Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Apr 18;70(Pt 5):o584–o585. doi: 10.1107/S1600536814007636

O-Ethyl S-{(S)-1-oxo-1-[(R)-2-oxo-4-phenyl­oxazolidin-3-yl]propan-2-yl} carbonodi­thio­ate

J Pablo García-Merinos a,b,*, Heraclio López-Ruiz a, Yliana López b, Susana Rojas-Lima a
PMCID: PMC4011202  PMID: 24860384

Abstract

In the title compound, C15H17NO4S2, synthesized by addition of O-ethylxanthic acid potassium salt to a diastereomeric mixture of (4R)-3-(2-chloro­propano­yl)-4-phenyl­oxazolidin-2-one, the oxazolidinone ring has a twist conformation on the C—C bond. The phenyl ring is inclined to the mean plane of the oxazolidinone ring by 76.4 (3)°. In the chain the methine H atom is involved in a C—H⋯S and a C—H⋯O intra­molecular inter­action. In the crystal, mol­ecules are linked by C—H⋯π inter­actions, forming chains along [001]. The S configuration at the C atom to which the xanthate group is attached was determined by comparison to the known R configuration of the C atom to which the phenyl group is attached.

Related literature  

For the use of chiral oxazolidinones auxiliaries in asymmetric synthesis, see: Evans (1982); Ager et al. (1997). For the oral activity of oxazolidinonas against multidrug-resistant Gram-positive bacteria, see: Müller & Schimz (1999). For our work on the synthesis of novel heterocyclic compounds, see for example: López-Ruiz et al. (2011). For the crystal structures of similar compounds, see: Bartczak et al. (2001); Kruszynski et al. (2001); Wouters et al. (1997). For the crystal structures of 3,4-disubstituted oxazolidinone derivatives, see: Marsh et al. (1992); Evain et al. (2002); Hwang et al. (2006). For standard bond lengths, see: Allen et al. (1987). For ring puckering analysis, see: Cremer & Pople (1975).graphic file with name e-70-0o584-scheme1.jpg

Experimental  

Crystal data  

  • C15H17NO4S2

  • M r = 339.42

  • Monoclinic, Inline graphic

  • a = 10.8558 (15) Å

  • b = 6.1867 (9) Å

  • c = 12.3057 (17) Å

  • β = 94.911 (4)°

  • V = 823.4 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 293 K

  • 0.2 × 0.17 × 0.16 mm

Data collection  

  • Bruker SMART CCD diffractometer

  • 10191 measured reflections

  • 3223 independent reflections

  • 1681 reflections with I > 2σ(I)

  • R int = 0.152

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.067

  • wR(F 2) = 0.191

  • S = 0.87

  • 3223 reflections

  • 201 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.35 e Å−3

  • Absolute structure: Flack (1983), 6968 Friedel pairs

  • Absolute structure parameter: 0.08 (18)

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814007636/su2715sup1.cif

e-70-0o584-sup1.cif (19.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814007636/su2715Isup2.hkl

e-70-0o584-Isup2.hkl (154.9KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814007636/su2715Isup3.cml

CCDC reference: 995594

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C10–C15 phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯S1 0.98 2.65 3.180 (9) 114
C4—H4⋯O3 0.98 2.34 2.895 (10) 115
C2—H2BCg i 0.97 2.90 3.807 (8) 156

Symmetry code: (i) Inline graphic.

Acknowledgments

Financial support from CONACYT (project No. 183980) and CIC–UMSNH is gratefully acknowledged. JM is grateful to CONACYT for a scholarship (grant: 186053) to support his studies. YLC is grateful to CONACYT (project No. 183980) for providing a license to use the Cambridge Structural Database. We are indebted to Dr Rosa Santi­llan and Marco A. Leyva-Ramírez (CINVESTAV–IPN) for helpful discussions.

supplementary crystallographic information

1. Comment

Oxazolidinones and their derivatives show interesting chemical and biological activities. The use of chiral oxazolidinones auxiliaries in asymmetric synthesis has found wide application in a variety of stereoselective reactions over the last two decades (Evans, 1982; Ager et al., 1997). In addition oxazolidinonas represent a novel class of synthetic antimicrobial agents, the most promising feature of these compounds is their oral activity against multidrug-resistant Gram-positive bacteria which have created tremendous therapeutic problems in recent years (Müller et al., 1999). Based on this, and as part of our ongoing research program directed toward the synthesis of novel heterocyclic compounds (see for example: López-Ruiz et al., 2011) we report herein on the use of (R)-4-phenyloxazolidin-2-one for the synthesis of the title xanthate-oxazilidinone derivative, which has potential applications as a chiral auxiliary in asymmetric reactions.

The title compound was obtained by addition of O-Ethylxanthic acid potassium salt to a diastereomeric mixture of (4R)-3-(2-Chloropropanoyl)-4-phenyloxazolidin-2-one in acetone.

The absolute configuration of the newly created stereogenic carbon, C4, could be deduced from the relative configuration of carbon atom C9, see Fig. 1. The oxazolidinone ring has a twisted conformation on bond C9—C8 [puckering parameters (Cremer & Pople, 1975), φ = 313 (4)°] similar to the twisted conformation on bond C6—C8 for the axazolidinone ring in the 3-amino-2-oxazolidinone derivatives [φ = 53.6174° and φ = 54.0837°] (Bartczak et al., 2001; Kruszynski et al., 2001) and the same conformation was observed for unsubstituted 2-oxazolidinone (Wouters et al., 1997).

The bond angles around atom N1 in the oxazolidinone ring are in agreement with the observed tendencies for the bond angles in 3,4-disustituted oxazolidinone derivatives (Marsh et al., 1992; Evain et al., 2002; Hwang et al., 2006). The C9—N1, C7—N1 and C6—N1 bond distances, 1.483 (7), 1.382 (8) and 1.411 (8) Å, respectively, are slightly longer than the average values reported for Csp3—N(3) and Csp2—N(3) in γ-lactams [C*—N(—C*)—C=O (endo) = 1.462 and C*—N(—C*)—C=O = 1.347 Å respectively] (Allen et al., 1987).

The C7═O3 bond length 1.198 (8) Å is slightly shorter than a Csp2=O(1) in γ-lactams [C*—N(—C*)—C=O = 1.225 Å] and close to normal Csp2=O(1) in γ-lactones [C*—C(=O)—O—C* = 1.201 Å]. The C8—O4 bond, 1.449 (8) is slightly shorter than the Csp3—O(2) [C*—O—C(=O) = 1.464 Å] in γ-lactones while C7—O4 bond 1.343 (7) Å is close to normal Csp2=O(2) in γ-lactones [C*—C(═O)—O—C* = 1.350 Å]. Moreover the C4—S2 and C3=S1 bond distances are 1.811 (6) and 1.642 (7) Å respectively being slightly shorter than Csp3—S(2) and Csp2═S(1) [C—CH—S—C = 1.819 and (X)2—C═S (X = C, N, O, S) = 1.671 Å, respectively].

In the crystal, molecules are linked via C-H···π interactions forming zigzag chains along [001]; (Table 1 and Fig. 2).

2. Experimental

For the preparation of the title compound, a solution of (4R)-4-phenyloxazolidin-2-one (10.70 mmol) in distilled THF (25 ml) was cooled to 195 K under a nitrogen atmosphere, and a solution of n-butyllithium in hexane (12.95 mmol) was added dropwise. After 2-chloropropanoyl chloride (10.79 mmol) was introduced dropwise and stirring was continued at 195 K for 6 h. Then the reaction mixture was diluted with saturated solution of NH3SO4 and extracted with dichloromethane (3 × 10 ml). The combined organic layers were washed with water and brine, dried over anhydrous Na2SO4 and concentrated under vacuum. Purification by chromatography column on silica gel (eluent: hexane/ethyl acetate 9:1) gave the diastereomeric mixture of (4R)-3- (2-Chloropropanoyl)-4-phenyloxazolidin-2-one in 98% yield. To a solution of this diastereomeric mixture (31.19 mmol) in acetone at 273 K was added the O-Ethylxanthic acid potassium salt (46.78 mmol) and the reaction was stirred at room temperature for 12 h. Then the reaction mixture was diluted with a saturated solution of NH3SO4 and extracted with dichloromethane (3 × 10 ml). The organic layer was dried over anhydrous Na2SO4 and concentrated under vacuum. Purification by chromatography column on silica gel (eluent: hexane/ethyl acetate 9:1) gave the diastereomeric mixture of (4R)-3-((2R)-(2-O-Ethyl carbonodithioate) propanoyl)-4-phenyloxazolidin-2-one in a 77% of yield. Block-like colourless crystals of the title compound were obtained by slow evaporation of an hexane/ethyl acetate (9:1) solution. Spectroscopic data for the title compound are available in the archived CIF.

3. Refinement

The H atoms were inlcuded in calculated positions and treated as riding atoms: C-H = 0.93 - 0.98 Å with Uiso(H) = 1.5Ueq(C-methyl) and = 1.2Ueq(C) for other H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, viewed along the a axis. The dashed lines indicate the C—H···π interactions (see Table 1 for details; H atoms not involved in these interactions have been omitted for clarity).

Crystal data

C15H17NO4S2 F(000) = 356
Mr = 339.42 Dx = 1.369 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2yb Cell parameters from 1321 reflections
a = 10.8558 (15) Å θ = 1.7–26.0°
b = 6.1867 (9) Å µ = 0.34 mm1
c = 12.3057 (17) Å T = 293 K
β = 94.911 (4)° Block, colourless
V = 823.4 (2) Å3 0.2 × 0.17 × 0.16 mm
Z = 2

Data collection

Bruker SMART CCD diffractometer 1681 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.152
Graphite monochromator θmax = 26.0°, θmin = 1.7°
φ and ω scans h = −13→13
10191 measured reflections k = −7→7
3223 independent reflections l = −15→15

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.067 H-atom parameters constrained
wR(F2) = 0.191 w = 1/[σ2(Fo2) + (0.0945P)2] where P = (Fo2 + 2Fc2)/3
S = 0.87 (Δ/σ)max < 0.001
3223 reflections Δρmax = 0.38 e Å3
201 parameters Δρmin = −0.35 e Å3
1 restraint Absolute structure: Flack (1983), 6968 Friedel pairs
Primary atom site location: structure-invariant direct methods Absolute structure parameter: 0.08 (18)

Special details

Experimental. Spectroscopic data for the title compound: 1H NMR (400 MHz, CDCl3)δ: 7.2 (m, 5H, CH, arom), 5.6 (q, 1H, CH (H-4), J= 7.3 Hz), 5.4 (dd, CH (H-9), J1= 3.2 Hz, J2=8.6 Hz), 4.7 (t, 1H (H-8a), CH2, J= 8.8 Hz), 4.6 (m, 2H, CH2(H-2)), 4.3 (dd, 1H (H-8 b), J1= 3.2 Hz, J2= 8.6 Hz), 1.4 (d,3H,CH3 (H-5), J= 7.3 Hz), 1.4 (t, 3H,CH3 (H-1), J= 7.3 Hz); 13C NMR (100 MHz, CDCl3) δ: 213 (CS), 171.05 (CO), 153.53 (CO), 138.74 (C), 129.33 (CH), 128.93 (2CH), 125.90 (CH), 70.35 (2CH2), 58.03 (CH), 57.94 (CH), 47.20 (CH), 15.80 (CH3), 13.60 (CH3).
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.8431 (7) 0.9153 (19) 1.0271 (7) 0.101 (3)
H1A 0.8415 0.9226 0.9491 0.151*
H1B 0.9209 0.9693 1.0591 0.151*
H1C 0.7772 1.0015 1.0513 0.151*
C2 0.8275 (6) 0.6889 (16) 1.0609 (6) 0.082 (2)
H2A 0.8932 0.6011 1.0354 0.098*
H2B 0.8328 0.6804 1.1399 0.098*
C3 0.6967 (6) 0.5034 (10) 0.9216 (5) 0.0560 (17)
C4 0.5331 (5) 0.2814 (10) 0.7734 (5) 0.0479 (15)
H4 0.6011 0.3210 0.7298 0.057*
C5 0.5440 (7) 0.0432 (10) 0.8030 (6) 0.069 (2)
H5A 0.4763 0.0023 0.8439 0.103*
H5B 0.6206 0.0185 0.8462 0.103*
H5C 0.5421 −0.0415 0.7375 0.103*
C6 0.4117 (6) 0.3295 (9) 0.7086 (5) 0.0459 (14)
C7 0.4827 (6) 0.1846 (9) 0.5343 (5) 0.0481 (15)
C8 0.2958 (6) 0.1740 (13) 0.4298 (5) 0.0613 (17)
H8A 0.2566 0.0348 0.4153 0.074*
H8B 0.2653 0.2748 0.3734 0.074*
C9 0.2687 (5) 0.2584 (10) 0.5439 (4) 0.0458 (14)
H9 0.2434 0.4104 0.5388 0.055*
C10 0.1727 (5) 0.1287 (9) 0.5970 (4) 0.0420 (14)
C11 0.0555 (5) 0.2134 (10) 0.6019 (5) 0.0516 (16)
H11 0.0357 0.3479 0.5715 0.062*
C12 −0.0328 (6) 0.0959 (11) 0.6529 (6) 0.0632 (19)
H12 −0.1116 0.1528 0.6567 0.076*
C13 −0.0047 (6) −0.1024 (13) 0.6975 (5) 0.066 (2)
H13 −0.0641 −0.1776 0.7324 0.080*
C14 0.1105 (7) −0.1919 (11) 0.6912 (6) 0.0673 (19)
H14 0.1292 −0.3279 0.7204 0.081*
C15 0.1990 (5) −0.0740 (13) 0.6399 (5) 0.0583 (15)
H15 0.2770 −0.1332 0.6346 0.070*
N1 0.3934 (4) 0.2412 (7) 0.6027 (4) 0.0423 (11)
O1 0.7069 (4) 0.6056 (9) 1.0155 (4) 0.0770 (15)
O2 0.3286 (4) 0.4268 (9) 0.7448 (3) 0.0631 (11)
O3 0.5918 (4) 0.1651 (7) 0.5559 (4) 0.0566 (12)
O4 0.4291 (4) 0.1544 (7) 0.4330 (3) 0.0551 (11)
S1 0.80766 (14) 0.4339 (4) 0.84599 (14) 0.0760 (6)
S2 0.53803 (14) 0.4534 (3) 0.89279 (13) 0.0631 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.068 (5) 0.143 (8) 0.091 (6) −0.024 (6) −0.002 (4) 0.019 (7)
C2 0.054 (4) 0.126 (8) 0.063 (4) 0.001 (4) −0.010 (4) −0.019 (5)
C3 0.049 (3) 0.072 (5) 0.046 (4) 0.001 (3) 0.002 (3) 0.003 (3)
C4 0.040 (3) 0.054 (4) 0.051 (3) 0.004 (3) 0.011 (3) −0.003 (3)
C5 0.081 (5) 0.067 (5) 0.057 (4) 0.006 (4) 0.000 (4) 0.006 (3)
C6 0.048 (3) 0.043 (3) 0.048 (4) −0.006 (3) 0.011 (3) −0.002 (3)
C7 0.057 (4) 0.038 (3) 0.051 (4) −0.003 (3) 0.016 (3) 0.002 (3)
C8 0.053 (4) 0.083 (5) 0.048 (4) −0.002 (3) 0.005 (3) −0.002 (4)
C9 0.041 (3) 0.050 (3) 0.046 (3) −0.002 (3) 0.005 (3) 0.002 (3)
C10 0.045 (3) 0.039 (3) 0.042 (3) −0.004 (3) 0.003 (3) −0.003 (3)
C11 0.049 (4) 0.056 (4) 0.049 (4) 0.007 (3) 0.003 (3) −0.002 (3)
C12 0.040 (3) 0.076 (5) 0.075 (5) −0.007 (4) 0.010 (3) −0.013 (4)
C13 0.056 (4) 0.085 (6) 0.060 (4) −0.034 (4) 0.016 (3) −0.003 (4)
C14 0.060 (4) 0.070 (5) 0.071 (4) −0.009 (4) 0.000 (4) 0.007 (4)
C15 0.042 (3) 0.060 (4) 0.073 (4) −0.001 (4) 0.010 (3) −0.003 (4)
N1 0.034 (2) 0.050 (3) 0.044 (3) 0.000 (2) 0.009 (2) 0.000 (2)
O1 0.049 (3) 0.116 (4) 0.065 (3) −0.009 (3) 0.003 (2) −0.028 (3)
O2 0.047 (2) 0.088 (3) 0.055 (2) 0.014 (3) 0.0065 (19) −0.019 (3)
O3 0.044 (3) 0.065 (3) 0.063 (3) 0.006 (2) 0.015 (2) −0.006 (2)
O4 0.059 (3) 0.061 (3) 0.047 (3) −0.001 (2) 0.017 (2) −0.004 (2)
S1 0.0462 (9) 0.1207 (15) 0.0621 (10) −0.0011 (13) 0.0095 (7) −0.0115 (13)
S2 0.0438 (8) 0.0872 (12) 0.0585 (9) −0.0036 (10) 0.0067 (7) −0.0216 (10)

Geometric parameters (Å, º)

C1—C2 1.475 (13) C7—O4 1.344 (7)
C1—H1A 0.9600 C7—N1 1.382 (7)
C1—H1B 0.9600 C8—O4 1.449 (8)
C1—H1C 0.9600 C8—C9 1.550 (8)
C2—O1 1.472 (8) C8—H8A 0.9700
C2—H2A 0.9700 C8—H8B 0.9700
C2—H2B 0.9700 C9—N1 1.483 (7)
C3—O1 1.313 (7) C9—C10 1.507 (8)
C3—S1 1.642 (6) C9—H9 0.9800
C3—S2 1.756 (6) C10—C15 1.381 (9)
C4—C6 1.511 (8) C10—C11 1.383 (8)
C4—C5 1.520 (8) C11—C12 1.395 (9)
C4—S2 1.811 (6) C11—H11 0.9300
C4—H4 0.9800 C12—C13 1.367 (10)
C5—H5A 0.9600 C12—H12 0.9300
C5—H5B 0.9600 C13—C14 1.376 (10)
C5—H5C 0.9600 C13—H13 0.9300
C6—O2 1.201 (7) C14—C15 1.399 (9)
C6—N1 1.411 (7) C14—H14 0.9300
C7—O3 1.198 (8) C15—H15 0.9300
C2—C1—H1A 109.5 C9—C8—H8A 110.6
C2—C1—H1B 109.5 O4—C8—H8B 110.6
H1A—C1—H1B 109.5 C9—C8—H8B 110.6
C2—C1—H1C 109.5 H8A—C8—H8B 108.7
H1A—C1—H1C 109.5 N1—C9—C10 112.7 (5)
H1B—C1—H1C 109.5 N1—C9—C8 100.5 (4)
O1—C2—C1 110.2 (6) C10—C9—C8 113.9 (5)
O1—C2—H2A 109.6 N1—C9—H9 109.8
C1—C2—H2A 109.6 C10—C9—H9 109.8
O1—C2—H2B 109.6 C8—C9—H9 109.8
C1—C2—H2B 109.6 C15—C10—C11 119.2 (5)
H2A—C2—H2B 108.1 C15—C10—C9 121.4 (5)
O1—C3—S1 127.9 (5) C11—C10—C9 119.3 (5)
O1—C3—S2 105.7 (4) C10—C11—C12 119.5 (6)
S1—C3—S2 126.4 (4) C10—C11—H11 120.2
C6—C4—C5 111.4 (5) C12—C11—H11 120.2
C6—C4—S2 106.1 (4) C13—C12—C11 120.6 (6)
C5—C4—S2 112.3 (5) C13—C12—H12 119.7
C6—C4—H4 109.0 C11—C12—H12 119.7
C5—C4—H4 109.0 C12—C13—C14 120.8 (6)
S2—C4—H4 109.0 C12—C13—H13 119.6
C4—C5—H5A 109.5 C14—C13—H13 119.6
C4—C5—H5B 109.5 C13—C14—C15 118.5 (7)
H5A—C5—H5B 109.5 C13—C14—H14 120.7
C4—C5—H5C 109.5 C15—C14—H14 120.7
H5A—C5—H5C 109.5 C10—C15—C14 121.3 (6)
H5B—C5—H5C 109.5 C10—C15—H15 119.4
O2—C6—N1 119.1 (5) C14—C15—H15 119.4
O2—C6—C4 123.5 (5) C7—N1—C6 127.6 (5)
N1—C6—C4 117.3 (5) C7—N1—C9 112.3 (5)
O3—C7—O4 122.3 (5) C6—N1—C9 118.2 (4)
O3—C7—N1 128.5 (6) C3—O1—C2 120.5 (5)
O4—C7—N1 109.3 (5) C7—O4—C8 111.5 (5)
O4—C8—C9 105.7 (5) C3—S2—C4 103.2 (3)
O4—C8—H8A 110.6
C5—C4—C6—O2 108.2 (7) O3—C7—N1—C9 177.2 (6)
S2—C4—C6—O2 −14.3 (7) O4—C7—N1—C9 −1.9 (6)
C5—C4—C6—N1 −67.3 (7) O2—C6—N1—C7 158.5 (6)
S2—C4—C6—N1 170.3 (4) C4—C6—N1—C7 −25.8 (8)
O4—C8—C9—N1 −8.7 (6) O2—C6—N1—C9 −4.6 (8)
O4—C8—C9—C10 −129.5 (5) C4—C6—N1—C9 171.1 (5)
N1—C9—C10—C15 −40.0 (8) C10—C9—N1—C7 128.3 (5)
C8—C9—C10—C15 73.6 (7) C8—C9—N1—C7 6.7 (6)
N1—C9—C10—C11 140.7 (5) C10—C9—N1—C6 −66.1 (6)
C8—C9—C10—C11 −105.7 (6) C8—C9—N1—C6 172.3 (5)
C15—C10—C11—C12 1.9 (9) S1—C3—O1—C2 5.3 (10)
C9—C10—C11—C12 −178.7 (5) S2—C3—O1—C2 −175.1 (6)
C10—C11—C12—C13 −0.3 (10) C1—C2—O1—C3 92.6 (8)
C11—C12—C13—C14 −1.2 (10) O3—C7—O4—C8 176.3 (6)
C12—C13—C14—C15 1.1 (10) N1—C7—O4—C8 −4.5 (6)
C11—C10—C15—C14 −2.0 (9) C9—C8—O4—C7 8.6 (7)
C9—C10—C15—C14 178.6 (6) O1—C3—S2—C4 −172.4 (5)
C13—C14—C15—C10 0.5 (10) S1—C3—S2—C4 7.2 (5)
O3—C7—N1—C6 13.3 (10) C6—C4—S2—C3 −149.4 (4)
O4—C7—N1—C6 −165.8 (5) C5—C4—S2—C3 88.8 (5)

Hydrogen-bond geometry (Å, º)

Cg is the centroid of the C10–C15 phenyl ring.

D—H···A D—H H···A D···A D—H···A
C4—H4···S1 0.98 2.65 3.180 (9) 114
C4—H4···O3 0.98 2.34 2.895 (10) 115
C2—H2B···Cgi 0.97 2.90 3.807 (8) 156

Symmetry code: (i) −x+1, y+1/2, −z+2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: SU2715).

References

  1. Ager, D. J., Prakash, I. & Schaad, D. R. (1997). Aldrichim. Acta, 30, 3–12.
  2. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  3. Bartczak, T. J., Kruszynski, R., Chilmonczyk, Z. & Cybulski, J. (2001). Acta Cryst. E57, o341–o343.
  4. Bruker (1999). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  6. Evain, M., Pauvert, M., Collet, S. & Guingant, A. (2002). Acta Cryst. E58, o1121–o1122.
  7. Evans, D. A. (1982). Aldrichim. Acta, 15, 23–32.
  8. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  9. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  10. Hwang, I.-C., Jang, J. H., Kim, T. H. & Ha, K. (2006). Acta Cryst. C62, o196–o198. [DOI] [PubMed]
  11. Kruszynski, R., Bartczak, T. J., Chilmonczyk, Z. & Cybulski, J. (2001). Acta Cryst. E57, o469–o471.
  12. López-Ruiz, H., Cortés-Hernández, M., Rojas-Lima, S. & Höpfl, H. (2011). J. Mex. Chem. Soc. 55, 168–175.
  13. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  14. Marsh, R. E., Schaefer, W. P., Kukkola, P. J. & Myers, A. G. (1992). Acta Cryst. C48, 1622–1624. [DOI] [PubMed]
  15. Müller, M. & Schimz, K.-L. (1999). Cell. Mol. Life Sci. 56, 280–285. [DOI] [PMC free article] [PubMed]
  16. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  17. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  18. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  19. Wouters, J., Ooms, F. & Durant, F. (1997). Acta Cryst. C53, 895–897.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814007636/su2715sup1.cif

e-70-0o584-sup1.cif (19.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814007636/su2715Isup2.hkl

e-70-0o584-Isup2.hkl (154.9KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814007636/su2715Isup3.cml

CCDC reference: 995594

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES