Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Apr 2;70(Pt 5):o506. doi: 10.1107/S1600536814006643

(±)-4,12,15,18,26-Penta­hydroxy-13,17-dioxahepta­cyclo­[14.10.0.03,14.04,12.06,11.018,26.019,24]hexa­cosa-1,3(14),6(11),7,9,15,19,21,23-nona­ene-5,25-dione methanol disolvate

Maayan Gil a, Joseph Almog a,*, Faina Dubnikova a, Benny Bogoslavski a, Shmuel Cohen a
PMCID: PMC4011206  PMID: 24860323

Abstract

The title compound, C24H14O9·2CH3OH, displays a chair-shaped form. The two di­hydro­indenone ring systems are located above and below the central fused-ring system, the dihedral angles between the mean planes of di­hydro­indenone ring systems and the mean plane of central fused-ring system are 67.91 (5) and 73.52 (4)°, respectively. In the crystal, extensive O—H⋯O hydrogen bonds, weak C—H⋯O hydrogen bonds and C—H⋯π inter­actions link the mol­ecules into a three-dimensional supra­molecular architecture.

Related literature  

For an isomer of the title compound possessing a cup-shaped form, see: Mahmood et al. (2011). For a related structure, see: Almog et al. (2009).graphic file with name e-70-0o506-scheme1.jpg

Experimental  

Crystal data  

  • C24H14O9·2CH4O

  • M r = 510.44

  • Triclinic, Inline graphic

  • a = 8.8243 (13) Å

  • b = 10.3974 (16) Å

  • c = 14.348 (2) Å

  • α = 72.936 (3)°

  • β = 74.639 (2)°

  • γ = 75.792 (3)°

  • V = 1193.3 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 295 K

  • 0.20 × 0.13 × 0.08 mm

Data collection  

  • Bruker SMART CCD area-detector diffractometer

  • 13982 measured reflections

  • 5549 independent reflections

  • 3395 reflections with I > 2σ(I)

  • R int = 0.050

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.067

  • wR(F 2) = 0.153

  • S = 1.01

  • 5549 reflections

  • 345 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.33 e Å−3

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536814006643/xu5780sup1.cif

e-70-0o506-sup1.cif (28.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814006643/xu5780Isup2.hkl

e-70-0o506-Isup2.hkl (271.7KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814006643/xu5780Isup3.cml

CCDC reference: 993652

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C1–C6 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯O8i 0.82 1.92 2.702 (2) 160
O3—H3O⋯O5ii 0.82 1.91 2.725 (2) 171
O5—H5O⋯O10 0.82 1.80 2.610 (3) 171
O7—H7O⋯O1iii 0.82 2.14 2.916 (2) 158
O9—H9O⋯O4iv 0.82 1.95 2.751 (2) 166
O10—H10O⋯O11iv 0.82 (1) 1.85 (2) 2.650 (4) 163 (5)
O11—H11O⋯O7 0.83 (1) 2.31 (3) 3.010 (3) 142 (4)
O11—H11O⋯O9 0.83 (1) 2.15 (3) 2.873 (3) 145 (4)
C18—H18⋯O6iii 0.93 2.56 3.370 (3) 146
C21—H21⋯O1v 0.93 2.57 3.231 (3) 129
C11—H11⋯Cg vi 0.93 2.63 3.501 (3) 156

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

Acknowledgments

This project was supported financially by a joint grant from The Israel Atomic Energy Commission and The Israel Council of Higher Education.

supplementary crystallographic information

1. Introduction

Kim's synthesis of a novel cavitand by a one pot reaction between phloroglucinol and ninhydrin has been extended creating a new class of bowl-shaped compounds, which we have named Vasarenes (Almog et al., 2009). An isomeric form of the vasarene above, possessing a cup-shaped form has been reported in the past (Mahmood et al., 2011). Under our synthetic conditions only a chair-shaped form could be obtained. Quantum chemical DFT calculations show a small energy difference (less than 0.5 kcal/mol) between these two isomers.

2. Results and discussion

The content of the unit cell is actually the basic feature which extended itself in 3D space. It includes the two RRRR/SSSS enanti­omers of I, and four methanol molecules. These two enanti­omers link each other by two O(9)—H···O(4) hydrogen bonds , forming a 18-member ring centered at (0.5, 0.5, 0.5). Two methanol molecules bind each other through O(10)—H···O(11) and stabilize the dimer by two extra hydrogen bonds : O(5)—H···O(10) and O(11)—H···O(9). The same applies at the opposite side of the dimer with the other two methanol molecules. A pair of O(3)—H···O(5) hydrogen bonds, centered at (0.5, 1.0, 0.5), extend the structure in the y-direction, while a pair of O(7)—H···O(1) hydrogen bonds centered at (0.5, 0.5, 1.0) extend - in the z-direction. And finally these yz layers link themselves in the x-direction by O(1)—H···O(8) hydrogen bonds, thus completing the 3D structure. Fig. 2 describes it well.

2.1. Synthesis and crystallization

A mixture of ninhydrin (2.00 g, 11.23 mmol) and pyrogallol (0.70 g, 5.5 mmol) in acetic acid (40 ml), was stirred at 80°C for 24h. During the reaction the mixture turned brown, and a white solid precipitated. After cooling to room temperature, the solid was filtered and washed with cold acetic acid and ether. Crystallization from methanol produced colorless crystals suitable for single crystal X-ray crystallography. Yield: 1.27g, 51%, m.p. 218°C.

2.2. Refinement

Hydroxyl H atoms of methanol molecules were located in a different Fourier map and refined in riding mode with distance constraint of O—H = 0.82 (1) Å, Uiso(H) = 1.2Ueq(O). Other H atoms were placed in calculated positions with O—H = 0.82, C—H = 0.93 (aromatic) and 0.96 Å (methyl), and refined in riding mode with Uiso(H) = 1.2Ueq(C) for aromatic H atoms and 1.5Ueq(C,O) for the methyl h and other hydroxyl H atoms.

Figures

Fig. 1.

Fig. 1.

ORTEP drawing of (I) dimethanolate with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. For the sake of clarity only hydroxyl H atoms are shown.

Fig. 2.

Fig. 2.

A view down nearly a axis showing the H-bonding framework of the structure.

Fig. 3.

Fig. 3.

Enhanced figure.

Crystal data

C24H14O9·2CH4O Z = 2
Mr = 510.44 F(000) = 532
Triclinic, P1 Dx = 1.421 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.8243 (13) Å Cell parameters from 3395 reflections
b = 10.3974 (16) Å θ = 2.1–28.0°
c = 14.348 (2) Å µ = 0.11 mm1
α = 72.936 (3)° T = 295 K
β = 74.639 (2)° Block, colorless
γ = 75.792 (3)° 0.20 × 0.13 × 0.08 mm
V = 1193.3 (3) Å3

Data collection

Bruker SMART CCD area-detector diffractometer 3395 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.050
Graphite monochromator θmax = 28.0°, θmin = 2.1°
Detector resolution: 8.36 pixels mm-1 h = −11→11
phi and ω scans k = −13→13
13982 measured reflections l = −18→18
5549 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153 H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0681P)2] where P = (Fo2 + 2Fc2)/3
5549 reflections (Δ/σ)max < 0.001
345 parameters Δρmax = 0.30 e Å3
2 restraints Δρmin = −0.33 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.6380 (3) 0.6944 (2) 0.75601 (17) 0.0271 (5)
C2 0.6617 (3) 0.7483 (2) 0.65384 (17) 0.0251 (5)
C3 0.5721 (3) 0.7275 (2) 0.59507 (16) 0.0242 (5)
C4 0.4448 (3) 0.6583 (2) 0.63721 (16) 0.0253 (5)
H4 0.3822 0.6465 0.5985 0.030*
C5 0.4155 (2) 0.6076 (2) 0.74000 (16) 0.0237 (5)
C6 0.5131 (3) 0.6235 (2) 0.79557 (16) 0.0259 (5)
C7 0.7762 (3) 0.8563 (2) 0.49645 (17) 0.0271 (5)
C8 0.9267 (3) 0.7759 (3) 0.44871 (18) 0.0313 (6)
C9 1.0816 (3) 0.7894 (3) 0.4420 (2) 0.0453 (7)
H9 1.1021 0.8543 0.4676 0.054*
C10 1.2044 (3) 0.7035 (3) 0.3962 (2) 0.0520 (8)
H10 1.3096 0.7102 0.3912 0.062*
C11 1.1739 (3) 0.6066 (3) 0.3571 (2) 0.0492 (8)
H11 1.2589 0.5511 0.3253 0.059*
C12 1.0206 (3) 0.5921 (3) 0.3650 (2) 0.0420 (7)
H12 1.0003 0.5264 0.3401 0.050*
C13 0.8956 (3) 0.6787 (2) 0.41145 (18) 0.0304 (6)
C14 0.7229 (3) 0.6854 (2) 0.42804 (16) 0.0278 (5)
C15 0.6364 (3) 0.7924 (2) 0.48880 (16) 0.0251 (5)
C16 0.3270 (3) 0.5121 (3) 0.91425 (17) 0.0277 (5)
C17 0.1959 (3) 0.6094 (3) 0.96265 (17) 0.0289 (6)
C18 0.1819 (3) 0.6424 (3) 1.05147 (19) 0.0417 (7)
H18 0.2568 0.6003 1.0912 0.050*
C19 0.0530 (4) 0.7400 (3) 1.0794 (2) 0.0501 (8)
H19 0.0401 0.7623 1.1396 0.060*
C20 −0.0564 (3) 0.8047 (3) 1.0201 (2) 0.0512 (8)
H32 −0.1408 0.8712 1.0402 0.061*
C21 −0.0430 (3) 0.7726 (3) 0.9319 (2) 0.0425 (7)
H21 −0.1171 0.8163 0.8918 0.051*
C22 0.0840 (3) 0.6733 (3) 0.90383 (18) 0.0315 (6)
C23 0.1240 (3) 0.6198 (3) 0.81479 (17) 0.0287 (6)
C24 0.2903 (3) 0.5289 (2) 0.80993 (16) 0.0258 (5)
C25 0.7395 (5) 1.0380 (4) 0.2088 (3) 0.0889 (13)
H25A 0.7409 1.0880 0.2551 0.133*
H25B 0.6977 1.0999 0.1534 0.133*
H25C 0.8462 0.9938 0.1854 0.133*
C26 0.6111 (6) 0.1071 (5) 0.8833 (4) 0.1277 (19)
H26A 0.6181 0.1204 0.9453 0.192*
H26B 0.6683 0.1680 0.8290 0.192*
H26C 0.6568 0.0142 0.8803 0.192*
O1 0.72441 (18) 0.7100 (2) 0.81690 (12) 0.0381 (5)
H1O 0.8184 0.7067 0.7882 0.057*
O2 0.77457 (18) 0.82605 (17) 0.60350 (12) 0.0322 (4)
O3 0.76792 (19) 0.99359 (17) 0.45672 (13) 0.0354 (4)
H3O 0.6807 1.0345 0.4802 0.053*
O4 0.6535 (2) 0.62199 (19) 0.39918 (13) 0.0409 (5)
O5 0.51468 (19) 0.88543 (17) 0.44504 (12) 0.0332 (4)
H5O 0.5481 0.9108 0.3848 0.050*
O6 0.47605 (18) 0.56300 (18) 0.89531 (11) 0.0317 (4)
O7 0.3494 (2) 0.37741 (17) 0.96603 (12) 0.0387 (5)
H7O 0.3369 0.3731 1.0255 0.058*
O8 0.0433 (2) 0.6403 (2) 0.75343 (13) 0.0455 (5)
O9 0.2920 (2) 0.40219 (17) 0.79333 (12) 0.0381 (5)
H9O 0.3109 0.4088 0.7332 0.057*
O10 0.6448 (4) 0.9415 (3) 0.25526 (18) 0.1024 (11)
H10O 0.604 (5) 0.909 (4) 0.224 (3) 0.123*
O11 0.4543 (4) 0.1337 (3) 0.8764 (2) 0.0857 (8)
H11O 0.420 (5) 0.2163 (14) 0.873 (3) 0.103*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0177 (12) 0.0415 (15) 0.0265 (13) −0.0033 (10) −0.0055 (10) −0.0161 (11)
C2 0.0164 (11) 0.0343 (14) 0.0257 (13) −0.0045 (10) −0.0013 (9) −0.0121 (11)
C3 0.0193 (11) 0.0301 (13) 0.0236 (12) −0.0020 (10) −0.0040 (9) −0.0094 (10)
C4 0.0207 (12) 0.0355 (14) 0.0236 (12) −0.0055 (10) −0.0068 (10) −0.0109 (10)
C5 0.0160 (11) 0.0313 (13) 0.0249 (12) −0.0036 (10) −0.0035 (9) −0.0098 (10)
C6 0.0189 (12) 0.0376 (14) 0.0189 (12) −0.0010 (10) −0.0012 (9) −0.0096 (10)
C7 0.0257 (13) 0.0330 (14) 0.0245 (13) −0.0107 (10) −0.0005 (10) −0.0097 (11)
C8 0.0279 (13) 0.0345 (14) 0.0280 (13) −0.0067 (11) 0.0000 (10) −0.0065 (11)
C9 0.0314 (15) 0.0555 (19) 0.0541 (18) −0.0093 (13) −0.0039 (13) −0.0244 (15)
C10 0.0236 (14) 0.067 (2) 0.063 (2) −0.0049 (14) 0.0007 (14) −0.0242 (17)
C11 0.0341 (16) 0.0509 (19) 0.0534 (19) 0.0045 (14) 0.0028 (14) −0.0195 (15)
C12 0.0406 (17) 0.0414 (16) 0.0436 (16) −0.0045 (13) −0.0008 (13) −0.0193 (13)
C13 0.0289 (14) 0.0326 (14) 0.0276 (13) −0.0054 (11) −0.0021 (10) −0.0080 (11)
C14 0.0338 (14) 0.0323 (14) 0.0171 (12) −0.0117 (11) 0.0002 (10) −0.0058 (10)
C15 0.0227 (12) 0.0317 (13) 0.0222 (12) −0.0052 (10) −0.0047 (10) −0.0085 (10)
C16 0.0219 (12) 0.0394 (15) 0.0239 (12) −0.0086 (10) −0.0047 (10) −0.0083 (11)
C17 0.0240 (13) 0.0385 (14) 0.0253 (13) −0.0118 (11) 0.0016 (10) −0.0106 (11)
C18 0.0420 (16) 0.0548 (18) 0.0312 (15) −0.0054 (14) −0.0071 (12) −0.0182 (13)
C19 0.0463 (18) 0.071 (2) 0.0414 (17) −0.0076 (16) −0.0050 (14) −0.0331 (16)
C20 0.0318 (16) 0.066 (2) 0.061 (2) 0.0022 (14) −0.0057 (14) −0.0372 (17)
C21 0.0236 (14) 0.0600 (19) 0.0489 (17) −0.0031 (13) −0.0084 (12) −0.0240 (15)
C22 0.0191 (12) 0.0465 (16) 0.0329 (14) −0.0104 (11) −0.0008 (10) −0.0160 (12)
C23 0.0168 (12) 0.0465 (16) 0.0245 (13) −0.0134 (11) −0.0022 (10) −0.0069 (11)
C24 0.0243 (12) 0.0344 (14) 0.0209 (12) −0.0078 (10) −0.0024 (10) −0.0100 (10)
C25 0.134 (4) 0.069 (3) 0.058 (2) −0.043 (3) 0.014 (2) −0.017 (2)
C26 0.081 (4) 0.129 (4) 0.168 (5) −0.004 (3) −0.036 (4) −0.031 (4)
O1 0.0209 (9) 0.0731 (13) 0.0273 (9) −0.0157 (9) −0.0045 (7) −0.0174 (9)
O2 0.0262 (9) 0.0483 (11) 0.0274 (9) −0.0165 (8) −0.0019 (7) −0.0124 (8)
O3 0.0291 (10) 0.0322 (10) 0.0437 (11) −0.0098 (8) −0.0002 (8) −0.0107 (8)
O4 0.0412 (11) 0.0536 (12) 0.0368 (10) −0.0186 (9) 0.0001 (8) −0.0237 (9)
O5 0.0283 (9) 0.0418 (10) 0.0269 (9) −0.0046 (8) −0.0067 (7) −0.0053 (8)
O6 0.0216 (9) 0.0537 (11) 0.0208 (9) −0.0113 (8) −0.0050 (7) −0.0064 (8)
O7 0.0511 (12) 0.0408 (11) 0.0235 (9) −0.0113 (9) −0.0083 (8) −0.0041 (8)
O8 0.0255 (10) 0.0782 (15) 0.0389 (11) −0.0064 (9) −0.0104 (8) −0.0225 (10)
O9 0.0518 (12) 0.0409 (11) 0.0273 (9) −0.0193 (9) −0.0059 (8) −0.0099 (8)
O10 0.159 (3) 0.127 (2) 0.0380 (14) −0.096 (2) −0.0015 (16) −0.0037 (15)
O11 0.083 (2) 0.0627 (17) 0.119 (2) 0.0077 (15) −0.0398 (17) −0.0354 (17)

Geometric parameters (Å, º)

C1—O1 1.367 (3) C16—C17 1.502 (3)
C1—C6 1.379 (3) C16—C24 1.566 (3)
C1—C2 1.386 (3) C17—C18 1.382 (3)
C2—O2 1.356 (3) C17—C22 1.386 (3)
C2—C3 1.388 (3) C18—C19 1.384 (4)
C3—C4 1.388 (3) C18—H18 0.9300
C3—C15 1.492 (3) C19—C20 1.375 (4)
C4—C5 1.389 (3) C19—H19 0.9300
C4—H4 0.9300 C20—C21 1.371 (4)
C5—C6 1.384 (3) C20—H32 0.9300
C5—C24 1.507 (3) C21—C22 1.385 (3)
C6—O6 1.369 (3) C21—H21 0.9300
C7—O3 1.364 (3) C22—C23 1.466 (3)
C7—O2 1.472 (3) C23—O8 1.215 (3)
C7—C8 1.497 (3) C23—C24 1.534 (3)
C7—C15 1.579 (3) C24—O9 1.402 (3)
C8—C13 1.383 (3) C25—O10 1.369 (4)
C8—C9 1.384 (3) C25—H25A 0.9600
C9—C10 1.377 (4) C25—H25B 0.9600
C9—H9 0.9300 C25—H25C 0.9600
C10—C11 1.395 (4) C26—O11 1.367 (5)
C10—H10 0.9300 C26—H26A 0.9600
C11—C12 1.369 (4) C26—H26B 0.9600
C11—H11 0.9300 C26—H26C 0.9600
C12—C13 1.395 (3) O1—H1O 0.8200
C12—H12 0.9300 O3—H3O 0.8200
C13—C14 1.467 (3) O5—H5O 0.8200
C14—O4 1.214 (3) O7—H7O 0.8194
C14—C15 1.543 (3) O9—H9O 0.8194
C15—O5 1.405 (3) O10—H10O 0.820 (10)
C16—O7 1.373 (3) O11—H11O 0.828 (10)
C16—O6 1.467 (3)
O1—C1—C6 120.2 (2) C17—C16—C24 105.47 (18)
O1—C1—C2 125.2 (2) C18—C17—C22 120.5 (2)
C6—C1—C2 114.6 (2) C18—C17—C16 128.1 (2)
O2—C2—C1 122.4 (2) C22—C17—C16 111.3 (2)
O2—C2—C3 114.8 (2) C17—C18—C19 118.0 (3)
C1—C2—C3 122.9 (2) C17—C18—H18 121.0
C4—C3—C2 121.2 (2) C19—C18—H18 121.0
C4—C3—C15 130.4 (2) C20—C19—C18 121.4 (3)
C2—C3—C15 108.38 (19) C20—C19—H19 119.3
C3—C4—C5 116.7 (2) C18—C19—H19 119.3
C3—C4—H4 121.6 C21—C20—C19 120.9 (3)
C5—C4—H4 121.6 C21—C20—H32 119.5
C6—C5—C4 120.4 (2) C19—C20—H32 119.5
C6—C5—C24 108.21 (19) C20—C21—C22 118.3 (3)
C4—C5—C24 131.3 (2) C20—C21—H21 120.9
O6—C6—C1 121.4 (2) C22—C21—H21 120.9
O6—C6—C5 114.6 (2) C21—C22—C17 121.0 (2)
C1—C6—C5 124.0 (2) C21—C22—C23 129.0 (2)
O3—C7—O2 109.01 (18) C17—C22—C23 110.0 (2)
O3—C7—C8 111.65 (19) O8—C23—C22 127.9 (2)
O2—C7—C8 107.93 (19) O8—C23—C24 123.6 (2)
O3—C7—C15 116.6 (2) C22—C23—C24 108.51 (19)
O2—C7—C15 105.89 (17) O9—C24—C5 115.82 (18)
C8—C7—C15 105.35 (19) O9—C24—C23 112.00 (18)
C13—C8—C9 121.3 (2) C5—C24—C23 110.43 (19)
C13—C8—C7 111.8 (2) O9—C24—C16 111.61 (19)
C9—C8—C7 126.9 (2) C5—C24—C16 102.36 (17)
C10—C9—C8 117.9 (3) C23—C24—C16 103.53 (17)
C10—C9—H9 121.1 O10—C25—H25A 109.5
C8—C9—H9 121.1 O10—C25—H25B 109.5
C9—C10—C11 121.2 (3) H25A—C25—H25B 109.5
C9—C10—H10 119.4 O10—C25—H25C 109.5
C11—C10—H10 119.4 H25A—C25—H25C 109.5
C12—C11—C10 120.9 (3) H25B—C25—H25C 109.5
C12—C11—H11 119.6 O11—C26—H26A 109.5
C10—C11—H11 119.6 O11—C26—H26B 109.5
C11—C12—C13 118.2 (3) H26A—C26—H26B 109.5
C11—C12—H12 120.9 O11—C26—H26C 109.5
C13—C12—H12 120.9 H26A—C26—H26C 109.5
C8—C13—C12 120.6 (2) H26B—C26—H26C 109.5
C8—C13—C14 110.5 (2) C1—O1—H1O 109.5
C12—C13—C14 128.9 (2) C2—O2—C7 108.05 (16)
O4—C14—C13 128.1 (2) C7—O3—H3O 109.5
O4—C14—C15 123.4 (2) C15—O5—H5O 109.5
C13—C14—C15 108.41 (19) C6—O6—C16 107.45 (16)
O5—C15—C3 110.68 (19) C16—O7—H11O 116.6 (9)
O5—C15—C14 111.54 (18) C16—O7—H7O 109.4
C3—C15—C14 112.18 (19) H11O—O7—H7O 134.0
O5—C15—C7 115.65 (19) C24—O9—H11O 120.8 (10)
C3—C15—C7 102.74 (18) C24—O9—H9O 109.2
C14—C15—C7 103.64 (18) H11O—O9—H9O 112.8
O7—C16—O6 108.50 (18) C25—O10—H5O 124.0
O7—C16—C17 117.07 (19) C25—O10—H10O 123 (3)
O6—C16—C17 107.07 (19) H5O—O10—H10O 111.0
O7—C16—C24 111.54 (19) C26—O11—H11O 108 (3)
O6—C16—C24 106.64 (17)

Hydrogen-bond geometry (Å, º)

Cg is the centroid of the C1–C6 benzene ring.

D—H···A D—H H···A D···A D—H···A
O1—H1O···O8i 0.82 1.92 2.702 (2) 160
O3—H3O···O5ii 0.82 1.91 2.725 (2) 171
O5—H5O···O10 0.82 1.80 2.610 (3) 171
O7—H7O···O1iii 0.82 2.14 2.916 (2) 158
O9—H9O···O4iv 0.82 1.95 2.751 (2) 166
O10—H10O···O11iv 0.82 (1) 1.85 (2) 2.650 (4) 163 (5)
O11—H11O···O7 0.83 (1) 2.31 (3) 3.010 (3) 142 (4)
O11—H11O···O9 0.83 (1) 2.15 (3) 2.873 (3) 145 (4)
C18—H18···O6iii 0.93 2.56 3.370 (3) 146
C21—H21···O1v 0.93 2.57 3.231 (3) 129
C11—H11···Cgvi 0.93 2.63 3.501 (3) 156

Symmetry codes: (i) x+1, y, z; (ii) −x+1, −y+2, −z+1; (iii) −x+1, −y+1, −z+2; (iv) −x+1, −y+1, −z+1; (v) x−1, y, z; (vi) −x+2, −y+1, −z+1.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: XU5780).

References

  1. Almog, J., Rozin, R., Klein, A., Shamoilov-Levinton, G. & Cohen, S. (2009). Tetrahedron, 65, 7954–7962.
  2. Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  4. Mahmood, K., Yaqub, M., Tahir, M. N., Shafiq, Z. & Qureshi, A. M. (2011). Acta Cryst. E67, o910–o911. [DOI] [PMC free article] [PubMed]
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536814006643/xu5780sup1.cif

e-70-0o506-sup1.cif (28.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814006643/xu5780Isup2.hkl

e-70-0o506-Isup2.hkl (271.7KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814006643/xu5780Isup3.cml

CCDC reference: 993652

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES