Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Apr 18;70(Pt 5):o587. doi: 10.1107/S1600536814008538

Ethyl 2-amino-4-(3-nitro­phen­yl)-4H-1-benzothieno[3,2-b]pyran-3-carboxyl­ate

Mohamed Bakhouch a, Ghali Al Houari a, Mohamed El Yazidi a,*, Mohamed Saadi b, Lahcen El Ammari b
PMCID: PMC4011203  PMID: 24860386

Abstract

The mol­ecule of the title compound, C20H16N2O5S, is built up by one fused five-membered and two fused six-membered rings linked to eth­oxy­carbonyl and 3-nitro­phenyl groups. The benzothieno­pyran ring system is nearly planar (r.m.s deviation = 0.0392 Å) and forms a dihedral angle of 86.90 (6)° with the aromatic ring of the nitro­benzene group. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds and by π–π inter­actions between the phenyl ring and the six-membered heterocyle [inter­centroid distance = 3.5819 (8) Å], forming a three-dimensional network.

Related literature  

For background to the organic synthesis of the title compound, see: House (1972); Kabashima et al. (2000); Jung (1991). For the preparation of heterocyclic compounds using condensation reactions, see: Boughaleb et al. (2011); Cabiddu et al. (2002); Pradhan & Asish (2005).graphic file with name e-70-0o587-scheme1.jpg

Experimental  

Crystal data  

  • C20H16N2O5S

  • M r = 396.41

  • Triclinic, Inline graphic

  • a = 8.3670 (2) Å

  • b = 9.4319 (2) Å

  • c = 12.8948 (4) Å

  • α = 102.505 (1)°

  • β = 106.493 (1)°

  • γ = 94.840 (1)°

  • V = 940.96 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 296 K

  • 0.42 × 0.31 × 0.26 mm

Data collection  

  • Bruker X8 APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.673, T max = 0.746

  • 20668 measured reflections

  • 4857 independent reflections

  • 3954 reflections with I > 2σ(I)

  • R int = 0.025

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.137

  • S = 1.05

  • 4857 reflections

  • 253 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814008538/rz5118sup1.cif

e-70-0o587-sup1.cif (24.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814008538/rz5118Isup2.hkl

e-70-0o587-Isup2.hkl (237.9KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814008538/rz5118Isup3.cml

CCDC reference: 997474

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯O2 0.86 2.09 2.6950 (17) 127
N1—H1B⋯O2i 0.86 2.30 3.0327 (17) 143
N1—H1A⋯O5ii 0.86 2.30 3.1489 (19) 169

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

supplementary crystallographic information

1. Comment

The Michael reaction is one of the most efficient methods for effecting carbon–carbon bond formation and has wide synthetic applications (House, 1972; Kabashima et al., 2000). This reaction and its close variants have been extensively used in organic synthesis (Jung, 1991). Generally, Michael additions are conducted in a suitable solvent in the presence of a strong base either at room or at elevated temperatures. In continuing our previous works on the preparation of hetrocyclic compounds by using condensation reactions (Boughaleb et al., 2011), we now wish to describe the behavior of ethylcyanoacetate with respect to (Z)-2-(3-nitrobenzylidene)-1-benzo[b]thiophen-3(2H)-one and derivatives in ethanol, with the presence of piperidine as a basic catalyst (Cabiddu et al., 2002; Pradhan & Asish, 2005). We have shown that cyclocondensation start with a Michael 1,4-additon, followed by intramolecular cyclization via nucleophilic addition of the hydroxyl group to the cyano group and not onto the carboxylate, to afford the tricyclic heterocycle ethyl2-amino-4-(3-nitrophenyl)-4H-1-benzothieno[3,2-b]pyran-3-carboxylate.

The molecule of the title compound, is formed by tree fused rings linked to an ethyl-3-carboxylate nd a 3-nitrophenyl group as shown in Fig. 1. The three fused rings (S1/C1–C11/O1) are almost coplanar, with the maximum deviation from the mean plane of -0.089 (2) Å at C9, and make a dihedral angle of 86.90 (6)° with the plane through the attached nitrophenyl group.

In the crystal, molecules are linked by N—H···O hydrogen bonds and by π–π interactions in a three-dimensional network as shown in Fig. 2 and Table 1.

2. Experimental

In a 100 ml flask equipped with a condenser was dissolved 4 mmol of (Z)-2-(3-nitrobenzylidene)-1-benzo[b]thiophen-3(2H)-one and 5 mmol of ethyl cyanoacetate in 30 ml of ethanol. Then, 1 ml of piperidine was added, and the reaction mixture was refluxed for 6 h. Thin layer chromatography revealed the formation of a single product. The organic phase was evaporated under reduce pressure. The resulting residue was recristallized from ethanol (Yield: 68%; m.p.: 493 K).

3. Refinement

H atoms were located in a difference map and treated as riding with C–H = 0.93–0.97 Å, N–H = 0.86 Å, and with Uiso(H) = 1.2 Ueq(C, N) or Uiso(H) = 1.5 Ueq(C) for methyl H atoms. Two ouliers (0 0 1, 0 1 0) were omitted in the last cycles of refinement.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are represented as small circles.

Fig. 2.

Fig. 2.

Partial crystal packing for the title compound showing molecules linked by hydrogen bonds (dashed lines).

Crystal data

C20H16N2O5S Z = 2
Mr = 396.41 F(000) = 412
Triclinic, P1 Dx = 1.399 Mg m3
Hall symbol: -P 1 Melting point: 493 K
a = 8.3670 (2) Å Mo Kα radiation, λ = 0.71073 Å
b = 9.4319 (2) Å Cell parameters from 4857 reflections
c = 12.8948 (4) Å θ = 2.5–28.7°
α = 102.505 (1)° µ = 0.21 mm1
β = 106.493 (1)° T = 296 K
γ = 94.840 (1)° Block, colourless
V = 940.96 (4) Å3 0.42 × 0.31 × 0.26 mm

Data collection

Bruker X8 APEX diffractometer 4857 independent reflections
Radiation source: fine-focus sealed tube 3954 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.025
φ and ω scans θmax = 28.7°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −11→11
Tmin = 0.673, Tmax = 0.746 k = −12→12
20668 measured reflections l = −17→17

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0782P)2 + 0.1615P] where P = (Fo2 + 2Fc2)/3
4857 reflections (Δ/σ)max = 0.001
253 parameters Δρmax = 0.37 e Å3
0 restraints Δρmin = −0.25 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 1.03581 (19) 0.74569 (16) 0.51586 (12) 0.0444 (3)
C2 1.1714 (2) 0.7184 (2) 0.59752 (14) 0.0572 (4)
H2 1.1539 0.6646 0.6469 0.069*
C3 1.3318 (2) 0.7739 (2) 0.60256 (14) 0.0596 (4)
H3 1.4239 0.7566 0.6561 0.072*
C4 1.3590 (2) 0.8552 (2) 0.52938 (14) 0.0553 (4)
H4 1.4689 0.8908 0.5347 0.066*
C5 1.22638 (19) 0.88383 (17) 0.44927 (13) 0.0472 (3)
H5 1.2455 0.9388 0.4010 0.057*
C6 1.06239 (17) 0.82841 (14) 0.44214 (11) 0.0388 (3)
C7 0.90329 (17) 0.83869 (14) 0.36665 (11) 0.0366 (3)
C8 0.76677 (17) 0.76734 (14) 0.37893 (11) 0.0373 (3)
C9 0.59063 (16) 0.75463 (14) 0.30354 (11) 0.0356 (3)
H9 0.5205 0.7943 0.3487 0.043*
C10 0.59569 (16) 0.84817 (14) 0.22130 (11) 0.0361 (3)
C11 0.74244 (17) 0.91953 (14) 0.21693 (11) 0.0371 (3)
C12 0.43789 (18) 0.86851 (15) 0.14814 (12) 0.0418 (3)
C13 0.1380 (2) 0.8102 (3) 0.0990 (2) 0.0859 (7)
H13A 0.1389 0.8011 0.0228 0.103*
H13B 0.1031 0.9034 0.1248 0.103*
C14 0.0200 (2) 0.6887 (2) 0.1031 (2) 0.0785 (6)
H14A −0.0914 0.6910 0.0564 0.118*
H14B 0.0192 0.6988 0.1787 0.118*
H14C 0.0549 0.5969 0.0770 0.118*
C15 0.51766 (16) 0.59335 (14) 0.24462 (11) 0.0363 (3)
C16 0.5980 (2) 0.50862 (16) 0.17907 (13) 0.0486 (3)
H16 0.6969 0.5507 0.1710 0.058*
C17 0.5336 (2) 0.36266 (18) 0.12555 (16) 0.0598 (4)
H17 0.5895 0.3077 0.0820 0.072*
C18 0.3863 (2) 0.29794 (17) 0.13649 (15) 0.0592 (5)
H18 0.3414 0.2000 0.1008 0.071*
C19 0.30905 (19) 0.38353 (17) 0.20176 (14) 0.0516 (4)
C20 0.37110 (17) 0.52953 (16) 0.25679 (12) 0.0439 (3)
H20 0.3155 0.5835 0.3010 0.053*
N1 0.75846 (17) 0.99963 (14) 0.14576 (11) 0.0500 (3)
H1A 0.8569 1.0394 0.1494 0.060*
H1B 0.6704 1.0114 0.0963 0.060*
N2 0.1493 (2) 0.3189 (2) 0.21188 (16) 0.0745 (5)
O1 0.89774 (12) 0.91629 (11) 0.28705 (8) 0.0435 (2)
O2 0.41926 (14) 0.93260 (13) 0.07393 (10) 0.0551 (3)
O3 0.30471 (13) 0.80479 (15) 0.16981 (11) 0.0597 (3)
O4 0.0661 (2) 0.3993 (2) 0.2526 (2) 0.1098 (7)
O5 0.1064 (2) 0.1868 (2) 0.17700 (19) 0.1165 (7)
S1 0.82193 (5) 0.68473 (5) 0.48947 (3) 0.05225 (14)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0450 (7) 0.0467 (7) 0.0397 (7) 0.0057 (6) 0.0084 (6) 0.0138 (6)
C2 0.0577 (10) 0.0676 (10) 0.0468 (8) 0.0126 (8) 0.0067 (7) 0.0273 (7)
C3 0.0479 (9) 0.0773 (11) 0.0482 (9) 0.0150 (8) 0.0012 (7) 0.0211 (8)
C4 0.0391 (8) 0.0712 (10) 0.0487 (9) 0.0056 (7) 0.0063 (6) 0.0119 (7)
C5 0.0410 (7) 0.0539 (8) 0.0423 (7) 0.0017 (6) 0.0072 (6) 0.0130 (6)
C6 0.0404 (7) 0.0371 (6) 0.0342 (6) 0.0037 (5) 0.0068 (5) 0.0064 (5)
C7 0.0392 (7) 0.0346 (6) 0.0343 (6) 0.0025 (5) 0.0082 (5) 0.0107 (5)
C8 0.0394 (7) 0.0373 (6) 0.0343 (6) 0.0030 (5) 0.0083 (5) 0.0126 (5)
C9 0.0349 (6) 0.0380 (6) 0.0360 (6) 0.0032 (5) 0.0121 (5) 0.0129 (5)
C10 0.0377 (7) 0.0355 (6) 0.0373 (6) 0.0054 (5) 0.0113 (5) 0.0139 (5)
C11 0.0380 (6) 0.0356 (6) 0.0386 (7) 0.0054 (5) 0.0106 (5) 0.0131 (5)
C12 0.0388 (7) 0.0452 (7) 0.0477 (8) 0.0116 (5) 0.0156 (6) 0.0197 (6)
C13 0.0361 (9) 0.1282 (19) 0.1168 (18) 0.0216 (10) 0.0176 (10) 0.0839 (16)
C14 0.0483 (10) 0.0803 (13) 0.0881 (15) 0.0057 (9) 0.0018 (10) 0.0096 (11)
C15 0.0341 (6) 0.0387 (6) 0.0365 (6) 0.0011 (5) 0.0075 (5) 0.0166 (5)
C16 0.0476 (8) 0.0441 (7) 0.0552 (9) 0.0014 (6) 0.0198 (7) 0.0119 (6)
C17 0.0684 (11) 0.0455 (8) 0.0610 (10) 0.0067 (7) 0.0188 (9) 0.0067 (7)
C18 0.0655 (10) 0.0412 (7) 0.0560 (9) −0.0078 (7) −0.0024 (8) 0.0160 (7)
C19 0.0409 (7) 0.0545 (8) 0.0533 (8) −0.0106 (6) −0.0014 (6) 0.0292 (7)
C20 0.0358 (7) 0.0509 (7) 0.0467 (8) −0.0001 (6) 0.0094 (6) 0.0228 (6)
N1 0.0416 (6) 0.0573 (7) 0.0569 (8) 0.0010 (5) 0.0113 (6) 0.0342 (6)
N2 0.0517 (9) 0.0814 (11) 0.0832 (11) −0.0221 (8) 0.0030 (8) 0.0424 (9)
O1 0.0356 (5) 0.0502 (5) 0.0465 (5) −0.0001 (4) 0.0085 (4) 0.0239 (4)
O2 0.0458 (6) 0.0699 (7) 0.0608 (7) 0.0148 (5) 0.0145 (5) 0.0404 (6)
O3 0.0343 (5) 0.0866 (8) 0.0737 (8) 0.0155 (5) 0.0171 (5) 0.0496 (7)
O4 0.0650 (10) 0.1204 (15) 0.1621 (19) −0.0096 (10) 0.0533 (12) 0.0581 (14)
O5 0.0925 (12) 0.0841 (11) 0.1571 (18) −0.0447 (9) 0.0255 (12) 0.0378 (11)
S1 0.0472 (2) 0.0633 (3) 0.0485 (2) −0.00050 (17) 0.00801 (16) 0.03121 (18)

Geometric parameters (Å, º)

C1—C2 1.396 (2) C12—O3 1.3482 (17)
C1—C6 1.405 (2) C13—O3 1.446 (2)
C1—S1 1.7449 (16) C13—C14 1.469 (3)
C2—C3 1.377 (3) C13—H13A 0.9700
C2—H2 0.9300 C13—H13B 0.9700
C3—C4 1.392 (3) C14—H14A 0.9600
C3—H3 0.9300 C14—H14B 0.9600
C4—C5 1.376 (2) C14—H14C 0.9600
C4—H4 0.9300 C15—C20 1.3843 (18)
C5—C6 1.397 (2) C15—C16 1.388 (2)
C5—H5 0.9300 C16—C17 1.383 (2)
C6—C7 1.4338 (18) C16—H16 0.9300
C7—C8 1.3423 (18) C17—C18 1.386 (3)
C7—O1 1.3768 (15) C17—H17 0.9300
C8—C9 1.4959 (18) C18—C19 1.371 (3)
C8—S1 1.7378 (14) C18—H18 0.9300
C9—C10 1.5261 (17) C19—C20 1.384 (2)
C9—C15 1.5308 (17) C19—N2 1.473 (2)
C9—H9 0.9800 C20—H20 0.9300
C10—C11 1.3712 (18) N1—H1A 0.8600
C10—C12 1.4436 (19) N1—H1B 0.8600
C11—N1 1.3356 (17) N2—O4 1.208 (3)
C11—O1 1.3633 (16) N2—O5 1.214 (2)
C12—O2 1.2195 (17)
C2—C1—C6 120.99 (15) O3—C13—C14 108.58 (16)
C2—C1—S1 127.04 (13) O3—C13—H13A 110.0
C6—C1—S1 111.96 (11) C14—C13—H13A 110.0
C3—C2—C1 117.84 (16) O3—C13—H13B 110.0
C3—C2—H2 121.1 C14—C13—H13B 110.0
C1—C2—H2 121.1 H13A—C13—H13B 108.4
C2—C3—C4 121.46 (15) C13—C14—H14A 109.5
C2—C3—H3 119.3 C13—C14—H14B 109.5
C4—C3—H3 119.3 H14A—C14—H14B 109.5
C5—C4—C3 121.21 (16) C13—C14—H14C 109.5
C5—C4—H4 119.4 H14A—C14—H14C 109.5
C3—C4—H4 119.4 H14B—C14—H14C 109.5
C4—C5—C6 118.47 (15) C20—C15—C16 119.01 (13)
C4—C5—H5 120.8 C20—C15—C9 120.39 (12)
C6—C5—H5 120.8 C16—C15—C9 120.59 (11)
C5—C6—C1 120.03 (13) C17—C16—C15 121.20 (15)
C5—C6—C7 130.31 (13) C17—C16—H16 119.4
C1—C6—C7 109.65 (12) C15—C16—H16 119.4
C8—C7—O1 124.23 (12) C16—C17—C18 120.27 (17)
C8—C7—C6 115.68 (12) C16—C17—H17 119.9
O1—C7—C6 120.09 (11) C18—C17—H17 119.9
C7—C8—C9 124.19 (12) C19—C18—C17 117.59 (14)
C7—C8—S1 111.37 (10) C19—C18—H18 121.2
C9—C8—S1 124.38 (10) C17—C18—H18 121.2
C8—C9—C10 107.83 (10) C18—C19—C20 123.38 (14)
C8—C9—C15 110.43 (11) C18—C19—N2 118.73 (15)
C10—C9—C15 112.40 (10) C20—C19—N2 117.87 (17)
C8—C9—H9 108.7 C19—C20—C15 118.54 (15)
C10—C9—H9 108.7 C19—C20—H20 120.7
C15—C9—H9 108.7 C15—C20—H20 120.7
C11—C10—C12 118.22 (12) C11—N1—H1A 120.0
C11—C10—C9 123.25 (12) C11—N1—H1B 120.0
C12—C10—C9 118.45 (11) H1A—N1—H1B 120.0
N1—C11—O1 109.61 (11) O4—N2—O5 123.09 (19)
N1—C11—C10 127.07 (13) O4—N2—C19 118.92 (16)
O1—C11—C10 123.32 (12) O5—N2—C19 118.0 (2)
O2—C12—O3 121.52 (13) C11—O1—C7 116.95 (10)
O2—C12—C10 126.91 (13) C12—O3—C13 117.57 (13)
O3—C12—C10 111.56 (12) C8—S1—C1 91.31 (7)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1B···O2 0.86 2.09 2.6950 (17) 127
N1—H1B···O2i 0.86 2.30 3.0327 (17) 143
N1—H1A···O5ii 0.86 2.30 3.1489 (19) 169

Symmetry codes: (i) −x+1, −y+2, −z; (ii) x+1, y+1, z.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: RZ5118).

References

  1. Boughaleb, A., Zouihri, H., Gmouh, S., Kerbal, A. & El yazidi, M. (2011). Acta Cryst. E67, o2106. [DOI] [PMC free article] [PubMed]
  2. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cabiddu, M. G., Cabiddu, S., Cadoni, E., De Montis, S., Fattuoni, C., Melis, S. & Usai, M. (2002). Synthesis, 7, 875–878.
  4. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  5. House, H. O. (1972). Modern Synthetic Reactions, 2nd ed., pp. 581–595. New York: Benjamin.
  6. Jung, M. E. (1991). Comprehensive Organic Synthesis, Vol. 4, edited by B. M. Trost, I. Fleming & M. F. Semmelhack, pp. 1–68. Oxford: Pergamon Press.
  7. Kabashima, H., Tsuji, H., Shibuya, T. & Hattori, H. (2000). J. Mol. Catal. A Chem. 155, 23–29.
  8. Pradhan, T. K. & Asish, D. (2005). Tetrahedron Lett. 61, 9007–9017.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814008538/rz5118sup1.cif

e-70-0o587-sup1.cif (24.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814008538/rz5118Isup2.hkl

e-70-0o587-Isup2.hkl (237.9KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814008538/rz5118Isup3.cml

CCDC reference: 997474

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES