: 138 kDa/40 kDa Lin et al., 2004
At3g09810 At5g03290: 138 kDa/40 kDa Lemaitre and Hodges, 2006
At5g03290 Lemaitre et al., 2007
At2g17130
α-Ketoglutarate dehydrogenase complex At3g55410 (E1) α-Ketoglutarate + coenzyme A + NAD+ ⇔ succinyl-CoA + CO2 + NADH At5g65750: 207 kDa/91 kDa Poulsen and Wedding, 1970
At5g65750 (E1) At3g55410: 207 kDa/91 kDa Wedding and Black, 1971a,b
At4g26910 (E2) Dry and Wiskich, 1987
At5g55070 (E2) (1.7 MDa complex) Millar et al., 1999
At3g17240 (E3) Araújo et al., 2008
At1g48030 (E3) Araújo et al., 2013
At3g13930 (E3)
Glutamate dehydrogenase At5g18170 Glutamate + H2O + NAD+ ⇔ α-Ketoglutarate + NH+4 + NADH At5g18170: 209 kDa/48 kDa Yamaya et al., 1984
At5g07440 At5g07440: 209 kDa/48 kDa Turano et al., 1997
At3g03910 At3g03910: 209 kDa/48 kDa Aubert et al., 2001
Miyashita and Good, 2008a,b
Fontaine et al., 2012
Tarasenko et al., 2013
Fontaine et al., 2012
Malic enzyme At2g13560 Malate + NAD+ ⇔ Pyruvate + NADH + CO2 At2g13560: 370 kDa/63 kDa Jenner et al., 2001
At4g00570 At4g00570: 370 kDa/63 kDa Tronconi et al., 2008
At1g79750 Tronconi et al., 2010
Tronconi et al., 2012
Pyruvate dehydrogenase complex At1g59900 (E1) Pyruvate + coenzyme A + NAD+ ⇔ Acetyl-CoA + CO2 + NADH At3g13930: 1500 kDa/54 kDa Luethy et al., 1994
At1g24180 (E1) At1g24180: 470 kDa/41 kDa Grof et al., 1995
At5g50850 (E1) At5g50850: 150 kDa/39 kDa Zou et al., 1999
At3g52200 (E2) At1g59900: 138 kDa/44 kDa Tovar-Méndez et al., 2003
At1g54220 (E2) Szurmak et al., 2003
At3g13930 (E3) (9.5 MDa complex) Yu et al., 2012
At3g17240 (E3)
At1g48030 (E3)
Glycine dehydrogenase complex At4g33010 (P) Glycine + H4 folate + NAD+ ⇔ methylene-H4 folate + CO2 + NH3 + NADH At4g33010: 144 kDa/91 kDa Somerville and Ogren, 1982
At2g26080 (P) At2g26080: 209 kDa/91 kDa Oliver et al., 1990
At1g32470 (H) At1g11860: 148 kDa/46 kDa Oliver, 1994
At2g35120 (H) Srinivasan and Oliver, 1995
At2g35370 (H) (1.3 MDa complex) Douce et al., 2001
At1g11860 (T)
At4g12130 (T)
At3g17240 (L)
At1g48030 (L)
Branched-chain alpha keto acid dehydrogenase complex At5g09300 (E1) Branched chain alpha keto-acids + CoA + NAD+ ⇔ Acyl-CoA + NADH At1g55510: 150 kDa/39 kDa Fujiki et al., 2000
At1g21400 (E1) Mooney et al., 2000
At1g55510 (E1) (0.95 MDa complex) Fujiki et al., 2001
At3g13450 (E1) Fujiki et al., 2002
At3g06850 (E2) Taylor et al., 2004
At3g13930 (E3) Binder, 2010
At3g17240 (E3)
At1g48030 (E3)
Formate dehydrogenase At5g14780 Formate + NAD+ ⇔ CO2 + NADH (200 kDa complex) Halliwell, 1974
Colas des Francs-Small et al., 1993
Hourton-Cabassa et al., 1998
Jänsch et al., 1996
Bykova et al., 2003
Baack et al., 2003
Olson et al., 2000
Alekseeva et al., 2011
Methylmalonate semialdehyde dehydrogenase At2g14170 (S)-methylmalonate-semialdehyde + coenzyme A + NAD+ + H2O ⇔ propanoyl-CoA + bicarbonate + NADH At2g14170: 200 kDa/59 kDa Oguchi et al., 2004
Tanaka et al., 2005
Kirch et al., 2004
Isovaleryl-CoA dehydrogenase At3g45300 Isovaleryl-CoA + acceptor (ETF) ⇔ 3-methylbut-2-enoyl-CoA + reduced acceptor (ETF) (also considerable activity with other acyl-CoA's) At3g45300: 132 kDa/46 kDa Däschner et al., 1999
Reinard et al., 2000
(homodimeric complex) Faivre-Nitschke et al., 2001
Däschner et al., 2001
Goetzman et al., 2005
Araújo et al., 2010
D-2-Hydroxyglutarate dehydrogenase At4g36400 D-2-hydroxyglutarate + acceptor (ETF) ⇔ 2-oxoglutarate + reduced acceptor (ETF) (homodimeric complex) Engqvist et al., 2009
Araújo et al., 2010
Engqvist et al., 2011
Saccharopine dehydrogenase At5g39410 Saccharopine + NAD+ + H2O ⇔ Glutamate +-Amino adipate semialdehyde + NADH not known Zhu et al., 2000
Heazlewood et al., 2003
Pyrroline-5-carboxylate dehydrogenase At5g62530 Pyrroline-5-carboxylate + NAD+ ⇔ Glutamate (Glutamate-5-semialdehyde) + NADH At5g62530: 158 kDa/59 kDa Forlani et al., 1997
Deuschle et al., 2001
Deuschle et al., 2004
Miller et al., 2009
Proline dehydrogenase At3g30775 L-Proline ⇔ Pyrroline-5-Carboxylate not known Elthon and Stewart, 1981
At5g38710 Verbruggen et al., 1996
Kiyosue et al., 1996
Mani et al., 2002
Szabados and Savouré, 2010
Funck et al., 2010
Sharma and Verslues, 2010
Schertl et al., in press
L-Galactono-1,4-lactone dehydrogenase At3g47930 L-Galactono-1,4-Lactone ⇔ L-Ascorbate (420 kDa, 470 kDa, 850 kDa complexes) Mapson and Breslow, 1958
Siendones et al., 1999
Leferink et al., 2008
Pineau et al., 2008
Leferink et al., 2009
Schertl et al., 2012
D-Lactate dehydrogenase At5g06580 D-Lactate ⇔ Pyruvate (homodimeric complex) Bari et al., 2004
Atlante et al., 2005
Engqvist et al., 2009
Wienstroer et al., 2012
Glycerol-3-phosphate dehydrogenase At3g10370 Glycerol 3-phosphate ⇔ Dihydroxyacetonephosphate At3g10370: 160 kDa/65 kDa Shen et al., 2003
Shen et al., 2006
Dihydroorotate dehydrogenase At5g23300 Dihydroorotate ⇔ Orotate At5g23300: 156 kDa/49 kDa Ullrich et al., 2002
Doremus and Jagendorf, 1985
Miersch et al., 1987
Succinic semialdehyde dehydrogenase At1g79440 Succinic semialdehyde ⇔ Succinate At1g79440: 163 kDa/55 kDa Busch and Fromm, 1999
Bouché et al., 2003
Kirch et al., 2004
Toyokura et al., 2011
Histidinol dehydrogenase At5g63890 L-histidinol + NAD+ ⇔ L-histidine + NADH At5g63890: 115 kDa/51 kDa Nagai and Scheidegger, 1991
Ingle, 2011
Alternative NAD(P)H dehydrogenases (NDA1, NDB4, NDA2, NDB2, NDB3, NDB1, NDC1) At1g07180 NAD(P)H + UQ ⇔ NAD(P)+ + UQH2 At2g20800: 160 kDa/65 kDa Escobar et al., 2004
At2g20800 At2g29990: 163 kDa/55 kDa Rasmusson et al., 2004
At2g29990 At4g05020: 160 kDa/65 kDa Rasmusson et al., 2008
At4g05020 Wulff et al., 2009
At4g21490 Wallström et al., 2014a,b
At4g28220
At5g08740
a

Mitochondrial dehydrogenases without complex I (NADH dehydrogenase) and complex II (succinate dehydrogenase) of the respiratory chain. This list corresponds to the dehydrogenases shown in Figure 1.

b

Accession numbers in accordance with The Arabidopsis Information Resource (TAIR).

c

Oligomeric state: native mass and monomer mass according to GelMap (https://gelmap.de/231).

d

Key publications for Arabidopsis (other plants).

Electron entry pathways into the ETC

All electrons enter the ETC via NAD(P)H (generated by a variety of dehydrogenases in the mitochondrial matrix or the intermembrane space/the cytoplasm) or via flavine nucleotides (FADH2, FMNH2), which generally are bound to proteins termed flavoproteins. Consequently, the following electron entry pathways into the ETC can be defined: (i) the Matrix NAD(P)H pathway, (ii) the Matrix-FADH2 pathway, (iii) the Intermembrane-space-NAD(P)H pathway, and (iv) the Intermembrane-space-FADH2/FMDH2 pathway (Figure 2).

Figure 2.

Figure 2

Electron entry pathways into the mitochondrial electron transport chain in plants. Electrons enter the respiratory chain via four different pathways. (1) The Matrix-NAD(P)H pathway. Various dehydrogenases oxidize carbon compounds in the mitochondrial matrix. Electrons are transferred in the form of NADH to the ETC. NADH is re-oxidized by complex I or the internal alternative NAD(P)H dehydrogenases. (2) The Matrix-FADH2 pathway. FAD-containing enzymes oxidize carbon compounds in the mitochondrial matrix and directly (ProDH?) or indirectly (via the ETF/ETFQQ system) transfer electrons to the ubiquinone pool. (3) The IMS-NAD(P)H pathway. Cytoplasmically formed NAD(P)H is re-oxidized via external alternative dehydrogenases. (4) The IMS-FADH2 pathway. FAD/FMN-containing enzymes oxidize carbon compounds in the mitochondrial intermembrane space. Electrons are transferred either to the ubiquinone or the cytochrome c. M, matrix; IM, inner membrane; IMS, intermembrane space. Abbreviations—alphabetically ordered. I, complex I; II, complex II; III, complex III; IV, complex IV; α-KGDH, α-ketoglutarte dehydrogenase; AOX, alternative oxidase; BCKDH, branched-chain α-ketoacid dehydrogenase complex; Cytc, cytochrome c; D-2HGDH, D-2-hydroxyglutarate dehydrogenase; DHODH, dihydroorotate dehydrogenase; DLDH, D-lactate dehydrogenase; ETF, electron transfer flavoprotein; ETFQOR, electron transfer flavoprotein ubiquinone oxidoreductase; FDH, formate dehydrogenase; GDC, glycine dehydrogenase; GDH, glutamate dehydrogenase; GLDH, L-galactono-1,4-lactone dehydrogenase; G3-PDH, glyceraldehyde 3-phosphate dehydrogenase; HDH, histidinol dehydrogenase; IDH, isocitrate dehydrogenase; IVDH, isovaleryl-coenzyme A dehydrogenase; MDH, malate dehydrogenase; ME, malic enzyme; MMSDH, methylmalonate-semialdehyde dehydrogenase; P5CDH, pyrroline-5-carboxylate dehydrogenase; PDH, pyruvate dehydrogenase; ProDH, proline dehydrogenase; SPDH, saccharopine dehydrogenase; SSADH, succinic semialdehyde dehydrogenase; UQH2, ubiquinol.

Different metabolic processes, which vary depending on the physiological state of the plant cell, contribute to the four electron entry pathways. During stable carbohydrate conditions, electrons for the respiratory chain can be supplied by NADH and FADH2 provided by the tricarboxylic acid (TCA) cycle. This is believed to be the standard mode of cellular respiration in non-green plant tissues or green tissues at night and resembles the basic situation in animal cells. However, during photosynthesis, NADH generation of the TCA cycle is reduced because some of its intermediates are used for anabolic reactions (reviewed in Sweetlove et al., 2010). Furthermore, the pyruvate dehydrogenase (PDH) complex is deactivated in plant mitochondria in the light by phosphorylation (Budde and Randall, 1990). At the same time photorespiration leads to an increase in NADH formation in the mitochondrial matrix by the activity of the glycine dehydrogenase complex (GDC). Indeed, at high-light conditions, NADH formed by GDC is believed to be the main substrate of the ETC, and not the NADH formed by the enzymes of the TCA cycle. At the same time, plant cells might become over-reduced in the presence of high-light. In this situation alternative oxidoreductases can insert excess electrons into the respiratory chain without contributing to the proton gradient. Upon carbon starvation conditions (e.g., extended darkness) electrons from the breakdown of amino acids are provided to the ETC (Araújo et al., 2011). Especially after release of salt stress the amino acid proline is used as an electron source (Szabados and Savouré, 2010). In summary, electron entry into the ETC is a highly flexible process in plants which much depends on light, the metabolic state of the cell as well as environmental stress factors.

Supramolecular structure of the ETC system

The ETC is based on defined protein-protein interactions. Most stable interactions occur within the four “classical” oxidoreductase complexes of the respiratory chain. Indeed, complexes I to IV can be isolated in intact form by various biochemical and electrophoretic procedures. Furthermore, several lines of evidence indicate that complexes I, III and IV interact within the inner mitochondrial membrane forming respiratory supercomplexes (reviewed in Dudkina et al., 2008). Complex I as well as complex IV associate with dimeric complex III (I + III2 and IV2 + III2 supercomplexes). An even larger supercomplex includes complexes I, III2, and IV and was proposed to be called “respirasome” because it can autonomously catalyzes the overall ETC reaction in the presence of ubiquinone and cytochrome c. The alternative oxidoreductases of the plant ETC seem not to be part of the respiratory supercomplexes. However, alternative NDs were found to be part of other protein complexes of about 160 kDa (Klodmann et al., 2011) or 150–700 kDa (Rasmusson and Agius, 2001).

Experimental data also indicate that several of the mitochondrial dehydrogenases form protein complexes. TCA cycle enzymes can assemble forming multienzyme clusters (Barnes and Weitzman, 1986). In addition, some of the mitochondrial dehydrogenases interact with ETC complexes, e.g., malate dehydrogenase has been reported to interact with complex I in animal mitochondria (Fukushima et al., 1989; see Braun et al., 2014 for review). Information on the native state of mitochondrial dehydrogenases furthermore comes from the GelMap project (Klodmann et al., 2011). Using 2D Blue native/SDS PAGE and systematic protein identifications, various dehydrogenases were described (Figure 3, Table 1). Native molecular mass of the dehydrogenases in many cases much exceeds the molecular mass of the monomeric proteins (Table 1, column 3). This indicates that probably most mitochondrial dehydrogenases form part of defined higher order structures.

Figure 3.

Figure 3

The dehydrogenase subproteome of plant mitochondria. Mitochondrial proteins from Arabidopsis thaliana were separated by 2D Blue native/SDS PAGE and displayed via GelMap (https://gelmap.de/231#). Protein separation under native condition was from left to right, protein separation in the presence of SDS from top to bottom. Molecular masses of standard proteins are given to the left/above the 2D gel. All proteins annotated as “dehydrogenase” are indicated by white arrows. Exception: The subunits of complex I (NADH dehydrogenase) and complex II (succinate dehydrogenase) are not indicated on the figure.

Conclusion and outlook

Cellular respiration in plants is an especially dynamic system. The classical protein complexes of the ETC have extra functions and several alternative oxidoreductases occur. A network of mitochondrial dehydrogenases directly or indirectly supplies electrons for the respiratory chain. Insertion of electrons via various pathways is highly dependent on the metabolic state of the plant cell. The regulation of electron entry pathways into the respiratory chain is only partially understood and might, besides others, depend on the formation of supramolecular structures. Non-invasive experimental procedures will be necessary to physiologically investigate the function of these structures by future research.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Acknowledgments

We thank Tatjana Hildebrandt and Holger Eubel, Leibniz University Hannover, for critically reading the manuscript. This research project was supported by the Deutsche Forschungs-gemeinschaft (DFG), grant Br 1829/10-2. Furthermore we acknowledge support by the Open Access Publishing Fund of Leibniz Universität Hannover, which is funded by the DFG.

References

  1. Alekseeva A. A., Savin S. S., Tishkov V. I. (2011). NAD (+)-dependent formate dehydrogenase from plants. Acta Nat. 3, 38–54 [PMC free article] [PubMed] [Google Scholar]
  2. Araújo W. L., Ishizaki K., Nunes-Nesi A., Larson T. R., Tohge T., Krahnert I., et al. (2010). Identification of the 2-hydroxyglutarate and isovaleryl-CoA dehydrogenases as alternative electron donors linking lysine catabolism to the electron transport chain of Arabidopsis mitochondria. Plant Cell 22, 1549–1563 10.1105/tpc.110.075630 [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Araújo W. L., Nunes-Nesi A., Trenkamp S., Bunik V. I., Fernie A. R. (2008). Inhibition of 2-oxoglutarate dehydrogenase in potato tuber suggests the enzyme is limiting for respiration and confirms its importance in nitrogen assimilation. Plant Physiol. 148, 1782–1796 10.1104/pp.108.126219 [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Araújo W. L., Tohge T., Ishizaki K., Leaver C. J., Fernie A. R. (2011). Protein degradation - an alternative respiratory substrate for stressed plants. Trends Plant Sci. 16, 489–498 10.1016/j.tplants.2011.05.008 [DOI] [PubMed] [Google Scholar]
  5. Araújo W. L., Trofimova L., Mkrtchyan G., Steinhauser D., Krall L., Graf A., et al. (2013). On the role of the mitochondrial 2-oxoglutarate dehydrogenase complex in amino acid metabolism. Amino Acids 44, 683–700 10.1007/s00726-012-1392-x [DOI] [PubMed] [Google Scholar]
  6. Atlante A., de Bari L., Valenti D., Pizzuto R., Paventi G., Passarella S. (2005). Transport and metabolism of D-lactate in Jerusalem artichoke mitochondria. Biochim. Biophys. Acta 1708, 13–22 10.1016/j.bbabio.2005.03.003 [DOI] [PubMed] [Google Scholar]
  7. Aubert S., Bligny R., Douce R., Gout E., Ratcliffe R. G., Roberts J. K. (2001). Contribution of glutamate dehydrogenase to mitochondrial glutamate metabolism studied by (13)C and (31)P nuclear magnetic resonance. J. Exp. Bot. 52, 37–45 10.1093/jexbot/52.354.37 [DOI] [PubMed] [Google Scholar]
  8. Baack R. D., Markwell J., Herman P. L., Osterman J. C. (2003). Kinetic behavior of the Arabidopsis thaliana leaf formate dehydrogenase is thermally sensitive. J. Plant Physiol. 160, 445–450 10.1078/0176-1617-00995 [DOI] [PubMed] [Google Scholar]
  9. Bari R., Kebeish R., Kalamajka R., Rademacher T., Peterhänsel C. (2004). A glycolate dehydrogenase in the mitochondria of Arabidopsis thaliana. J. Exp. Bot. 55, 623–630 10.1093/jxb/erh079 [DOI] [PubMed] [Google Scholar]
  10. Barnes S. J., Weitzman P. D. (1986) Organization of citric acid cycle enzymes into a multienzyme cluster. FEBS Lett. 201, 267–270 10.1016/0014-5793(86)80621-4 [DOI] [PubMed] [Google Scholar]
  11. Bartoli C. G., Pastori G. M., Foyer C. H. (2000). Ascorbate biosynthesis in mitochondria is linked to the electron transport chain between complexes III and IV. Plant Physiol. 123, 335–344 10.1104/pp.123.1.335 [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Behal R. H., Oliver D. J. (1998). NAD(+)-dependent isocitrate dehydrogenase from Arabidopsis thaliana. Characterization of two closely related subunits. Plant Mol. Biol. 36, 691–698 10.1023/A:1005923410940 [DOI] [PubMed] [Google Scholar]
  13. Binder S. (2010). Branched-chain amino acid metabolism in Arabidopsis thaliana. Arabidopsis Book 8, e0137 10.1199/tab.0137 [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Bouché N., Fait A., Bouchez D., Møller S. G., Fromm H. (2003). Mitochondrial succinic-semialdehyde dehydrogenase of the gamma-aminobutyrate shunt is required to restrict levels of reactive oxygen intermediates in plants. Proc. Natl. Acad. Sci. U.S.A. 100, 6843–6848 10.1073/pnas.1037532100 [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Braun H. P., Binder S., Brennicke A., Eubel H., Fernie A. R., Finkemeier I., et al. (2014). The life of plant mitochondrial complex I. Mitochondrion. [Epub ahead of print]. 10.1016/j.mito.2014.02.006 [DOI] [PubMed] [Google Scholar]
  16. Braun H. P., Emmermann M., Kruft V., Schmitz U. K. (1992). The general mitochondrial processing peptidase from potato is an integral part of cytochrome c reductase of the respiratory chain. EMBO J. 11, 3219–3227 [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Braun H. P., Schmitz U. K. (1995a). The bifunctional cytochrome c reductase/processing peptidase complex from plant mitochondria. J. Bioenerg. Biomembr. 27, 423–436 10.1007/BF02110005 [DOI] [PubMed] [Google Scholar]
  18. Braun H. P., Schmitz U. K. (1995b) Are the “core” proteins of the mitochondrial bc1 complex evolutionary relics of a processing peptidase? Trends Biochem. Sci. 20, 171–175 10.1016/S0968-0004(00)88999-9 [DOI] [PubMed] [Google Scholar]
  19. Braun H. P., Zabaleta E. (2007) Carbonic anhydrase subunits of the mitochondrial NADH dehydrogenase complex (complex I) in plants. Physiologia Plantarum 129, 114–122 10.1111/j.1399-3054.2006.00773.x [DOI] [PubMed] [Google Scholar]
  20. Budde R. J., Randall D. D. (1990). Pea leaf mitochondrial pyruvate dehydrogenase complex is inactivated in vivo in a light-dependent manner. Proc. Natl. Acad. Sci. U.S.A. 87, 673–676 10.1073/pnas.87.2.673 [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Busch K. B., Fromm H. (1999). Plant succinic semialdehyde dehydrogenase. Cloning, purification, localization in mitochondria, and regulation by adenine nucleotides. Plant Physiol. 121, 589–597 10.1104/pp.121.2.589 [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Bykova N. V., Stensballe A., Egsgaard H., Jensen O. N., Moller I. M. (2003). Phosphorylation of formate dehydrogenase in potato tuber mitochondria. J. Biol. Chem. 278, 26021–26030 10.1074/jbc.M300245200 [DOI] [PubMed] [Google Scholar]
  23. Colas des Francs-Small C., Ambard-Bretteville F., Small I. D., Rémy R. (1993). Identification of a major soluble protein in mitochondria from nonphotosynthetic tissues as NAD-dependent formate dehydrogenase. Plant Physiol. 102, 1171–1177 10.1104/pp.102.4.1171 [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Däschner K., Couée I., Binder S. (2001). The mitochondrial isovaleryl-coenzyme a dehydrogenase of arabidopsis oxidizes intermediates of leucine and valine catabolism. Plant Physiol. 126, 601–612 10.1104/pp.126.2.601 [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Däschner K., Thalheim C., Guha C., Brennicke A., Binder S. (1999). In plants a putative isovaleryl-CoA-dehydrogenase is located in mitochondria. Plant Mol. Biol. 39, 1275–1282 [DOI] [PubMed] [Google Scholar]
  26. Deuschle K., Funck D., Forlani G., Stransky H., Biehl A., Leister D., et al. (2004). The role of [Delta]1-pyrroline-5-carboxylate dehydrogenase in proline degradation. Plant Cell 16, 3413–3425 10.1105/tpc.104.023622 [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Deuschle K., Funck D., Hellmann H., Däschner K., Binder S., Frommer W. B. (2001). A nuclear gene encoding mitochondrial Delta-pyrroline-5-carboxylate dehydrogenase and its potential role in protection from proline toxicity. Plant J. 27, 345–356 10.1046/j.1365-313X.2001.01101.x [DOI] [PubMed] [Google Scholar]
  28. Doremus H. D., Jagendorf A. T. (1985). Subcellular localization of the pathway of de novo pyrimidine nucleotide biosynthesis in pea leaves. Plant Physiol. 79, 856–861 10.1104/pp.79.3.856 [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Douce R., Bourguignon J., Neuburger M., Rébeillé F. (2001). The glycine decarboxylase system: a fascinating complex. Trends Plant Sci. 6, 167–176 10.1016/S1360-1385(01)01892-1 [DOI] [PubMed] [Google Scholar]
  30. Dry I. B., Wiskich J. T. (1987). 2-Oxoglutarate dehydrogenase and pyruvate dehydrogenase activities in plant mitochondria: interaction via a common coenzyme a pool. Arch. Biochem. Biophys. 257, 92–99 10.1016/0003-9861(87)90546-7 [DOI] [PubMed] [Google Scholar]
  31. Dudkina N. V., Sunderhaus S., Boekema E. J., Braun H.-P. (2008). The higher level of organization of the oxidative phosphorylation system: mitochondrial supercomplexes. J. Bioenerg. Biomembr. 40, 419–424 10.1007/s10863-008-9167-5 [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Elthon T. E., Stewart C. R. (1981). Submitochondrial location and electron transport characteristics of enzymes involved in proline oxidation. Plant Physiol. 67, 780–784 10.1104/pp.67.4.780 [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Engqvist M., Drincovich M. F., Flügge U.-I., Maurino V. G. (2009). Two D-2-hydroxy-acid dehydrogenases in Arabidopsis thaliana with catalytic capacities to participate in the last reactions of the methylglyoxal and beta-oxidation pathways. J. Biol. Chem. 284, 25026–25037 10.1074/jbc.M109.021253 [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Engqvist M. K. M., Kuhn A., Wienstroer J., Weber K., Jansen E. E. W., Jakobs C., et al. (2011). Plant D-2-hydroxyglutarate dehydrogenase participates in the catabolism of lysine especially during senescence. J. Biol. Chem. 286, 11382–11390 10.1074/jbc.M110.194175 [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Escobar M. A., Franklin K. A., Svensson A. S., Salter M. G., Whitelam G. C., Rasmusson A. G. (2004). Light regulation of the Arabidopsis respiratory chain. Multiple discrete photoreceptor responses contribute to induction of type II NAD(P)H dehydrogenase genes. Plant Physiol. 136, 2710–2721 10.1104/pp.104.046698 [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Faivre-Nitschke S. E., Couée I., Vermel M., Grienenberger J. M., Gualberto J. M. (2001). Purification, characterization and cloning of isovaleryl-CoA dehydrogenase from higher plant mitochondria. Eur. J. Biochem. 268, 1332–1339 10.1046/j.1432-1327.2001.01999.x [DOI] [PubMed] [Google Scholar]
  37. Fontaine J.-X., Tercé-Laforgue T., Armengaud P., Clément G., Renou J.-P., Pelletier S., et al. (2012). Characterization of a NADH-dependent glutamate dehydrogenase mutant of Arabidopsis demonstrates the key role of this enzyme in root carbon and nitrogen metabolism. Plant Cell 24, 4044–4065 10.1105/tpc.112.103689 [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Fontaine J.-X., Tercé-Laforgue T., Bouton S., Pageau K., Lea P. J., Dubois F., et al. (2013). Further insights into the isoenzyme composition and activity of glutamate dehydrogenase in Arabidopsis thaliana. Plant Signal. Behav. 8, e23329 10.4161/psb.23329 [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Forlani G., Scainelli D., Nielsen E. (1997). [delta]1-pyrroline-5-carboxylate dehydrogenase from cultured cells of potato (purification and properties). Plant Physiol. 113, 1413–1418 [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Fujiki Y., Ito M., Itoh T., Nishida I., Watanabe A. (2002). Activation of the promoters of Arabidopsis genes for the branched-chain alpha-keto acid dehydrogenase complex in transgenic tobacco BY-2 cells under sugar starvation. Plant Cell Physiol. 43, 275–280 10.1093/pcp/pcf032 [DOI] [PubMed] [Google Scholar]
  41. Fujiki Y., Ito M., Nishida I., Watanabe A. (2001). Leucine and its keto acid enhance the coordinated expression of genes for branched-chain amino acid catabolism in Arabidopsis under sugar starvation. FEBS Lett. 499, 161–165 10.1016/S0014-5793(01)02536-4 [DOI] [PubMed] [Google Scholar]
  42. Fujiki Y., Sato T., Ito M., Watanabe A. (2000). Isolation and characterization of cDNA clones for the e1beta and E2 subunits of the branched-chain alpha-ketoacid dehydrogenase complex in Arabidopsis. J. Biol. Chem. 275, 6007–6013 10.1074/jbc.275.8.6007 [DOI] [PubMed] [Google Scholar]
  43. Fukushima T., Decker R. V., Anderson W. M., Spivey H. O. (1989). Substrate channeling of NADH in mitochondrial redox processes. J. Biol. Chem. 264, 16483–16488 [PubMed] [Google Scholar]
  44. Funck D., Eckard S., Müller G. (2010). Non-redundant functions of two proline dehydrogenase isoforms in Arabidopsis. BMC Plant Biol. 10:70 10.1186/1471-2229-10-70 [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Gietl C. (1992). Malate dehydrogenase isoenzymes: cellular locations and role in the flow of metabolites between the cytoplasm and cell organelles. Biochim. Biophys. Acta 1100, 217–234 10.1016/0167-4838(92)90476-T [DOI] [PubMed] [Google Scholar]
  46. Glaser E., Eriksson A., Sjöling S. (1994). Bifunctional role of the bc1 complex in plants. Mitochondrial bc1 complex catalyses both electron transport and protein processing. FEBS Lett. 346, 83–87 10.1016/0014-5793(94)00312-2 [DOI] [PubMed] [Google Scholar]
  47. Goetzman E. S., Mohsen A.-W. A., Prasad K., Vockley J. (2005). Convergent evolution of a 2-methylbutyryl-CoA dehydrogenase from isovaleryl-CoA dehydrogenase in Solanum tuberosum. J. Biol. Chem. 280, 4873–4879 10.1074/jbc.M412640200 [DOI] [PubMed] [Google Scholar]
  48. Grof C. P., Winning B. M., Scaysbrook T. P., Hill S. A., Leaver C. J. (1995). Mitochondrial pyruvate dehydrogenase. Molecular cloning of the E1 alpha subunit and expression analysis. Plant Physiol. 108, 1623–1629 10.1104/pp.108.4.1623 [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Halliwell B. (1974). Oxidation of formate by peroxisomes and mitochondria from spinach leaves. Biochem. J. 138, 77–85 [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Heazlewood J. L., Howell K. A., Whelan J., Millar A. H. (2003). Towards an analysis of the rice mitochondrial proteome. Plant Physiol. 132, 230–242 10.1104/pp.102.018986 [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Hourton-Cabassa C., Ambard-Bretteville F., Moreau F, Davy de Virville J., Rémy R., Francs-Small C. C. (1998). Stress induction of mitochondrial formate dehydrogenase in potato leaves. Plant Physiol. 116, 627–635 10.1104/pp.116.2.627 [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Huang S., Millar A. H. (2013). Succinate dehydrogenase: the complex roles of a simple enzyme. Curr. Opin. Plant Biol. 16, 344–349 10.1016/j.pbi.2013.02.007 [DOI] [PubMed] [Google Scholar]
  53. Ingle R. A. (2011). Histidine biosynthesis. Arabidopsis Book 9, e0141 10.1199/tab.0141 [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Ishizaki K., Larson T. R., Schauer N., Fernie A. R., Graham I. A., Leaver C. J. (2005). The critical role of Arabidopsis electron-transfer flavoprotein:ubiquinone oxidoreductase during dark-induced starvation. Plant Cell 17, 2587–2600 10.1105/tpc.105.035162 [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Ishizaki K., Schauer N., Larson T. R., Graham I. A., Fernie A. R., Leaver C. J. (2006). The mitochondrial electron transfer flavoprotein complex is essential for survival of Arabidopsis in extended darkness. Plant J. 47, 751–760 10.1111/j.1365-313X.2006.02826.x [DOI] [PubMed] [Google Scholar]
  56. Jacoby R. P., Li L., Huang S., Pong Lee C., Millar A. H., Taylor N. L. (2012). Mitochondrial composition, function and stress response in plants. J. Integr. Plant Biol. 54, 887–906 10.1111/j.1744-7909.2012.01177.x [DOI] [PubMed] [Google Scholar]
  57. Jänsch L., Kruft V., Schmitz U. K., Braun H. P. (1996). New insights into the composition, molecular mass and stoichiometry of the protein complexes of plant mitochondria. Plant J. 9, 357–368 10.1046/j.1365-313X.1996.09030357.x [DOI] [PubMed] [Google Scholar]
  58. Jenner H. L., Winning B. M., Millar A. H., Tomlinson K. L., Leaver C. J., Hill S. A. (2001). NAD malic enzyme and the control of carbohydrate metabolism in potato tubers. Plant Physiol. 126, 1139–1149 10.1104/pp.126.3.1139 [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Journet E. P., Neuburger M., Douce R. (1981). Role of glutamate-oxaloacetate transaminase and malate dehydrogenase in the regeneration of NAD for glycine oxidation by spinach leaf mitochondria. Plant Physiol. 67, 467–469 10.1104/pp.67.3.467 [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Kirch H.-H., Bartels D., Wei Y., Schnable P. S., Wood A. J. (2004). The ALDH gene superfamily of Arabidopsis. Trends Plant Sci. 9, 371–377 10.1016/j.tplants.2004.06.004 [DOI] [PubMed] [Google Scholar]
  61. Kiyosue T., Yoshiba Y., Yamaguchi-Shinozaki K., Shinozaki K. (1996). A nuclear gene encoding mitochondrial proline dehydrogenase, an enzyme involved in proline metabolism, is upregulated by proline but downregulated by dehydration in Arabidopsis. Plant Cell 8, 1323–1335 [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Klodmann J., Senkler M., Rode C., Braun H.-P. (2011). Defining the protein complex proteome of plant mitochondria. Plant Physiol. 157, 587–598 10.1104/pp.111.182352 [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Krömer S. (1995) Respiration during photosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46, 47–70 10.1146/annurev.pp.46.060195.000401 [DOI] [Google Scholar]
  64. Lancien M., Gadal P., Hodges M. (1998). Molecular characterization of higher plant NAD-dependent isocitrate dehydrogenase: evidence for a heteromeric structure by the complementation of yeast mutants. Plant J. 16, 325–333 10.1046/j.1365-313x.1998.00305.x [DOI] [PubMed] [Google Scholar]
  65. Lee C. P., Eubel H., O'Toole N., Millar A. H. (2008). Heterogeneity of the mitochondrial proteome for photosynthetic and non-photosynthetic Arabidopsis metabolism. Mol. Cell Proteomics 7, 1297–1316 10.1074/mcp.M700535-MCP200 [DOI] [PubMed] [Google Scholar]
  66. Leferink N. G. H., van den Berg W. A. M., van Berkel W. J. H. (2008). l-Galactono-gamma-lactone dehydrogenase from Arabidopsis thaliana, a flavoprotein involved in vitamin C biosynthesis. FEBS J. 275, 713–726 10.1111/j.1742-4658.2007.06233.x [DOI] [PubMed] [Google Scholar]
  67. Leferink N. G. H., van Duijn E., Barendregt A., Heck A. J. R., van Berkel W. J. H. (2009). Galactonolactone dehydrogenase requires a redox-sensitive thiol for optimal production of vitamin C. Plant Physiol. 150, 596–605 10.1104/pp.109.136929 [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Lemaitre T., Hodges M. (2006). Expression analysis of Arabidopsis thaliana NAD-dependent isocitrate dehydrogenase genes shows the presence of a functional subunit that is mainly expressed in the pollen and absent from vegetative organs. Plant Cell Physiol. 47, 634–643 10.1093/pcp/pcj030 [DOI] [PubMed] [Google Scholar]
  69. Lemaitre T., Urbanczyk-Wochniak E., Flesch V., Bismuth E., Fernie A. R., Hodges M. (2007). NAD-dependent isocitrate dehydrogenase mutants of Arabidopsis suggest the enzyme is not limiting for nitrogen assimilation. Plant Physiol. 144, 1546–1558 10.1104/pp.107.100677 [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Lin M., Behal R. H., Oliver D. J. (2004) Characterization of a mutation in the IDH-II subunit of the NAD1-dependent isocitrate dehydrogenase from Arabidopsis thaliana. Plant Sci. 166, 983–988 10.1016/j.plantsci.2003.12.012 [DOI] [Google Scholar]
  71. Luethy M. H., Miernyk J. A., Randall D. D. (1994). The nucleotide and deduced amino acid sequences of a cDNA encoding the E1 beta-subunit of the Arabidopsis thaliana mitochondrial pyruvate dehydrogenase complex. Biochim. Biophys. Acta 1187, 95–98 10.1016/0005-2728(94)90171-6 [DOI] [PubMed] [Google Scholar]
  72. Mani S., van de Cotte B., van Montagu M., Verbruggen N. (2002). Altered levels of proline dehydrogenase cause hypersensitivity to proline and its analogs in Arabidopsis. Plant Physiol. 128, 73–83 10.1104/pp.010572 [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Mapson L. W., Breslow E. (1958). Biological synthesis of ascorbic acid: L-galactono-gamma-lactone dehydrogenase. Biochem. J. 68, 395–406 [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Miersch J., Grancharov K., Krauss G. J., Spassovska N., Karamanov G., Maneva L., et al. (1987). Biological activity and mode of action of some dihydroorotic and dihydroazaorotic acid derivatives. Biomed. Biochim. Acta 46, 307–315 [PubMed] [Google Scholar]
  75. Millar A. H., Eubel H., Jänsch L., Kruft V., Heazlewood J. L., Braun H.-P. (2004). Mitochondrial cytochrome c oxidase and succinate dehydrogenase complexes contain plant specific subunits. Plant Mol. Biol. 56, 77–90 10.1007/s11103-004-2316-2 [DOI] [PubMed] [Google Scholar]
  76. Millar A. H., Hill S. A., Leaver C. J. (1999). Plant mitochondrial 2-oxoglutarate dehydrogenase complex: purification and characterization in potato. Biochem. J. 343(Pt 2), 327–334 10.1042/0264-6021:3430327 [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Millar A. H., Small I. D., Day D. A., Whelan J. (2008). Mitochondrial biogenesis and function in Arabidopsis. Arabidopsis Book 6, e0111 10.1199/tab.0111 [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Millar A. H., Whelan J., Soole K. L., Day D. A. (2011). Organization and regulation of 1822 mitochondrial respiration in plants. Annu. Rev. Plant Biol. 62, 79–104 10.1146/annurev-arplant-042110-103857 [DOI] [PubMed] [Google Scholar]
  79. Miller G., Honig A., Stein H., Suzuki N., Mittler R., Zilberstein A. (2009). Unraveling delta1-pyrroline-5-carboxylate-proline cycle in plants by uncoupled expression of proline oxidation enzymes. J. Biol. Chem. 284, 26482–26492 10.1074/jbc.M109.009340 [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Miyashita Y., Good A. G. (2008a). Glutamate deamination by glutamate dehydrogenase plays a central role in amino acid catabolism in plants. Plant Signal. Behav. 3, 842–843 10.4161/psb.3.10.5936 [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Miyashita Y., Good A. G. (2008b). NAD(H)-dependent glutamate dehydrogenase is essential for the survival of Arabidopsis thaliana during dark-induced carbon starvation. J. Exp. Bot. 59, 667–680 10.1093/jxb/erm340 [DOI] [PubMed] [Google Scholar]
  82. Mooney B. P., Henzl M. T., Miernyk J. A., Randall D. D. (2000). The dihydrolipoyl acyltransferase (BCE2) subunit of the plant branched-chain alpha-ketoacid dehydrogenase complex forms a 24-mer core with octagonal symmetry. Protein Sci. 9, 1334–1339 10.1110/ps.9.7.1334 [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. Moore A. L., Shiba T., Young L., Harada S., Kita K., Ito K. (2013). Unraveling the heater: new insights into the structure of the alternative oxidase. Annu. Rev. Plant Biol. 64, 637–663 10.1146/annurev-arplant-042811-105432 [DOI] [PubMed] [Google Scholar]
  84. Nagai A., Scheidegger A. (1991). Purification and characterization of histidinol dehydrogenase from cabbage. Arch. Biochem. Biophys. 284, 127–132 10.1016/0003-9861(91)90274-M [DOI] [PubMed] [Google Scholar]
  85. Nunes-Nesi A., Carrari F., Lytovchenko A., Smith A. M. O., Loureiro M. E., Ratcliffe R. G., et al. (2005). Enhanced photosynthetic performance and growth as a consequence of decreasing mitochondrial malate dehydrogenase activity in transgenic tomato plants. Plant Physiol. 137, 611–622 10.1104/pp.104.055566 [DOI] [PMC free article] [PubMed] [Google Scholar]
  86. Oguchi K., Tanaka N., Komatsu S., Akao S. (2004). Methylmalonate-semialdehyde dehydrogenase is induced in auxin-stimulated and zinc-stimulated root formation in rice. Plant Cell Rep. 22, 848–858 10.1007/s00299-004-0778-y [DOI] [PubMed] [Google Scholar]
  87. Oliver D. J. (1994) The glycine decarboxylase complex from plant mitochondria. Annu. Rev.Plant Physiol. Plant Mol. Biol. 45, 323–338 10.1146/annurev.pp.45.060194.001543 [DOI] [Google Scholar]
  88. Oliver D. J., Neuburger M., Bourguignon J., Douce R. (1990). Interaction between the component enzymes of the glycine decarboxylase multienzyme complex. Plant Physiol. 94, 833–839 10.1104/pp.94.2.833 [DOI] [PMC free article] [PubMed] [Google Scholar]
  89. Olson B. J., Skavdahl M., Ramberg H., Osterman J. C., Markwell J. (2000). Formate dehydrogenase in Arabidopsis thaliana: characterization and possible targeting to the chloroplast. Plant Sci. 159, 205–212 10.1016/S0168-9452(00)00337-X [DOI] [PubMed] [Google Scholar]
  90. Pineau B., Layoune O., Danon A., de Paepe R. (2008). L-galactono-1,4-lactone dehydrogenase is required for the accumulation of plant respiratory complex I. J. Biol. Chem. 283, 32500–32505 10.1074/jbc.M805320200 [DOI] [PubMed] [Google Scholar]
  91. Poulsen L. L., Wedding R. T. (1970). Purification and properties of the alpha-ketoglutarate dehydrogenase complex of cauliflower mitochondria. J. Biol. Chem. 245, 5709–5717 [PubMed] [Google Scholar]
  92. Rasmusson A. G., Agius S. C. (2001) Rotenone-insensitive NAD(P)H dehydrogenases in plants: immunodetection and distribution of native proteins in mitochondria. Plant Physiol. Biochem. 39, 1057–1066 10.1016/S0981-9428(01)01334-1 [DOI] [Google Scholar]
  93. Rasmusson A. G., Geisler D. A., Møller I. M. (2008). The multiplicity of dehydrogenases in the electron transport chain of plant mitochondria. Mitochondrion 8, 47–60 10.1016/j.mito.2007.10.004 [DOI] [PubMed] [Google Scholar]
  94. Rasmusson A. G., Moller I. M. (2011). Mitochondrial electron transport and plant stress, in Plant Mitochondria, ed Kempken F. (New York, NY: Springer; ), 357–381 [Google Scholar]
  95. Rasmusson A. G., Soole K. L., Elthon T. E. (2004). Alternative NAD(P)H dehydrogenases of plant mitochondria. Annu. Rev. Plant Biol. 55, 23–39 10.1146/annurev.arplant.55.031903.141720 [DOI] [PubMed] [Google Scholar]
  96. Reinard T., Janke V., Willard J., Buck F., Jacobsen H. J., Vockley J. (2000). Cloning of a gene for an acyl-CoA dehydrogenase from Pisum sativum L. and purification and characterization of its product as an isovaleryl-CoA dehydrogenase. J. Biol. Chem. 275, 33738–33743 10.1074/jbc.M004178200 [DOI] [PubMed] [Google Scholar]
  97. Schertl P., Cabassa C., Saadallah K., Bordenave M., Savouré A., Braun H.P. (in press). Biochemical characterization of ProDH activity in Arabidopsis mitochondria. FEBS J. 10.1111/febs.12821 [DOI] [PubMed] [Google Scholar]
  98. Schertl P., Sunderhaus S., Klodmann J., Grozeff G. E. G., Bartoli C. G., Braun H.-P. (2012). L-galactono-1,4-lactone dehydrogenase (GLDH) forms part of three subcomplexes of mitochondrial complex I in Arabidopsis thaliana. J. Biol. Chem. 287, 14412–14419 10.1074/jbc.M111.305144 [DOI] [PMC free article] [PubMed] [Google Scholar]
  99. Sharma S., Verslues P. E. (2010). Mechanisms independent of abscisic acid (ABA) or proline feedback have a predominant role in transcriptional regulation of proline metabolism during low water potential and stress recovery. Plant Cell Environ. 33, 1838–1851 10.1111/j.1365-3040.2010.02188.x [DOI] [PubMed] [Google Scholar]
  100. Shen W., Wei Y., Dauk M., Tan Y., Taylor D. C., Selvaraj G., et al. (2006). Involvement of a glycerol-3-phosphate dehydrogenase in modulating the NADH/NAD+ ratio provides evidence of a mitochondrial glycerol-3-phosphate shuttle in Arabidopsis. Plant Cell 18, 422–441 10.1105/tpc.105.039750 [DOI] [PMC free article] [PubMed] [Google Scholar]
  101. Shen W., Wei Y., Dauk M., Zheng Z., Zou J. (2003). Identification of a mitochondrial glycerol-3-phosphate dehydrogenase from Arabidopsis thaliana: evidence for a mitochondrial glycerol-3-phosphate shuttle in plants. FEBS Lett. 536, 92–96 10.1016/S0014-5793(03)00033-4 [DOI] [PubMed] [Google Scholar]
  102. Siendones E., Gonzalez-Reyes J. A., Santos-Ocana C., Navas P., C rdoba F. (1999). Biosynthesis of ascorbic acid in kidney bean. L-galactono-gamma-lactone dehydrogenase is an intrinsic protein located at the mitochondrial inner membrane. Plant Physiol. 120, 907–912 10.1104/pp.120.3.907 [DOI] [PMC free article] [PubMed] [Google Scholar]
  103. Somerville C. R., Ogren W. L. (1982). Mutants of the cruciferous plant Arabidopsis thaliana lacking glycine decarboxylase activity. Biochem. J. 202, 373–380 [DOI] [PMC free article] [PubMed] [Google Scholar]
  104. Srinivasan R., Oliver D. J. (1995). Light-dependent and tissue-specific expression of the H-protein of the glycine decarboxylase complex. Plant Physiol. 109, 161–168 10.1104/pp.109.1.161 [DOI] [PMC free article] [PubMed] [Google Scholar]
  105. Sweetlove L. J., Beard K. F. M., Nunes-Nesi A., Fernie A. R., Ratcliffe R. G. (2010). Not just a circle: flux modes in the plant TCA cycle. Trends Plant Sci. 15, 462–470 10.1016/j.tplants.2010.05.006 [DOI] [PubMed] [Google Scholar]
  106. Szabados L., Savouré A. (2010). Proline: a multifunctional amino acid. Trends Plant Sci. 15, 89–97 10.1016/j.tplants.2009.11.009 [DOI] [PubMed] [Google Scholar]
  107. Szurmak B., Strokovskaya L., Mooney B. P., Randall D. D., Miernyk J. A. (2003). Expression and assembly of Arabidopsis thaliana pyruvate dehydrogenase in insect cell cytoplasm. Protein Expr. Purif. 28, 357–361 10.1016/S1046-5928(02)00712-X [DOI] [PubMed] [Google Scholar]
  108. Tanaka N., Takahashi H., Kitano H., Matsuoka M., Akao S., Uchimiya H., et al. (2005). Proteome approach to characterize the methylmalonate-semialdehyde dehydrogenase that is regulated by gibberellin. J. Proteome Res. 4, 1575–1582 10.1021/pr050114f [DOI] [PubMed] [Google Scholar]
  109. Tarasenko V. I., Garnik E. Y., Konstantinov Y. M. (2013). Rate of alternative electron transport in arabidopsis mitochondria affects the expression of the glutamate dehydrogenase gene gdh2. Dokl. Biochem. Biophys. 452, 234–236 10.1134/S1607672913050037 [DOI] [PubMed] [Google Scholar]
  110. Taylor N. L., Heazlewood J. L., Day D. A., Millar A. H. (2004). Lipoic acid-dependent oxidative catabolism of alpha-keto acids in mitochondria provides evidence for branched-chain amino acid catabolism in Arabidopsis. Plant Physiol. 134, 838–848 10.1104/pp.103.035675 [DOI] [PMC free article] [PubMed] [Google Scholar]
  111. Tomaz T., Bagard M., Pracharoenwattana I., Lindén P., Lee C. P., Carroll A. J., et al. (2010). Mitochondrial malate dehydrogenase lowers leaf respiration and alters photorespiration and plant growth in Arabidopsis. Plant Physiol. 154, 1143–1157 10.1104/pp.110.161612 [DOI] [PMC free article] [PubMed] [Google Scholar]
  112. Tovar-Méndez A., Miernyk J. A., Randall D. D. (2003) Regulation of pyruvate dehydrogenase complex activity in plant cells. Eur. J. Biochem. 270, 1043–1049 10.1046/j.1432-1033.2003.03469.x [DOI] [PubMed] [Google Scholar]
  113. Toyokura K., Watanabe K., Oiwaka A., Kusano M., Tameshige T., Tatematsu K., et al. (2011). Succinic semialdehyde dehydrogenase is involved in the robust patterning of Arabidopsis leaves along the adaxial-abaxial axis. Plant Cell Physiol. 52, 1340–1353 10.1093/pcp/pcr079 [DOI] [PubMed] [Google Scholar]
  114. Tronconi M. A., Fahnenstich H., Gerrard Weehler M. C., Andreo C. S., Flügge U.-I., Drincovich M. F., et al. (2008). Arabidopsis NAD-malic enzyme functions as a homodimer and heterodimer and has a major impact on nocturnal metabolism. Plant Physiol. 146, 1540–1552 10.1104/pp.107.114975 [DOI] [PMC free article] [PubMed] [Google Scholar]
  115. Tronconi M. A., Gerrard Wheeler M. C., Drincovich M. F., Andreo C. S. (2012). Differential fumarate binding to Arabidopsis NAD+-malic enzymes 1 and -2 produces an opposite activity modulation. Biochimie 94, 1421–1430 10.1016/j.biochi.2012.03.017 [DOI] [PubMed] [Google Scholar]
  116. Tronconi M. A., Maurino V. G., Andreo C. S., Drincovich M. F. (2010). Three different and tissue-specific NAD-malic enzymes generated by alternative subunit association in Arabidopsis thaliana. J. Biol. Chem. 285, 11870–11879 10.1074/jbc.M109.097477 [DOI] [PMC free article] [PubMed] [Google Scholar]
  117. Turano F. J., Thakkar S. S., Fang T., Weisemann J. M. (1997). Characterization and expression of NAD(H)-dependent glutamate dehydrogenase genes in Arabidopsis. Plant Physiol. 113, 1329–1341 10.1104/pp.113.4.1329 [DOI] [PMC free article] [PubMed] [Google Scholar]
  118. Ullrich A., Knecht W., Piskur J., Löffler M. (2002). Plant dihydroorotate dehydrogenase differs significantly in substrate specificity and inhibition from the animal enzymes. FEBS Lett. 529, 346–350 10.1016/S0014-5793(02)03425-7 [DOI] [PubMed] [Google Scholar]
  119. van Dongen J. T., Gupta K. J., Ramírez-Aguilar S. J., Araújo W. L., Nunes-Nesi A., Fernie A. R. (2011). Regulation of respiration in plants: a role for alternative metabolic pathways. J. Plant Physiol. 168, 1434–1443 10.1016/j.jplph.2010.11.004 [DOI] [PubMed] [Google Scholar]
  120. Verbruggen N., Hua X. J., May M., van Montagu M. (1996). Environmental and developmental signals modulate proline homeostasis: evidence for a negative transcriptional regulator. Proc. Natl. Acad. Sci. U.S.A. 93, 8787–8791 10.1073/pnas.93.16.8787 [DOI] [PMC free article] [PubMed] [Google Scholar]
  121. Wallström S. V., Florez-Sarasa I., Araújo W. L., Aidemark M., Fernández-Fernández M., Fernie A. R., et al. (2014a). Suppression of the external mitochondrial NADPH dehydrogenase, NDB1, in Arabidopsis thaliana affects central metabolism and vegetative growth. Mol. Plant 7, 356–368 10.1093/mp/sst115 [DOI] [PubMed] [Google Scholar]
  122. Wallström S. V., Florez-Sarasa I., Araújo W. L., Escobar M. A., Geisler D. A., Aidemark M., et al. (2014b). Suppression of NDA-type alternative mitochondrial NAD(P)H dehydrogenases in Arabidopsis thaliana modifies growth and metabolism, but not high light stimulation of mitochondrial electron transport. Plant Cell Physiol. [Epub ahead of print]. 10.1093/pcp/pcu021 [DOI] [PMC free article] [PubMed] [Google Scholar]
  123. Wedding R. T., Black M. K. (1971a). Evidence for tighter binding of magnesium-thiamine pyrophosphate to -ketoglutarate dehydrogenase when activated by adenosine monophosphate. J. Biol. Chem. 246, 4097–4099 [PubMed] [Google Scholar]
  124. Wedding R. T., Black M. K. (1971b). Nucleotide activation of cauliflower alpha-ketoglutarate dehydrogenase. J. Biol. Chem. 246, 1638–1643 [PubMed] [Google Scholar]
  125. Wienstroer J., Engqvist M. K. M., Kunz H.-H., Flügge U.-I., Maurino V. G. (2012). D-Lactate dehydrogenase as a marker gene allows positive selection of transgenic plants. FEBS Lett. 586, 36–40 10.1016/j.febslet.2011.11.020 [DOI] [PubMed] [Google Scholar]
  126. Wulff A., Oliveira H. C., Saviani E. E., Salgado I. (2009) Nitrite reduction and superoxide-dependent nitric oxide degradation by Arabidopsis mitochondria: influence of external NAD(P)H dehydrogenases and alternative oxidase in the control of nitric oxide levels. Nitric Oxide 21, 132–139 10.1016/j.niox.2009.06.003 [DOI] [PubMed] [Google Scholar]
  127. Yamaya T., Oaks A., Matsumoto H. (1984). Characteristics of glutamate dehydrogenase in mitochondria prepared from corn shoots. Plant Physiol. 76, 1009–1013 10.1104/pp.76.4.1009 [DOI] [PMC free article] [PubMed] [Google Scholar]
  128. Yu H., Du X., Zhang F., Zhang F., Hu Y., Liu S., et al. (2012). A mutation in the E2 subunit of the mitochondrial pyruvate dehydrogenase complex in Arabidopsis reduces plant organ size and enhances the accumulation of amino acids and intermediate products of the TCA cycle. Planta 236, 387–399 10.1007/s00425-012-1620-3 [DOI] [PubMed] [Google Scholar]
  129. Zabaleta E., Martin M. V., Braun H.-P. (2012). A basal carbon concentrating mechanism in plants? Plant Sci. 187, 97–104 10.1016/j.plantsci.2012.02.001 [DOI] [PubMed] [Google Scholar]
  130. Zhu X., Tang G., Galili G. (2000) Characterization of the two saccharopine dehydrogenase isozymes of lysine catabolism encoded by the single composite AtLKR=SDH locus of Arabidopsis. Plant Physiol. 124, 1363–1372 10.1104/pp.124.3.1363 [DOI] [PMC free article] [PubMed] [Google Scholar]
  131. Zou J., Qi Q., Katavic V., Marillia E. F., Taylor D. C. (1999). Effects of antisense repression of an Arabidopsis thaliana pyruvate dehydrogenase kinase cDNA on plant development. Plant Mol. Biol. 41, 837–849 10.1023/A:1006393726018 [DOI] [PubMed] [Google Scholar]

Articles from Frontiers in Plant Science are provided here courtesy of Frontiers Media SA

RESOURCES