Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Apr 26;70(Pt 5):m190–m191. doi: 10.1107/S1600536814009064

Bis(2,2′-bipyridyl-κ2 N,N′)chloridonickel(II) nitrate trihydrate

Mehdi Boutebdja a, Adel Beghidja a,*, Chahrazed Beghidja a, Zouaoui Setifi b,*, Hocine Merazig a
PMCID: PMC4011205  PMID: 24860319

Abstract

In the title hydrated salt, [NiCl(C10H8N2)2](NO3)·3H2O, the Ni2+ ion is coordinated by two 2,2′-bipyridyl (2,2′-bpy) ligands and a chloride ion in a trigonal–bipyramidal geometry. The chloride ion occupies an equatorial site and the dihedral angle between the 2,2′-bpy ring systems is 72.02 (6)°. In the crystal, the components are linked by C—H⋯O and O—H⋯O hydrogen bonds and aromatic π–π stacking inter­actions [shortest centroid–centroid separation = 3.635 (2) Å], generating a three-dimensional network.

Related literature  

For the isotypic copper complex, see: Harrison et al. (1981); Liu et al. (2004). For related structures, see: Martens et al. (1996); Gao & Li (2009)graphic file with name e-70-0m190-scheme1.jpg

Experimental  

Crystal data  

  • [NiCl(C10H8N2)2](NO3)·3H2O

  • M r = 522.57

  • Monoclinic, Inline graphic

  • a = 8.2341 (2) Å

  • b = 21.1920 (5) Å

  • c = 13.1284 (4) Å

  • β = 99.722 (1)°

  • V = 2257.97 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.03 mm−1

  • T = 296 K

  • 0.15 × 0.13 × 0.10 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • 21125 measured reflections

  • 5177 independent reflections

  • 3811 reflections with I > 2σ(I)

  • R int = 0.034

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.127

  • S = 1.01

  • 5177 reflections

  • 298 parameters

  • 9 restraints

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.47 e Å−3

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ATOMS (Dowty, 1995); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536814009064/hb7220sup1.cif

e-70-0m190-sup1.cif (33KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814009064/hb7220Isup2.hkl

e-70-0m190-Isup2.hkl (283.9KB, hkl)

CCDC reference: 998760

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Ni1—Cl1 2.3035 (9)
Ni1—N1 1.989 (2)
Ni1—N2 2.088 (2)
Ni1—N3 2.107 (2)
Ni1—N4 1.983 (2)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯O3W i 0.81 2.29 2.876 (6) 129
O1W—H2W⋯O2ii 0.83 2.18 2.934 (7) 151
O2W—H3W⋯O2ii 0.84 1.90 2.723 (7) 166
O2W—H4W⋯Cl1i 0.83 2.47 3.245 (4) 155
O3W—H5W⋯O2W iii 0.85 1.88 2.699 (6) 161
O3W—H6W⋯O1iv 0.83 2.03 2.839 (7) 165
C14—H14⋯O2W 0.93 2.56 3.424 (5) 155
C18—H18⋯O1W 0.93 2.39 3.257 (6) 156

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

The authors thank the MESRS (Algeria) for financial support. MB thanks the DG–RSDT and ANDRU (Direction Générale de la Recherche Scientifique et du Dévelopement Technologique et l’Agence Nationale pour le Développement de la Recherche Universitaire, Algeria) through the PNR project.

supplementary crystallographic information

1. Comment

The molecular structure of the title complex is shown in (Fig.1), The title compound is isostructural with the copper analogue (Harrison et al., 1981; Liu et al., 2004), crystalize in the monoclinic space group P21/n. The Ni(II) atom is five-coordinate and displays a distorted trigonal-bipyramidal coordination geometry with four N atoms from the two chelating 2,2'-bipyridine molecules and one chloride ion. The basal plane defined by the atoms (N1 N3 Cl1). The apical positions are occupied by the N2 and N4 atoms [N2—Ni1—N4 = 175.09 (10)°]. The Ni—N bond lenghts (table 1) are in normal range [Ni1—N1 = 2.086 (3), Ni1—N2 = 1.984 (3), Ni1—N3 = 2.108 (3), Ni1—N4 = 1.983 (3), Ni1—Cl1 = 2.3032 (10)]. In the crystal structure, the components are linked by weak C—H···O and medium O—H···O hydrogen bonds. Water molecules are further hydrogen-bond-interacting with the nitrate anion to complete a two-dimensional water-nitrate framework parallel to (101)which can be described by the graph set R97(24) (Fig. 2). Thus, the discrete [Ni(bpy)2Cl]+ was linked to each other through pi-pi stacking to form two-dimensional supramolecular coordinated polymer parallel to the ac plane with centroid–centroiddistances of Cg(1)—Cg(2) = 3.660 (2) Å, Cg(2)—Cg(2i) = 3.635 (2) Å and Cg(3)—Cg(4) = 3.693 (2) Å. (Cg(1) is the centroid of N4—C20 2,2'-bpy ring, Cg(2) is the centroid of N3—C15 2,2'-bpy ring, Cg(3) is the centroid of N2—C10 2,2'-bpy ring, Cg(4) is the centroid of N1—C5 2,2'-bpy ring) (Fig.3). These layers are connected to each other via a weak O—H···Cl and C—H···O hydrogen bond to form a three-dimensional network(Fig.4).

2. Experimental

Compound (1) was obtained from the reaction of MSA 'mercaptosuccinic acid' (0.15 g, 1 mmol) in pyridine and an ethanolic solution of Ni(NO3)2.6H2O (0.290 g, 1 mmole) After several minutes of stirring an ethanol solution containing 2,2'-Bipyridine hydrochloride (0.114 g, 0.5 mmol) was add. The solution was kept for several weeks at room temperature. Green crystals suitable for X-ray analysis were obtained (yield: 0.1 g, 10% on the basis of Ni(NO3)2.6H2O).

3. Refinement

Water hydrogen atoms were tentatively found in the difference density Fourier map and were refined with an isotropic displacement parameter 1.5 that of the adjacent oxygen atom. The O—H distances were restrained to be 0.9 Å within a standard deviation of 0.01 with Uiso(H) = 1.5 Ueq(O) and the H···H contacts were restraint to 1.40 Å with a standard deviation of 0.02. A l l other Hydrogen atoms were placed in calculated positions with C —H distances of 0.93–0.96 Å for aromatic H atoms with Uiso(H) =1.2 Ueq(C). Maximum and minimum residual electron densities were 0.47 e Å-3 (0.79 Å from Ni1) and -0.47 e Å-3 (0.70 Å from H3w), respectively.

Figures

Fig. 1.

Fig. 1.

ORTEP view of the title compound with displacement ellipsoids for non-H atoms drawn at the 30% probability level.

Fig. 2.

Fig. 2.

The two-dimensional water-nitrate framework parallel to ac plane, and the aggregation of R9 7(24)[Symmetry codes: (i) -x, -y, -z; (ii) x, y, z - 1; (iii) -x + 1, -y, -z]

Fig. 3.

Fig. 3.

Part of the crystal structures, showing the [pi]-[pi] stacking interaction [Symmetry codes: (i) 1 - x, -y, -z]

Fig. 4.

Fig. 4.

Packing diagram of the supramolecular edifice showing hydrogen bonds as dashed lines

Crystal data

[NiCl(C10H8N2)2](NO3)·3H2O Z = 4
Mr = 522.57 F(000) = 1080
Monoclinic, P21/n Dx = 1.537 Mg m3
Hall symbol: -P 2yn Mo Kα radiation, λ = 0.71073 Å
a = 8.2341 (2) Å µ = 1.03 mm1
b = 21.1920 (5) Å T = 296 K
c = 13.1284 (4) Å Block, green
β = 99.722 (1)° 0.15 × 0.13 × 0.10 mm
V = 2257.97 (10) Å3

Data collection

Bruker APEXII CCD diffractometer 3811 reflections with I > 2σ(I)
Radiation source: Rotating Anode Rint = 0.034
Graphite monochromator θmax = 27.5°, θmin = 2.7°
Detector resolution: 18.4 pixels mm-1 h = −10→10
φ and ω scans k = −25→27
21125 measured reflections l = −16→17
5177 independent reflections

Refinement

Refinement on F2 9 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.044 H-atom parameters constrained
wR(F2) = 0.127 W = 1/[Σ2(FO2) + (0.0647P)2 + 1.1593P] WHERE P = (FO2 + 2FC2)/3
S = 1.01 (Δ/σ)max < 0.001
5177 reflections Δρmax = 0.47 e Å3
298 parameters Δρmin = −0.47 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ni1 0.26205 (4) 0.01955 (2) 0.25456 (2) 0.0416 (1)
Cl1 0.04397 (10) −0.00729 (4) 0.33507 (6) 0.0607 (3)
N1 0.4089 (3) −0.04491 (11) 0.33240 (17) 0.0468 (7)
N2 0.4655 (3) 0.07571 (11) 0.31172 (16) 0.0446 (7)
N3 0.2831 (3) −0.01045 (10) 0.10432 (18) 0.0448 (7)
N4 0.1319 (3) 0.08621 (11) 0.17169 (18) 0.0470 (7)
C1 0.3683 (4) −0.10552 (14) 0.3398 (3) 0.0574 (10)
C2 0.4723 (4) −0.14864 (15) 0.3945 (3) 0.0626 (11)
C3 0.6237 (4) −0.12862 (16) 0.4447 (3) 0.0660 (11)
C4 0.6663 (4) −0.06611 (15) 0.4387 (2) 0.0573 (10)
C5 0.5564 (3) −0.02455 (13) 0.3819 (2) 0.0430 (8)
C6 0.5881 (3) 0.04365 (13) 0.37109 (19) 0.0422 (8)
C7 0.7311 (4) 0.07368 (16) 0.4171 (2) 0.0547 (10)
C8 0.7489 (4) 0.13756 (17) 0.4001 (3) 0.0663 (11)
C9 0.6260 (4) 0.16938 (16) 0.3385 (3) 0.0664 (11)
C10 0.4856 (4) 0.13736 (14) 0.2963 (2) 0.0559 (10)
C11 0.3647 (4) −0.06032 (14) 0.0758 (2) 0.0531 (10)
C12 0.3716 (4) −0.07369 (17) −0.0257 (3) 0.0623 (11)
C13 0.2912 (4) −0.03406 (19) −0.1010 (3) 0.0668 (13)
C14 0.2078 (4) 0.01749 (16) −0.0732 (2) 0.0591 (10)
C15 0.2067 (3) 0.02868 (13) 0.0305 (2) 0.0455 (8)
C16 0.1201 (3) 0.08294 (13) 0.0683 (2) 0.0452 (8)
C17 0.0298 (4) 0.12715 (15) 0.0049 (2) 0.0578 (10)
C18 −0.0500 (4) 0.17463 (15) 0.0485 (3) 0.0649 (11)
C19 −0.0382 (4) 0.17781 (15) 0.1538 (3) 0.0641 (11)
C20 0.0545 (4) 0.13259 (14) 0.2133 (3) 0.0570 (10)
O1 −0.1473 (7) 0.2935 (3) 0.5504 (4) 0.181 (3)
O2 −0.0983 (7) 0.2268 (2) 0.6708 (5) 0.165 (3)
O3 0.0639 (6) 0.2366 (3) 0.5677 (5) 0.186 (3)
N5 −0.0656 (6) 0.2527 (2) 0.5946 (4) 0.1009 (19)
O1W −0.2649 (5) 0.2447 (3) −0.1506 (3) 0.167 (2)
O2W 0.1269 (6) 0.1387 (2) −0.2468 (3) 0.157 (2)
O3W 0.5892 (5) −0.1931 (2) 0.1556 (4) 0.162 (2)
H1 0.26540 −0.11900 0.30650 0.0690*
H2 0.44110 −0.19070 0.39770 0.0750*
H3 0.69660 −0.15700 0.48230 0.0790*
H4 0.76800 −0.05180 0.47240 0.0690*
H7 0.81390 0.05130 0.45880 0.0660*
H8 0.84400 0.15860 0.43040 0.0790*
H9 0.63700 0.21210 0.32520 0.0800*
H10 0.40120 0.15950 0.25540 0.0670*
H11 0.41890 −0.08690 0.12680 0.0640*
H12 0.42910 −0.10870 −0.04320 0.0750*
H13 0.29350 −0.04220 −0.17030 0.0800*
H14 0.15300 0.04450 −0.12340 0.0710*
H17 0.02300 0.12480 −0.06640 0.0690*
H18 −0.11170 0.20440 0.00660 0.0780*
H19 −0.09130 0.20960 0.18430 0.0770*
H20 0.06340 0.13450 0.28480 0.0680*
H1W −0.35430 0.25310 −0.13630 0.2350*
H2W −0.25270 0.23560 −0.21040 0.2350*
H3W 0.06220 0.16910 −0.26290 0.2350*
H4W 0.10210 0.10720 −0.28370 0.2350*
H5W 0.66590 −0.16810 0.18080 0.2350*
H6W 0.58870 −0.19980 0.09320 0.2350*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni1 0.0427 (2) 0.0381 (2) 0.0418 (2) 0.0038 (1) 0.0004 (1) 0.0021 (1)
Cl1 0.0508 (4) 0.0743 (5) 0.0580 (4) 0.0074 (3) 0.0119 (3) 0.0144 (4)
N1 0.0505 (13) 0.0427 (12) 0.0468 (12) 0.0062 (10) 0.0067 (10) 0.0002 (10)
N2 0.0460 (12) 0.0459 (12) 0.0410 (11) −0.0002 (10) 0.0044 (9) 0.0014 (9)
N3 0.0418 (12) 0.0455 (13) 0.0458 (12) −0.0053 (9) 0.0034 (9) −0.0034 (10)
N4 0.0462 (13) 0.0441 (12) 0.0485 (13) 0.0001 (10) 0.0019 (10) 0.0024 (10)
C1 0.0612 (19) 0.0449 (16) 0.0656 (19) 0.0035 (13) 0.0096 (15) 0.0001 (14)
C2 0.076 (2) 0.0447 (16) 0.070 (2) 0.0145 (15) 0.0208 (17) 0.0037 (15)
C3 0.077 (2) 0.059 (2) 0.0617 (19) 0.0286 (17) 0.0113 (17) 0.0113 (15)
C4 0.0539 (17) 0.0634 (19) 0.0536 (17) 0.0163 (14) 0.0061 (13) −0.0010 (14)
C5 0.0443 (14) 0.0495 (15) 0.0363 (12) 0.0094 (11) 0.0099 (11) −0.0016 (11)
C6 0.0406 (13) 0.0539 (15) 0.0327 (12) 0.0038 (11) 0.0083 (10) −0.0033 (11)
C7 0.0436 (15) 0.068 (2) 0.0514 (16) 0.0049 (14) 0.0052 (12) −0.0070 (14)
C8 0.0527 (18) 0.073 (2) 0.072 (2) −0.0155 (16) 0.0070 (16) −0.0124 (17)
C9 0.072 (2) 0.0550 (19) 0.072 (2) −0.0128 (16) 0.0115 (17) 0.0027 (16)
C10 0.0607 (18) 0.0476 (16) 0.0570 (17) −0.0035 (13) 0.0030 (14) 0.0079 (13)
C11 0.0480 (16) 0.0535 (17) 0.0575 (17) −0.0036 (13) 0.0078 (13) −0.0086 (14)
C12 0.0540 (18) 0.069 (2) 0.067 (2) −0.0095 (15) 0.0193 (15) −0.0218 (17)
C13 0.063 (2) 0.092 (3) 0.0486 (17) −0.0199 (19) 0.0191 (15) −0.0150 (17)
C14 0.0549 (18) 0.077 (2) 0.0447 (16) −0.0145 (15) 0.0068 (13) 0.0020 (15)
C15 0.0365 (13) 0.0523 (16) 0.0466 (14) −0.0130 (11) 0.0042 (11) 0.0011 (12)
C16 0.0377 (13) 0.0459 (14) 0.0499 (15) −0.0113 (11) 0.0011 (11) 0.0054 (12)
C17 0.0538 (17) 0.0575 (18) 0.0575 (18) −0.0092 (15) −0.0042 (14) 0.0145 (15)
C18 0.0596 (19) 0.0498 (18) 0.079 (2) −0.0016 (15) −0.0061 (16) 0.0185 (16)
C19 0.0599 (19) 0.0436 (17) 0.086 (2) 0.0032 (14) 0.0045 (17) 0.0029 (16)
C20 0.0610 (18) 0.0479 (16) 0.0606 (18) 0.0047 (14) 0.0061 (14) −0.0020 (14)
O1 0.171 (5) 0.191 (5) 0.180 (5) 0.090 (4) 0.028 (4) 0.022 (4)
O2 0.230 (6) 0.105 (3) 0.178 (5) −0.065 (3) 0.087 (4) −0.028 (3)
O3 0.123 (3) 0.203 (5) 0.252 (6) 0.055 (4) 0.089 (4) 0.031 (4)
N5 0.120 (4) 0.076 (3) 0.105 (3) −0.009 (3) 0.014 (3) −0.019 (2)
O1W 0.158 (4) 0.194 (4) 0.132 (3) −0.037 (4) −0.025 (3) 0.056 (3)
O2W 0.233 (5) 0.123 (3) 0.113 (3) −0.002 (3) 0.028 (3) 0.009 (2)
O3W 0.147 (4) 0.169 (4) 0.174 (4) 0.038 (3) 0.039 (3) 0.020 (3)

Geometric parameters (Å, º)

Ni1—Cl1 2.3035 (9) C7—C8 1.384 (5)
Ni1—N1 1.989 (2) C8—C9 1.363 (5)
Ni1—N2 2.088 (2) C9—C10 1.374 (5)
Ni1—N3 2.107 (2) C11—C12 1.373 (5)
Ni1—N4 1.983 (2) C12—C13 1.378 (5)
O1—N5 1.185 (8) C13—C14 1.372 (5)
O2—N5 1.211 (8) C14—C15 1.384 (4)
O3—N5 1.227 (7) C15—C16 1.482 (4)
O1W—H2W 0.8300 C16—C17 1.384 (4)
O1W—H1W 0.8100 C17—C18 1.378 (5)
O2W—H4W 0.8300 C18—C19 1.371 (5)
O2W—H3W 0.8400 C19—C20 1.382 (5)
O3W—H5W 0.8500 C1—H1 0.9300
O3W—H6W 0.8300 C2—H2 0.9300
N1—C5 1.348 (4) C3—H3 0.9300
N1—C1 1.335 (4) C4—H4 0.9300
N2—C6 1.350 (3) C7—H7 0.9300
N2—C10 1.337 (4) C8—H8 0.9300
N3—C11 1.339 (4) C9—H9 0.9300
N3—C15 1.348 (3) C10—H10 0.9300
N4—C20 1.337 (4) C11—H11 0.9300
N4—C16 1.346 (3) C12—H12 0.9300
C1—C2 1.370 (5) C13—H13 0.9300
C2—C3 1.375 (5) C14—H14 0.9300
C3—C4 1.376 (5) C17—H17 0.9300
C4—C5 1.387 (4) C18—H18 0.9300
C5—C6 1.480 (4) C19—H19 0.9300
C6—C7 1.384 (4) C20—H20 0.9300
Cl1—Ni1—N1 92.75 (7) C12—C13—C14 119.7 (3)
Cl1—Ni1—N2 128.03 (6) C13—C14—C15 119.0 (3)
Cl1—Ni1—N3 123.28 (7) C14—C15—C16 123.1 (3)
Cl1—Ni1—N4 92.10 (8) N3—C15—C16 115.4 (2)
N1—Ni1—N2 79.96 (9) N3—C15—C14 121.5 (3)
N1—Ni1—N3 97.75 (9) N4—C16—C15 114.9 (2)
N1—Ni1—N4 175.13 (10) N4—C16—C17 120.8 (2)
N2—Ni1—N3 108.69 (9) C15—C16—C17 124.3 (2)
N2—Ni1—N4 96.75 (10) C16—C17—C18 119.3 (3)
N3—Ni1—N4 79.84 (9) C17—C18—C19 119.8 (3)
H1W—O1W—H2W 122.00 C18—C19—C20 118.3 (3)
H3W—O2W—H4W 113.00 N4—C20—C19 122.3 (3)
H5W—O3W—H6W 112.00 N1—C1—H1 119.00
Ni1—N1—C5 116.62 (18) C2—C1—H1 119.00
Ni1—N1—C1 124.1 (2) C1—C2—H2 121.00
C1—N1—C5 119.3 (3) C3—C2—H2 121.00
Ni1—N2—C6 113.39 (18) C4—C3—H3 120.00
Ni1—N2—C10 128.0 (2) C2—C3—H3 120.00
C6—N2—C10 118.7 (2) C3—C4—H4 120.00
C11—N3—C15 118.7 (2) C5—C4—H4 120.00
Ni1—N3—C11 128.63 (18) C8—C7—H7 120.00
Ni1—N3—C15 112.66 (17) C6—C7—H7 121.00
Ni1—N4—C16 117.18 (19) C7—C8—H8 120.00
Ni1—N4—C20 123.4 (2) C9—C8—H8 120.00
C16—N4—C20 119.4 (3) C8—C9—H9 120.00
O2—N5—O3 115.9 (5) C10—C9—H9 120.00
O1—N5—O2 123.3 (6) C9—C10—H10 119.00
O1—N5—O3 120.7 (6) N2—C10—H10 119.00
N1—C1—C2 122.6 (3) N3—C11—H11 119.00
C1—C2—C3 118.8 (3) C12—C11—H11 119.00
C2—C3—C4 119.3 (3) C11—C12—H12 121.00
C3—C4—C5 119.5 (3) C13—C12—H12 121.00
C4—C5—C6 124.2 (2) C14—C13—H13 120.00
N1—C5—C6 115.2 (2) C12—C13—H13 120.00
N1—C5—C4 120.6 (3) C13—C14—H14 120.00
C5—C6—C7 123.9 (2) C15—C14—H14 121.00
N2—C6—C5 114.8 (2) C16—C17—H17 120.00
N2—C6—C7 121.2 (3) C18—C17—H17 120.00
C6—C7—C8 119.0 (3) C19—C18—H18 120.00
C7—C8—C9 119.5 (3) C17—C18—H18 120.00
C8—C9—C10 119.0 (3) C18—C19—H19 121.00
N2—C10—C9 122.6 (3) C20—C19—H19 121.00
N3—C11—C12 122.6 (3) C19—C20—H20 119.00
C11—C12—C13 118.5 (3) N4—C20—H20 119.00
Cl1—Ni1—N1—C1 50.9 (3) Ni1—N3—C11—C12 −178.4 (2)
Cl1—Ni1—N1—C5 −127.61 (19) C15—N3—C11—C12 −1.0 (5)
N2—Ni1—N1—C1 179.0 (3) Ni1—N3—C15—C14 179.4 (2)
N2—Ni1—N1—C5 0.54 (19) Ni1—N3—C15—C16 −1.8 (3)
N3—Ni1—N1—C1 −73.3 (3) C11—N3—C15—C14 1.6 (4)
N3—Ni1—N1—C5 108.3 (2) C11—N3—C15—C16 −179.6 (3)
Cl1—Ni1—N2—C6 84.54 (19) Ni1—N4—C16—C15 0.4 (3)
Cl1—Ni1—N2—C10 −95.4 (2) Ni1—N4—C16—C17 179.2 (2)
N1—Ni1—N2—C6 −1.07 (18) C20—N4—C16—C15 −178.3 (3)
N1—Ni1—N2—C10 179.0 (2) C20—N4—C16—C17 0.4 (4)
N3—Ni1—N2—C6 −95.92 (18) Ni1—N4—C20—C19 −178.7 (2)
N3—Ni1—N2—C10 84.2 (2) C16—N4—C20—C19 0.0 (5)
N4—Ni1—N2—C6 −177.45 (18) N1—C1—C2—C3 0.7 (6)
N4—Ni1—N2—C10 2.7 (2) C1—C2—C3—C4 0.1 (5)
Cl1—Ni1—N3—C11 −95.1 (3) C2—C3—C4—C5 −0.3 (5)
Cl1—Ni1—N3—C15 87.41 (19) C3—C4—C5—N1 −0.2 (4)
N1—Ni1—N3—C11 3.4 (3) C3—C4—C5—C6 179.2 (3)
N1—Ni1—N3—C15 −174.12 (19) N1—C5—C6—N2 −1.0 (3)
N2—Ni1—N3—C11 85.4 (3) N1—C5—C6—C7 179.1 (3)
N2—Ni1—N3—C15 −92.2 (2) C4—C5—C6—N2 179.5 (3)
N4—Ni1—N3—C11 179.1 (3) C4—C5—C6—C7 −0.4 (4)
N4—Ni1—N3—C15 1.59 (19) N2—C6—C7—C8 −1.1 (4)
Cl1—Ni1—N4—C16 −124.5 (2) C5—C6—C7—C8 178.8 (3)
Cl1—Ni1—N4—C20 54.2 (2) C6—C7—C8—C9 −0.2 (5)
N2—Ni1—N4—C16 106.8 (2) C7—C8—C9—C10 1.3 (5)
N2—Ni1—N4—C20 −74.5 (2) C8—C9—C10—N2 −1.2 (5)
N3—Ni1—N4—C16 −1.1 (2) N3—C11—C12—C13 0.0 (5)
N3—Ni1—N4—C20 177.6 (3) C11—C12—C13—C14 0.4 (5)
Ni1—N1—C1—C2 −179.7 (3) C12—C13—C14—C15 0.2 (5)
C5—N1—C1—C2 −1.3 (5) C13—C14—C15—N3 −1.2 (5)
Ni1—N1—C5—C4 179.6 (2) C13—C14—C15—C16 −179.9 (3)
Ni1—N1—C5—C6 0.0 (3) N3—C15—C16—N4 1.0 (3)
C1—N1—C5—C4 1.0 (4) N3—C15—C16—C17 −177.7 (3)
C1—N1—C5—C6 −178.5 (3) C14—C15—C16—N4 179.8 (3)
Ni1—N2—C6—C5 1.4 (3) C14—C15—C16—C17 1.1 (4)
Ni1—N2—C6—C7 −178.7 (2) N4—C16—C17—C18 −0.6 (4)
C10—N2—C6—C5 −178.7 (2) C15—C16—C17—C18 178.0 (3)
C10—N2—C6—C7 1.2 (4) C16—C17—C18—C19 0.5 (5)
Ni1—N2—C10—C9 179.9 (2) C17—C18—C19—C20 −0.1 (5)
C6—N2—C10—C9 0.0 (4) C18—C19—C20—N4 −0.2 (5)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1W—H1W···O3Wi 0.81 2.29 2.876 (6) 129
O1W—H2W···O2ii 0.83 2.18 2.934 (7) 151
O2W—H3W···O2ii 0.84 1.90 2.723 (7) 166
O2W—H4W···Cl1i 0.83 2.47 3.245 (4) 155
O3W—H5W···O2Wiii 0.85 1.88 2.699 (6) 161
O3W—H6W···O1iv 0.83 2.03 2.839 (7) 165
C14—H14···O2W 0.93 2.56 3.424 (5) 155
C18—H18···O1W 0.93 2.39 3.257 (6) 156

Symmetry codes: (i) −x, −y, −z; (ii) x, y, z−1; (iii) −x+1, −y, −z; (iv) −x+1/2, y−1/2, −z+1/2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB7220).

References

  1. Bruker (2006). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Dowty, E. (1995). ATOMS Shape Software, Kingsport, Tennessee, USA.
  3. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  4. Gao, Z. & Li, F. (2009). Acta Cryst. E65, m1664. [DOI] [PMC free article] [PubMed]
  5. Harrison, W. D., Kennedy, D. M., Power, M., Sheahan, R. & Hathaway, B. J. (1981). J. Chem. Soc. Dalton Trans. pp. 1556–1564.
  6. Liu, H., Liu, C. & Zhong, B. (2004). Chem. J. Internet. 6, 44.
  7. Martens, C. F., Schenning, A. P. H. J., Feiters, M. C., Beurskens, G., Smits, J. M. M., Beurskens, P. T., Smeets, W. J. J., Spek, A. L. & Nolte, R. J. M. (1996). Supramol. Chem. 8, 31–44.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536814009064/hb7220sup1.cif

e-70-0m190-sup1.cif (33KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814009064/hb7220Isup2.hkl

e-70-0m190-Isup2.hkl (283.9KB, hkl)

CCDC reference: 998760

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES