Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Apr 26;70(Pt 5):o600–o601. doi: 10.1107/S1600536814008587

2-Amino-6-methyl­pyridinium 4-methyl­benzene­sulfonate

K Syed Suresh Babu a,b, M Dhavamurthy a, M NizamMohideen b,*, G Peramaiyan a, R Mohan a,*
PMCID: PMC4011207  PMID: 24860395

Abstract

In the asymmetric unit of the title salt, C6H9N2 +·C7H7O3S, there are two independent 2-amino-6-methyl­pyridinium cations and two independent 4-methyl­benzene­sulfonate anions. Both cations are protonated at their pyridine N atoms and their geometries reveal amine–imine tautomerism. In the 4-methyl­benzene­sulfonate anions, the carboxyl­ate groups are twisted out of the benzene ring planes by 88.4 (1) and 86.2 (2)°. In the crystal, the sulfonate O atoms of an anion inter­act with the protonated N atoms and the 2-amino groups of a cation via a pair of N—H⋯O hydrogen bonds, forming an R 2 2(8) ring motif. These motifs are connected via N—H⋯O hydrogen bonds, forming chains running along the a-axis direction. Within the chains there are weak C—H⋯O hydrogen bonds present. In addition, aromatic π–π stacking inter­actions [centroid–centroid distances = 3.771 (2), 3.599 (2), 3.599 (2) and 3.497 (2) Å] involving neighbouring chains are also observed.

Related literature  

For crystal structures of related pyridine derivatives and their applications, see: Babu et al. (2014); Rajkumar et al. (2014); Jin et al. (2005). For unprotonated amino­pyridine derivatives, see: Anderson et al. (2005). For the structure of amino-methyl­pyridinium, see: Nahringbauer & Kvick (1977). For details of sulfonates, see: Onoda et al. (2001); Baskar Raj et al. (2003). For applications of benzene­sulfonic acid, see: Wang & Wei (2007). For simple organic–inorganic salts containing strong inter­molecular hydrogen bonds, see: Sethuram et al. (2013a ,b ); Shihabuddeen Syed et al. (2013); Showrilu et al. (2013); Huq et al. (2013). For bond-length data, see: Allen et al. (1987). For studies on the tautomeric forms of 2-amino­pyridine systems, see: Ishikawa et al. (2002). For graph-set analysis, see: Etter (1990); Bernstein et al. (1995).graphic file with name e-70-0o600-scheme1.jpg

Experimental  

Crystal data  

  • C6H9N2 +·C7H7O3S

  • M r = 280.35

  • Triclinic, Inline graphic

  • a = 7.5343 (2) Å

  • b = 13.6212 (5) Å

  • c = 13.9887 (5) Å

  • α = 106.307 (2)°

  • β = 97.946 (1)°

  • γ = 92.103 (2)°

  • V = 1360.31 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 293 K

  • 0.35 × 0.25 × 0.20 mm

Data collection  

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004) T min = 0.920, T max = 0.953

  • 32534 measured reflections

  • 6237 independent reflections

  • 4709 reflections with I > 2σ(I)

  • R int = 0.026

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.119

  • S = 1.06

  • 6237 reflections

  • 372 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.37 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536814008587/su2726sup1.cif

e-70-0o600-sup1.cif (33.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814008587/su2726Isup2.hkl

e-70-0o600-Isup2.hkl (299.1KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814008587/su2726Isup3.cml

CCDC reference: 997539

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2 0.90 (1) 1.88 (1) 2.772 (2) 171 (2)
N2—H2A⋯O3i 0.87 (1) 2.01 (1) 2.880 (2) 174 (2)
N2—H2B⋯O1 0.88 (1) 2.07 (1) 2.919 (2) 162 (2)
N3—H3A⋯O5 0.89 (1) 1.90 (1) 2.789 (2) 174 (2)
N4—H4A⋯O4ii 0.88 (1) 2.02 (1) 2.882 (2) 167 (2)
N4—H4B⋯O6 0.88 (1) 2.04 (1) 2.883 (2) 162 (2)
C22—H22⋯O5ii 0.93 2.58 3.455 (2) 157

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors are thankful to the SAIF, IIT Madras, for the data collection.

supplementary crystallographic information

1. Introduction

2-Amino­pyridine and its derivatives play an important role in heterocyclic chemistry. Pyridine heterocycles and their derivatives are present in many large molecules having photo-chemical, electro-chemical and catalytic applications (Babu et al., 2014). Simple organic-inorganic salts containing strong inter­molecular hydrogen bonds have attracted an attention as materials which display ferroelectric-paraelectric phase transitions (Sethuram, et al., 2013a,b; Huq et al., 2013; Shihabuddeen Syed et al., 2013; Showrilu et al., 2013). Hydrogen-bonding patterns involving sulfonate groups in biological systems and metal complexes are of current inter­est (Onoda et al., 2001). Such inter­actions can be utilized for designing supra­molecular architectures (Baskar Raj et al., 2003). Benzene­sulfonic acid, is a particularly strong organic acid which is capable of protonating N-containing heterocycles and other Lewis bases (Wang & Wei, 2007). We have recently reported the crystal structures of 2-amino-6-methyl­pyridinium 2,2,2-tri­chloro­acetate (Babu et al., 2014) and 2-Amino-5-nitro­pyridinium hydrogen oxalate (Rajkumar et al., 2014). In continuation of our studies of pyridinium derivatives, the crystal structure determination of the title compound has been undertaken.

2. Comment / Result and Discussion

The asymmetric unit of title salt, Fig. 1, consists of two crystallographically independent protonated 2-amino-6-methyl­pyridinium cation and two crystallographically independent 4-methyl benzene­sulfonate anions. The normal probability plot analyses (Inter­national Tables for X-ray Crystallography, 1974, Vol. IV, pp. 293–309) for both bond lengths and angles show that the differences between the two symmetry independent molecules are of a statistical nature. All bond lengths (Allen et al., 1987) and angles are within normal ranges and comparable with those in closely related structures (Babu et al., 2014; Rajkumar et al., 2014). A proton transfer from the carboxyl group of p-toluene­sulfonic acid to atom N1 and N3 of 2-amino-6-methyl pyridine resulted in the formation of a salt. This protonation lead to the widening of the C8—N1—C12 and C21—N3—C25 angles of the pyridine rings to 124.0 (2) ° and 123.8 (2) °, compared to 115.3 (2) ° in the unprotonated amino­pyridine (Anderson et al., 2005). This type of protonation is observed in various amino­pyridine acid complexes (Babu et al., 2014; Rajkumar et al., 2014).

In the cation, the N2—C8 [1.325 (2) Å] N4—C21 bonds [1.325 (2) Å] is shorter than the N1—C8 [1.347 (2) Å], N1—C12 [1.360 (2) Å], N3—C21[1.352 (2) Å] and N3—C25[1.362 (2) Å] bonds, and the C8—C9 [1.406 (3) Å], C10—C11 [1.398 (3) Å], C21—C22 [1.405 (3) Å] and C23—C24 [1.401 (3) Å] bonds are significantly longer than C9—C10 [1.357 (3) Å], C11—C12 [1.356 (3) Å]. C22—C23 [1.357 (3) Å] and C24—C25 [1.353 (3) Å] bonds, are similar to those in the amino-methyl­prydinium cation (Babu et al., 2014; Rajkumar et al., 2014). In contrast, in the solid state structure of amino-methyl­pyridinium, the N—C bond out of ring is clearly longer than that in the ring (Nahringbauer et al., 1977). The geometrical features of the amino-methyl­pyridinium cation (N1/N2/C1/C6 and N3/N4/C9—C13) resemble those observed in other 2-amino­pyridinium structures (Babu et al., 2014; Rajkumar et al., 2014) that are believed to be involved in amine-imine tautomerism (Ishikawa et al., 2002). Similar features are also provided by cation amino-methyl­pyridinium (N3/N4/C7/C12). However, previous study show that a pyridinium cation always possesses an expanded angle of C—N—C in comparison with the parent pyridine (Jin et al., 2005).

The examination of pyridinium rings shows that these units are planar with mean deviation of -0.006 (2) and 0.005 (2) Å for atoms C8 and C21, from the mean planes defined by the six constituent atoms. The dihedral angle between the 2-amino-6-methyl­pyridinium cation and 4-methyl­benzene­sulfonate anion group is 88.4 (2) and 86.2 (2)° for the both molecules, respectively. In both the molecules, the protonated 2-amino-6-methyl­pyridinium cation is essentially planar, with maximum deviations of -0.012 (2) for atom C13 and -0.006 (2) Å for atom C25.

3. Hydrogen bonding inter­action / Inter­molecular N—H···O and C—H···O inter­action

In the crystal (Fig. 2), the protonated atoms (N1 and N3) and a nitro­gen atom of the 2-amino groups (N2 and N4) of the 2-amino-6-methyl­pyridinium cations are hydrogen bonded to the carboxyl­ate oxygen atoms (O1, O2, O3 and O4) of the sulfonate groups of the p-toluene­sulfonate anions via a pair of inter­molecular N—H···O hydrogen bonds (Table 1), forming a ring motif with a graph-set notation of R22(8) [Etter, 1990; Bernstein et al., 1995]. The sulfonate group mimics the carboxyl­ate anion's mode of association, which is more commonly seen when binding with 2-amino­pyrimidines. It is well known that sulfonates imitate carboxyl­ates in forming such bidentate motifs (Baskar Raj et al., 2003).

Furthermore, these motifs are connected via N—H···O hydrogen bonds (Fig. 2 and Table 1), involving the 2-amino group of the 2-amino-6-methyl pyridinium cation and atoms O3 and O4 of an anion, to form a supra­molecular chains along the a axis direction. Weak C—H···O hydrogen bonds, involving a pyridine group of the cation and an O atom of a sulfonate anion, within the chains are also observed (Fig. 2 and Table 1).

4. Aromatic inter­action

In addition, the cations of neighbouring chains are linked through aromatic π-π inter­actions with centroid distances Cg1···Cg1iii = 3.771 (2), Cg1···Cg2iv = 3.599 (2), Cg2···Cg1v = 3.599 (2) and Cg2···Cg2vi = 3.497 (2) Å [symmetry codes are as in Table 1 and (iii) = -x+1,-y+1,-z+2; (iv) = x, y, z+ (v) = x, y, z+1; (vi) = -x+1, -y, -z; Cg1 and Cg2 are the centroids of the N1/C8—C12 and N3/C21—C25 rings, respectively].

5. Uses

The identification of such supra­molecular patterns will help us design and construct preferred hydrogen bonding patterns of drug like molecules.

6. Synthesis and crystallization

Crystals of the title compound were obtained by slow evaporation of a 1:1 equimolar mixture of 2-amino-6-methyl­pyridine and benzene­sulfonic acid in methanol at room temperature.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. N-bound H atoms were located in a difference Fourier map and refined with distance restraints: N—H = 0.88 (1) and 0.90 (1) Å for NH2 and NH H atoms, respectively. The C-bound H atoms were positioned geometrically and refined using a riding model: C—H = 0.93–0.96 Å with Uiso(H) = 1.5Ueq(C-methyl) and = 1.2Ueq(C) for other H atoms. A rotating group model was used for the methyl group.

Figures

Fig. 1.

Fig. 1.

A view of the molecular structure of the two independent benezesulfonate anions and the two independent 2-amino-6-methylpyridinium cations of the title salt. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, viewed along the b axis. The N—H···O and C—H···O hydrogen bonds are shown as dashed lines (see Table 1 for details; H atoms not involved in hydrogen bonding have been omitted for clarity).

Crystal data

C6H9N2+·C7H7O3S Z = 4
Mr = 280.35 F(000) = 592
Triclinic, P1 Dx = 1.369 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.5343 (2) Å Cell parameters from 6237 reflections
b = 13.6212 (5) Å θ = 2.0–28.1°
c = 13.9887 (5) Å µ = 0.24 mm1
α = 106.307 (2)° T = 293 K
β = 97.946 (1)° Block, colourless
γ = 92.103 (2)° 0.35 × 0.25 × 0.20 mm
V = 1360.31 (8) Å3

Data collection

Bruker Kappa APEXII CCD diffractometer 6237 independent reflections
Radiation source: fine-focus sealed tube 4709 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.026
ω and φ scans θmax = 27.5°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) h = −9→9
Tmin = 0.920, Tmax = 0.953 k = −17→17
32534 measured reflections l = −18→18

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.0502P)2 + 0.655P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max = 0.001
6237 reflections Δρmax = 0.33 e Å3
372 parameters Δρmin = −0.37 e Å3
6 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0067 (10)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.7573 (2) 0.33148 (14) 0.65370 (12) 0.0340 (4)
C2 0.6441 (3) 0.28156 (17) 0.56563 (15) 0.0510 (5)
H2 0.5822 0.2192 0.5594 0.061*
C3 0.6232 (3) 0.32433 (19) 0.48708 (16) 0.0568 (6)
H3 0.5472 0.2897 0.4279 0.068*
C4 0.7111 (3) 0.41650 (17) 0.49332 (15) 0.0450 (5)
C5 0.8219 (3) 0.46630 (18) 0.58213 (16) 0.0525 (5)
H5 0.8818 0.5293 0.5886 0.063*
C6 0.8455 (3) 0.42432 (17) 0.66170 (15) 0.0498 (5)
H6 0.9213 0.4590 0.7209 0.060*
C7 0.6848 (3) 0.4621 (2) 0.40658 (18) 0.0658 (7)
H7A 0.7653 0.4341 0.3602 0.099*
H7B 0.7093 0.5352 0.4315 0.099*
H7C 0.5630 0.4461 0.3727 0.099*
O1 0.63184 (18) 0.20570 (11) 0.73960 (10) 0.0473 (3)
O2 0.80180 (19) 0.36019 (11) 0.84663 (10) 0.0482 (3)
O3 0.95409 (17) 0.22525 (12) 0.74752 (10) 0.0487 (4)
S1 0.78890 (6) 0.27601 (4) 0.75373 (3) 0.03657 (13)
C14 0.1612 (2) 0.16545 (14) 0.35185 (12) 0.0335 (4)
C15 0.2427 (3) 0.07546 (17) 0.34413 (15) 0.0497 (5)
H15 0.2824 0.0416 0.2843 0.060*
C16 0.2656 (3) 0.03531 (17) 0.42480 (16) 0.0532 (5)
H16 0.3205 −0.0258 0.4186 0.064*
C17 0.2085 (3) 0.08433 (16) 0.51461 (14) 0.0427 (4)
C18 0.1255 (3) 0.17361 (18) 0.52060 (15) 0.0522 (5)
H18 0.0851 0.2074 0.5802 0.063*
C19 0.1007 (3) 0.21434 (16) 0.44031 (15) 0.0471 (5)
H19 0.0434 0.2746 0.4459 0.057*
C20 0.2366 (3) 0.0415 (2) 0.60338 (17) 0.0610 (6)
H20A 0.3489 0.0705 0.6450 0.092*
H20B 0.2384 −0.0317 0.5797 0.092*
H20C 0.1403 0.0584 0.6420 0.092*
O4 −0.01417 (17) 0.27792 (12) 0.25616 (11) 0.0496 (4)
O5 0.13593 (18) 0.13852 (11) 0.15948 (9) 0.0471 (3)
O6 0.30945 (17) 0.28838 (11) 0.27035 (10) 0.0453 (3)
S2 0.14592 (6) 0.22210 (4) 0.25238 (3) 0.03629 (13)
C21 0.5816 (2) 0.16145 (13) 0.08860 (13) 0.0327 (4)
C22 0.7160 (2) 0.14424 (14) 0.02675 (14) 0.0368 (4)
H22 0.8366 0.1588 0.0550 0.044*
C23 0.6682 (2) 0.10619 (15) −0.07461 (14) 0.0407 (4)
H23 0.7569 0.0954 −0.1157 0.049*
C24 0.4871 (2) 0.08288 (14) −0.11818 (14) 0.0392 (4)
H24 0.4556 0.0568 −0.1877 0.047*
C25 0.3584 (2) 0.09863 (13) −0.05818 (13) 0.0340 (4)
C26 0.1613 (2) 0.07772 (16) −0.09541 (15) 0.0452 (5)
H26A 0.1106 0.1403 −0.0996 0.068*
H26B 0.1047 0.0509 −0.0496 0.068*
H26C 0.1419 0.0285 −0.1609 0.068*
N3 0.40875 (19) 0.13737 (11) 0.04333 (11) 0.0325 (3)
N4 0.6161 (2) 0.19844 (15) 0.18808 (12) 0.0445 (4)
C8 0.3602 (2) 0.33977 (13) 0.91967 (13) 0.0334 (4)
C9 0.2264 (2) 0.35815 (15) 0.98204 (14) 0.0393 (4)
H9 0.1055 0.3440 0.9543 0.047*
C10 0.2761 (3) 0.39686 (16) 1.08322 (15) 0.0449 (5)
H10 0.1883 0.4085 1.1248 0.054*
C11 0.4573 (3) 0.41950 (16) 1.12590 (14) 0.0432 (4)
H11 0.4896 0.4463 1.1953 0.052*
C12 0.5854 (2) 0.40210 (13) 1.06520 (13) 0.0348 (4)
C13 0.7826 (3) 0.42082 (16) 1.10162 (15) 0.0460 (5)
H13A 0.8040 0.4713 1.1664 0.069*
H13B 0.8402 0.4453 1.0547 0.069*
H13C 0.8305 0.3580 1.1072 0.069*
N1 0.53289 (19) 0.36343 (11) 0.96397 (11) 0.0326 (3)
N2 0.3236 (2) 0.30260 (14) 0.82019 (13) 0.0449 (4)
H2A 0.2112 (15) 0.2825 (16) 0.7953 (15) 0.050 (6)*
H4B 0.531 (2) 0.2199 (16) 0.2235 (14) 0.050 (6)*
H4A 0.7276 (16) 0.2181 (17) 0.2166 (16) 0.058 (7)*
H2B 0.409 (2) 0.2798 (17) 0.7850 (15) 0.055 (7)*
H1A 0.619 (2) 0.3551 (17) 0.9244 (14) 0.051 (6)*
H3A 0.322 (2) 0.1430 (16) 0.0815 (13) 0.045 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0265 (8) 0.0429 (10) 0.0285 (8) 0.0011 (7) 0.0034 (6) 0.0043 (7)
C2 0.0497 (12) 0.0530 (12) 0.0423 (11) −0.0155 (9) −0.0094 (9) 0.0114 (10)
C3 0.0541 (13) 0.0694 (15) 0.0389 (11) −0.0148 (11) −0.0147 (9) 0.0157 (10)
C4 0.0383 (10) 0.0593 (12) 0.0387 (10) 0.0060 (9) 0.0052 (8) 0.0166 (9)
C5 0.0553 (13) 0.0522 (12) 0.0472 (12) −0.0124 (10) 0.0042 (10) 0.0140 (10)
C6 0.0486 (11) 0.0569 (13) 0.0341 (10) −0.0154 (10) −0.0048 (8) 0.0050 (9)
C7 0.0627 (15) 0.0858 (18) 0.0588 (15) 0.0065 (13) 0.0054 (11) 0.0386 (14)
O1 0.0392 (7) 0.0579 (9) 0.0471 (8) −0.0029 (6) 0.0109 (6) 0.0176 (7)
O2 0.0492 (8) 0.0618 (9) 0.0292 (7) 0.0042 (7) 0.0089 (6) 0.0047 (6)
O3 0.0341 (7) 0.0696 (10) 0.0431 (8) 0.0140 (6) 0.0050 (6) 0.0164 (7)
S1 0.0285 (2) 0.0514 (3) 0.0289 (2) 0.00414 (18) 0.00579 (16) 0.00929 (19)
C14 0.0279 (8) 0.0418 (10) 0.0281 (8) 0.0000 (7) 0.0043 (6) 0.0060 (7)
C15 0.0591 (13) 0.0552 (13) 0.0343 (10) 0.0181 (10) 0.0157 (9) 0.0065 (9)
C16 0.0624 (13) 0.0512 (12) 0.0461 (12) 0.0192 (10) 0.0076 (10) 0.0129 (10)
C17 0.0374 (10) 0.0538 (12) 0.0359 (10) −0.0053 (8) 0.0003 (8) 0.0151 (9)
C18 0.0590 (13) 0.0651 (14) 0.0342 (10) 0.0124 (11) 0.0193 (9) 0.0106 (10)
C19 0.0527 (12) 0.0499 (12) 0.0413 (11) 0.0156 (9) 0.0171 (9) 0.0111 (9)
C20 0.0603 (14) 0.0771 (17) 0.0494 (13) −0.0044 (12) −0.0013 (10) 0.0302 (12)
O4 0.0337 (7) 0.0652 (9) 0.0513 (8) 0.0065 (6) −0.0015 (6) 0.0226 (7)
O5 0.0446 (7) 0.0630 (9) 0.0281 (7) −0.0099 (6) 0.0044 (5) 0.0064 (6)
O6 0.0335 (7) 0.0574 (9) 0.0437 (7) −0.0099 (6) 0.0020 (6) 0.0163 (6)
S2 0.0269 (2) 0.0506 (3) 0.0298 (2) −0.00331 (18) 0.00094 (16) 0.01147 (19)
C21 0.0292 (8) 0.0340 (9) 0.0360 (9) 0.0009 (7) 0.0005 (7) 0.0140 (7)
C22 0.0264 (8) 0.0400 (10) 0.0446 (10) 0.0042 (7) 0.0037 (7) 0.0140 (8)
C23 0.0367 (9) 0.0460 (11) 0.0420 (10) 0.0081 (8) 0.0109 (8) 0.0144 (9)
C24 0.0405 (10) 0.0438 (10) 0.0328 (9) 0.0034 (8) 0.0024 (7) 0.0117 (8)
C25 0.0330 (9) 0.0334 (9) 0.0367 (9) −0.0004 (7) −0.0012 (7) 0.0154 (7)
C26 0.0346 (10) 0.0527 (12) 0.0464 (11) −0.0040 (8) −0.0051 (8) 0.0177 (9)
N3 0.0269 (7) 0.0378 (8) 0.0345 (8) 0.0008 (6) 0.0036 (6) 0.0140 (6)
N4 0.0319 (8) 0.0622 (11) 0.0351 (9) −0.0002 (8) 0.0003 (7) 0.0098 (8)
C8 0.0309 (8) 0.0348 (9) 0.0366 (9) 0.0069 (7) 0.0038 (7) 0.0139 (7)
C9 0.0303 (9) 0.0456 (11) 0.0445 (10) 0.0088 (7) 0.0074 (7) 0.0154 (8)
C10 0.0436 (10) 0.0532 (12) 0.0445 (11) 0.0133 (9) 0.0175 (9) 0.0185 (9)
C11 0.0497 (11) 0.0494 (11) 0.0316 (9) 0.0083 (9) 0.0052 (8) 0.0133 (8)
C12 0.0379 (9) 0.0333 (9) 0.0353 (9) 0.0038 (7) 0.0016 (7) 0.0149 (7)
C13 0.0397 (10) 0.0508 (12) 0.0457 (11) −0.0001 (9) −0.0040 (8) 0.0167 (9)
N1 0.0301 (7) 0.0365 (8) 0.0325 (8) 0.0055 (6) 0.0055 (6) 0.0116 (6)
N2 0.0328 (8) 0.0611 (11) 0.0365 (9) 0.0045 (8) 0.0028 (7) 0.0081 (8)

Geometric parameters (Å, º)

C1—C6 1.375 (3) O6—S2 1.4497 (13)
C1—C2 1.380 (2) C21—N4 1.325 (2)
C1—S1 1.7609 (18) C21—N3 1.352 (2)
C2—C3 1.375 (3) C21—C22 1.405 (3)
C2—H2 0.9300 C22—C23 1.357 (3)
C3—C4 1.372 (3) C22—H22 0.9300
C3—H3 0.9300 C23—C24 1.401 (3)
C4—C5 1.378 (3) C23—H23 0.9300
C4—C7 1.504 (3) C24—C25 1.353 (3)
C5—C6 1.381 (3) C24—H24 0.9300
C5—H5 0.9300 C25—N3 1.362 (2)
C6—H6 0.9300 C25—C26 1.493 (2)
C7—H7A 0.9600 C26—H26A 0.9600
C7—H7B 0.9600 C26—H26B 0.9600
C7—H7C 0.9600 C26—H26C 0.9600
O1—S1 1.4499 (14) N3—H3A 0.894 (9)
O2—S1 1.4605 (14) N4—H4B 0.876 (9)
O3—S1 1.4469 (13) N4—H4A 0.876 (10)
C14—C15 1.375 (3) C8—N2 1.325 (2)
C14—C19 1.378 (3) C8—N1 1.347 (2)
C14—S2 1.7636 (18) C8—C9 1.406 (3)
C15—C16 1.379 (3) C9—C10 1.357 (3)
C15—H15 0.9300 C9—H9 0.9300
C16—C17 1.382 (3) C10—C11 1.398 (3)
C16—H16 0.9300 C10—H10 0.9300
C17—C18 1.375 (3) C11—C12 1.356 (3)
C17—C20 1.507 (3) C11—H11 0.9300
C18—C19 1.380 (3) C12—N1 1.360 (2)
C18—H18 0.9300 C12—C13 1.491 (3)
C19—H19 0.9300 C13—H13A 0.9600
C20—H20A 0.9600 C13—H13B 0.9600
C20—H20B 0.9600 C13—H13C 0.9600
C20—H20C 0.9600 N1—H1A 0.900 (9)
O4—S2 1.4485 (14) N2—H2A 0.873 (10)
O5—S2 1.4582 (14) N2—H2B 0.877 (10)
C6—C1—C2 119.11 (18) O4—S2—C14 106.93 (8)
C6—C1—S1 120.76 (13) O6—S2—C14 106.19 (8)
C2—C1—S1 120.13 (15) O5—S2—C14 106.66 (8)
C3—C2—C1 119.76 (19) N4—C21—N3 118.92 (16)
C3—C2—H2 120.1 N4—C21—C22 123.44 (16)
C1—C2—H2 120.1 N3—C21—C22 117.63 (16)
C4—C3—C2 122.01 (18) C23—C22—C21 119.40 (16)
C4—C3—H3 119.0 C23—C22—H22 120.3
C2—C3—H3 119.0 C21—C22—H22 120.3
C3—C4—C5 117.70 (19) C22—C23—C24 120.92 (17)
C3—C4—C7 120.99 (19) C22—C23—H23 119.5
C5—C4—C7 121.3 (2) C24—C23—H23 119.5
C4—C5—C6 121.2 (2) C25—C24—C23 119.41 (17)
C4—C5—H5 119.4 C25—C24—H24 120.3
C6—C5—H5 119.4 C23—C24—H24 120.3
C1—C6—C5 120.25 (18) C24—C25—N3 118.87 (16)
C1—C6—H6 119.9 C24—C25—C26 124.50 (17)
C5—C6—H6 119.9 N3—C25—C26 116.63 (16)
C4—C7—H7A 109.5 C25—C26—H26A 109.5
C4—C7—H7B 109.5 C25—C26—H26B 109.5
H7A—C7—H7B 109.5 H26A—C26—H26B 109.5
C4—C7—H7C 109.5 C25—C26—H26C 109.5
H7A—C7—H7C 109.5 H26A—C26—H26C 109.5
H7B—C7—H7C 109.5 H26B—C26—H26C 109.5
O3—S1—O1 113.06 (9) C21—N3—C25 123.75 (15)
O3—S1—O2 111.56 (8) C21—N3—H3A 119.2 (13)
O1—S1—O2 111.86 (8) C25—N3—H3A 117.0 (13)
O3—S1—C1 107.19 (8) C21—N4—H4B 121.1 (15)
O1—S1—C1 106.16 (8) C21—N4—H4A 118.4 (16)
O2—S1—C1 106.52 (9) H4B—N4—H4A 118 (2)
C15—C14—C19 119.43 (18) N2—C8—N1 119.09 (16)
C15—C14—S2 120.43 (14) N2—C8—C9 123.12 (16)
C19—C14—S2 120.03 (15) N1—C8—C9 117.77 (16)
C14—C15—C16 120.19 (18) C10—C9—C8 119.13 (17)
C14—C15—H15 119.9 C10—C9—H9 120.4
C16—C15—H15 119.9 C8—C9—H9 120.4
C15—C16—C17 121.08 (19) C9—C10—C11 121.08 (18)
C15—C16—H16 119.5 C9—C10—H10 119.5
C17—C16—H16 119.5 C11—C10—H10 119.5
C18—C17—C16 117.94 (18) C12—C11—C10 119.44 (18)
C18—C17—C20 120.96 (19) C12—C11—H11 120.3
C16—C17—C20 121.1 (2) C10—C11—H11 120.3
C17—C18—C19 121.60 (18) C11—C12—N1 118.61 (17)
C17—C18—H18 119.2 C11—C12—C13 124.54 (17)
C19—C18—H18 119.2 N1—C12—C13 116.85 (16)
C14—C19—C18 119.74 (19) C12—C13—H13A 109.5
C14—C19—H19 120.1 C12—C13—H13B 109.5
C18—C19—H19 120.1 H13A—C13—H13B 109.5
C17—C20—H20A 109.5 C12—C13—H13C 109.5
C17—C20—H20B 109.5 H13A—C13—H13C 109.5
H20A—C20—H20B 109.5 H13B—C13—H13C 109.5
C17—C20—H20C 109.5 C8—N1—C12 123.96 (15)
H20A—C20—H20C 109.5 C8—N1—H1A 118.4 (14)
H20B—C20—H20C 109.5 C12—N1—H1A 117.6 (14)
O4—S2—O6 112.84 (9) C8—N2—H2A 115.9 (15)
O4—S2—O5 112.66 (8) C8—N2—H2B 120.4 (15)
O6—S2—O5 111.06 (8) H2A—N2—H2B 120 (2)
C6—C1—C2—C3 0.9 (3) C15—C14—S2—O4 151.01 (16)
S1—C1—C2—C3 −178.58 (18) C19—C14—S2—O4 −32.74 (18)
C1—C2—C3—C4 −0.5 (4) C15—C14—S2—O6 −88.27 (17)
C2—C3—C4—C5 −0.4 (4) C19—C14—S2—O6 87.97 (17)
C2—C3—C4—C7 −179.5 (2) C15—C14—S2—O5 30.25 (18)
C3—C4—C5—C6 0.8 (3) C19—C14—S2—O5 −153.50 (15)
C7—C4—C5—C6 179.9 (2) N4—C21—C22—C23 −179.93 (18)
C2—C1—C6—C5 −0.5 (3) N3—C21—C22—C23 1.0 (3)
S1—C1—C6—C5 178.96 (17) C21—C22—C23—C24 −0.7 (3)
C4—C5—C6—C1 −0.3 (3) C22—C23—C24—C25 0.0 (3)
C6—C1—S1—O3 −81.39 (18) C23—C24—C25—N3 0.3 (3)
C2—C1—S1—O3 98.11 (17) C23—C24—C25—C26 179.47 (17)
C6—C1—S1—O1 157.51 (16) N4—C21—N3—C25 −179.79 (17)
C2—C1—S1—O1 −22.99 (19) C22—C21—N3—C25 −0.7 (3)
C6—C1—S1—O2 38.15 (18) C24—C25—N3—C21 0.0 (3)
C2—C1—S1—O2 −142.35 (17) C26—C25—N3—C21 −179.21 (16)
C19—C14—C15—C16 −0.9 (3) N2—C8—C9—C10 −179.67 (19)
S2—C14—C15—C16 175.40 (17) N1—C8—C9—C10 −1.1 (3)
C14—C15—C16—C17 −0.3 (3) C8—C9—C10—C11 0.6 (3)
C15—C16—C17—C18 1.0 (3) C9—C10—C11—C12 −0.3 (3)
C15—C16—C17—C20 −178.9 (2) C10—C11—C12—N1 0.4 (3)
C16—C17—C18—C19 −0.6 (3) C10—C11—C12—C13 −178.58 (18)
C20—C17—C18—C19 179.3 (2) N2—C8—N1—C12 179.90 (17)
C15—C14—C19—C18 1.2 (3) C9—C8—N1—C12 1.3 (3)
S2—C14—C19—C18 −175.05 (16) C11—C12—N1—C8 −0.9 (3)
C17—C18—C19—C14 −0.5 (3) C13—C12—N1—C8 178.12 (16)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O2 0.90 (1) 1.88 (1) 2.772 (2) 171 (2)
N2—H2A···O3i 0.87 (1) 2.01 (1) 2.880 (2) 174 (2)
N2—H2B···O1 0.88 (1) 2.07 (1) 2.919 (2) 162 (2)
N3—H3A···O5 0.89 (1) 1.90 (1) 2.789 (2) 174 (2)
N4—H4A···O4ii 0.88 (1) 2.02 (1) 2.882 (2) 167 (2)
N4—H4B···O6 0.88 (1) 2.04 (1) 2.883 (2) 162 (2)
C22—H22···O5ii 0.93 2.58 3.455 (2) 157

Symmetry codes: (i) x−1, y, z; (ii) x+1, y, z.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: SU2726).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Anderson, F. P., Gallagher, J. F., Kenny, P. T. M. & Lough, A. J. (2005). Acta Cryst. E61, o1350–o1353.
  3. Babu, K. S. S., Peramaiyan, G., NizamMohideen, M. & Mohan, R. (2014). Acta Cryst. E70, o391–o392. [DOI] [PMC free article] [PubMed]
  4. Baskar Raj, S., Sethuraman, V., Francis, S., Hemamalini, M., Muthiah, P. T., Bocelli, G., Cantoni, A., Rychlewska, U. & Warzajtis, B. (2003). CrystEngComm, 5, 70–76.
  5. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  6. Bruker (2004). APEX2, SAINT and XPREP Bruker AXS Inc., Madison, Wisconsin, USA.
  7. Etter, M. C. (1990). Acc. Chem. Res. 23, 120–126.
  8. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  9. Huq, C. A. M. A., Fouzia, S. & NizamMohideen, M. (2013). Acta Cryst. E69, o1766–o1767. [DOI] [PMC free article] [PubMed]
  10. Ishikawa, H., Iwata, K. & Hamaguchi, H. (2002). J. Phys. Chem. A, 106, 2305–2312.
  11. Jin, Z.-M., Shun, N., Lü, Y.-P., Hu, M.-L. & Shen, L. (2005). Acta Cryst. C61, m43–m45. [DOI] [PubMed]
  12. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  13. Nahringbauer, I. & Kvick, Å. (1977). Acta Cryst. B33, 2902–2905.
  14. Onoda, A., Yamada, Y., Doi, M., Okamura, T. & Ueyama, N. (2001). Inorg. Chem. 40, 516–521. [DOI] [PubMed]
  15. Rajkumar, M. A., Xavier, S. S. J., Anbarasu, S., Devarajan, P. A. & NizamMohideen, M. (2014). Acta Cryst. E70, o473–o474. [DOI] [PMC free article] [PubMed]
  16. Sethuram, M., Bhargavi, G., Dhandapani, M., Amirthaganesan, G. & NizamMohideen, M. (2013a). Acta Cryst. E69, o1301–o1302. [DOI] [PMC free article] [PubMed]
  17. Sethuram, M., Rajasekharan, M. V., Dhandapani, M., Amirthaganesan, G. & NizamMohideen, M. (2013b). Acta Cryst. E69, o957–o958. [DOI] [PMC free article] [PubMed]
  18. Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  19. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  20. Shihabuddeen Syed, A., Rajarajan, K. & NizamMohideen, M. (2013). Acta Cryst. E69, i33. [DOI] [PMC free article] [PubMed]
  21. Showrilu, K., Rajarajan, K. & NizamMohideen, M. (2013). Acta Cryst. E69, m469–m470. [DOI] [PMC free article] [PubMed]
  22. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  23. Wang, Z.-L. & Wei, L.-H. (2007). Acta Cryst. E63, o1448–o1449.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536814008587/su2726sup1.cif

e-70-0o600-sup1.cif (33.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814008587/su2726Isup2.hkl

e-70-0o600-Isup2.hkl (299.1KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814008587/su2726Isup3.cml

CCDC reference: 997539

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES