Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Apr 16;70(Pt 5):m180. doi: 10.1107/S1600536814006758

(2.2.2-Cryptand)potassium tetra­carbonyl­cobaltate(−I)

William W Brennessel a,*, John E Ellis a
PMCID: PMC4011216  PMID: 24860312

Abstract

The title salt, [K(C18H36N2O6)][Co(CO)4], is an example of a classical carbonyl­metalate. The asymmetric unit contains one cation and one tetrahedral anion, both in general positions. Based on comparison of the four carbonyl C—O bond lengths and C—Co—C angles, the anion is unperturbed by the cation, which is normal for an alkali metal fully encased by a cryptand cage.

Related literature  

For a survey of metal carbonyl anions, see: Ellis (2003). For the synthesis of the precursor bis­(anthracene)cobaltate, see: Brennessel et al. (2002). For an in-depth discussion of the perturbations of the title anion by cations in various solvents, as measured by IR spectroscopy, see: Edgell & Lyford (1971). For a description of the Cambridge Structural Database, see: Allen (2002). graphic file with name e-70-0m180-scheme1.jpg

Experimental  

Crystal data  

  • [K(C18H36N2O6)][Co(CO)4]

  • M r = 586.56

  • Monoclinic, Inline graphic

  • a = 9.3611 (18) Å

  • b = 12.022 (2) Å

  • c = 25.358 (5) Å

  • β = 91.536 (4)°

  • V = 2852.8 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.80 mm−1

  • T = 173 K

  • 0.30 × 0.19 × 0.14 mm

Data collection  

  • Bruker SMART CCD platform diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2012) T min = 0.521, T max = 0.745

  • 14351 measured reflections

  • 5046 independent reflections

  • 3551 reflections with I > 2σ(I)

  • R int = 0.058

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.093

  • S = 0.92

  • 5046 reflections

  • 325 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536814006758/nk2222sup1.cif

e-70-0m180-sup1.cif (510.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814006758/nk2222Isup2.hkl

e-70-0m180-Isup2.hkl (276.7KB, hkl)

CCDC reference: 993915

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Co1—C4 1.762 (3)
Co1—C3 1.763 (4)
Co1—C1 1.767 (3)
Co1—C2 1.770 (4)

Acknowledgments

This research was supported by the US National Science Foundation and the donors of the Petroleum Research Fund, administered by the American Chemical Society.

supplementary crystallographic information

1. Comment

The title salt (Fig. 1) contains the classical metal carbonyl anion (Ellis, 2003) tetracarbonylcobaltate, which has now appeared in the Cambridge Structural Database (CSD, Version 5.35, update No. 2, Febuary 2014, Allen, 2002) 86 times, 70 for which it serves simply as an anion of modest bulk, as in the title salt. In eleven instances it is part of an alkali metal or thallium network, and in the remaining five occurrences it is coordinated through an oxygen atom to a transition metal or lanthanide.

Because the cobaltate is an unperturbed anion in this salt, the IR stretch is very strong and without features, as expected for a tetrahedron. In contrast, the very strong IR stretch of K[Co(CO)4] in instances in which there can be monodentate or tridentate K···O interactions has a shoulder that is due to symmetry reduction from Td to C3v (Edgell & Lyford, 1971).

2. Experimental

Argon was removed under vacuum from a deep pinkish-red solution of [K([2.2.2]cryptand)][Co(η4-C14H10)2]·0.5THF (Brennessel et al., 2002) stirring in tetrahydrofuran (THF) at room temperature. Carbon monoxide (1 atm) was added, and the solution became immediately colorless. After a few minutes, the carbon monoxide and most of the solvent were removed under vacuum. Argon was reintroduced and diethyl ether was added to extract the anthracene and to precipitate the product. After filtering, washing (diethyl ether), and drying, the colorless salt was obtained in quantitative yield.

IR (νCO, THF, cm-1): 1892 vs; IR (νCO, Nujol mull, cm-1): 1878 vs br; 59Co NMR (71.15 MHz, CD3CN, 293 K, external reference 0.1 M K3[Co(CN)6] in D2O at 0.0 p.p.m., δ, p.p.m.): -3015.7 (s). Colorless blocks were grown from a pentane-layered THF solution at 273 K.

3. Refinement

All H atoms were placed geometrically and treated as riding atoms: C—H = 0.99 Å with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The structure of the title salt, showing the atom numbering. Displacement ellipsoids are drawn at the 50% probability level.

Crystal data

[K(C18H36N2O6)][Co(CO)4] F(000) = 1232
Mr = 586.56 Dx = 1.366 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 9.3611 (18) Å Cell parameters from 3996 reflections
b = 12.022 (2) Å θ = 2.3–24.6°
c = 25.358 (5) Å µ = 0.80 mm1
β = 91.536 (4)° T = 173 K
V = 2852.8 (9) Å3 Block, colorless
Z = 4 0.30 × 0.19 × 0.14 mm

Data collection

Bruker SMART CCD platform diffractometer 3551 reflections with I > 2σ(I)
Radiation source: normal-focus sealed tube Rint = 0.058
ω scans θmax = 25.1°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 2012) h = −11→11
Tmin = 0.521, Tmax = 0.745 k = −11→14
14351 measured reflections l = −29→30
5046 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093 H-atom parameters constrained
S = 0.92 w = 1/[σ2(Fo2) + (0.0428P)2] where P = (Fo2 + 2Fc2)/3
5046 reflections (Δ/σ)max < 0.001
325 parameters Δρmax = 0.39 e Å3
0 restraints Δρmin = −0.23 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Co1 0.03175 (4) 0.80932 (3) 0.38562 (2) 0.03777 (12)
C1 0.1014 (3) 0.8470 (2) 0.44858 (12) 0.0452 (7)
O1 0.1456 (3) 0.8706 (2) 0.48980 (8) 0.0653 (6)
C2 −0.1456 (4) 0.8597 (3) 0.37998 (11) 0.0489 (8)
O2 −0.2606 (3) 0.8925 (2) 0.37675 (10) 0.0736 (7)
C3 0.0336 (3) 0.6631 (3) 0.38061 (11) 0.0462 (7)
O3 0.0358 (2) 0.56731 (19) 0.37816 (9) 0.0651 (6)
C4 0.1381 (3) 0.8663 (2) 0.33608 (11) 0.0436 (7)
O4 0.2078 (3) 0.90302 (17) 0.30383 (8) 0.0627 (6)
K1 0.37979 (6) 0.39030 (5) 0.37685 (2) 0.03466 (15)
N1 0.2667 (2) 0.17944 (18) 0.42354 (9) 0.0408 (6)
C5 0.2462 (3) 0.1981 (2) 0.48042 (11) 0.0488 (8)
H5A 0.3399 0.1921 0.4992 0.059*
H5B 0.1837 0.1387 0.4940 0.059*
C6 0.1812 (3) 0.3093 (3) 0.49271 (11) 0.0520 (8)
H6A 0.0928 0.3201 0.4710 0.062*
H6B 0.1558 0.3120 0.5303 0.062*
O5 0.28056 (19) 0.39546 (15) 0.48182 (7) 0.0399 (5)
C7 0.2248 (3) 0.5016 (2) 0.49582 (11) 0.0482 (8)
H7A 0.2008 0.5019 0.5336 0.058*
H7B 0.1364 0.5170 0.4748 0.058*
C8 0.3322 (3) 0.5887 (2) 0.48574 (11) 0.0504 (8)
H8A 0.2952 0.6621 0.4965 0.060*
H8B 0.4208 0.5733 0.5067 0.060*
O6 0.3626 (2) 0.58999 (15) 0.43112 (7) 0.0438 (5)
C9 0.4473 (3) 0.6823 (2) 0.41678 (12) 0.0512 (8)
H9A 0.5469 0.6716 0.4299 0.061*
H9B 0.4096 0.7511 0.4328 0.061*
C10 0.4439 (3) 0.6927 (2) 0.35785 (12) 0.0535 (8)
H10A 0.3437 0.7042 0.3456 0.064*
H10B 0.4988 0.7597 0.3481 0.064*
C11 0.1280 (3) 0.1528 (2) 0.39757 (12) 0.0481 (8)
H11A 0.0532 0.2005 0.4126 0.058*
H11B 0.1034 0.0745 0.4052 0.058*
C12 0.1278 (3) 0.1691 (2) 0.33879 (12) 0.0492 (8)
H12A 0.2091 0.1285 0.3237 0.059*
H12B 0.0383 0.1392 0.3227 0.059*
O7 0.13939 (19) 0.28435 (15) 0.32733 (7) 0.0396 (5)
C13 0.1274 (3) 0.3049 (3) 0.27216 (10) 0.0480 (8)
H13A 0.0340 0.2776 0.2582 0.058*
H13B 0.2040 0.2650 0.2537 0.058*
C14 0.1397 (3) 0.4268 (3) 0.26271 (11) 0.0461 (7)
H14A 0.1179 0.4437 0.2251 0.055*
H14B 0.0707 0.4674 0.2845 0.055*
O8 0.28281 (19) 0.46132 (16) 0.27640 (7) 0.0458 (5)
C15 0.3056 (3) 0.5738 (3) 0.26203 (12) 0.0610 (9)
H15A 0.2431 0.6231 0.2825 0.073*
H15B 0.2822 0.5843 0.2241 0.073*
C16 0.4602 (3) 0.6026 (3) 0.27332 (12) 0.0619 (9)
H16A 0.5212 0.5508 0.2535 0.074*
H16B 0.4786 0.6787 0.2603 0.074*
C17 0.3671 (3) 0.0864 (2) 0.41663 (13) 0.0509 (8)
H17A 0.3546 0.0569 0.3804 0.061*
H17B 0.3429 0.0261 0.4414 0.061*
C18 0.5219 (3) 0.1185 (3) 0.42583 (12) 0.0507 (8)
H18A 0.5350 0.1519 0.4613 0.061*
H18B 0.5831 0.0515 0.4241 0.061*
O9 0.56202 (19) 0.19592 (16) 0.38686 (7) 0.0466 (5)
C19 0.7118 (3) 0.2156 (2) 0.38849 (11) 0.0473 (8)
H19A 0.7635 0.1451 0.3823 0.057*
H19B 0.7417 0.2442 0.4237 0.057*
C20 0.7477 (3) 0.2982 (2) 0.34723 (11) 0.0471 (8)
H20A 0.8527 0.3074 0.3461 0.056*
H20B 0.7129 0.2716 0.3123 0.056*
O10 0.68266 (18) 0.40194 (15) 0.35896 (7) 0.0404 (5)
C21 0.7229 (3) 0.4842 (2) 0.32179 (11) 0.0504 (8)
H21A 0.6887 0.4625 0.2860 0.060*
H21B 0.8284 0.4905 0.3216 0.060*
C22 0.6590 (3) 0.5936 (2) 0.33652 (12) 0.0472 (7)
H22A 0.6855 0.6102 0.3738 0.057*
H22B 0.7005 0.6526 0.3144 0.057*
N2 0.5018 (2) 0.5968 (2) 0.33005 (9) 0.0432 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Co1 0.0357 (2) 0.0434 (2) 0.0341 (2) −0.00146 (18) 0.00036 (16) 0.00340 (17)
C1 0.0456 (19) 0.0426 (17) 0.0476 (18) −0.0042 (14) 0.0054 (15) 0.0106 (14)
O1 0.0779 (17) 0.0789 (17) 0.0382 (12) −0.0091 (13) −0.0153 (11) 0.0002 (11)
C2 0.053 (2) 0.0490 (18) 0.0451 (17) −0.0006 (16) 0.0038 (16) −0.0033 (14)
O2 0.0462 (15) 0.0820 (19) 0.0924 (18) 0.0188 (13) −0.0037 (13) −0.0085 (14)
C3 0.0390 (18) 0.061 (2) 0.0384 (16) −0.0029 (15) −0.0038 (13) −0.0001 (15)
O3 0.0783 (17) 0.0451 (14) 0.0711 (15) −0.0066 (12) −0.0143 (13) −0.0077 (12)
C4 0.0494 (19) 0.0424 (17) 0.0386 (16) 0.0051 (14) −0.0055 (14) 0.0010 (14)
O4 0.0755 (16) 0.0628 (15) 0.0510 (13) −0.0019 (12) 0.0223 (12) 0.0182 (11)
K1 0.0300 (3) 0.0400 (3) 0.0340 (3) −0.0031 (3) 0.0000 (2) −0.0008 (3)
N1 0.0344 (13) 0.0383 (13) 0.0495 (14) −0.0043 (11) 0.0000 (11) 0.0027 (11)
C5 0.0470 (19) 0.054 (2) 0.0457 (16) −0.0079 (15) 0.0046 (14) 0.0111 (15)
C6 0.049 (2) 0.064 (2) 0.0440 (17) −0.0022 (17) 0.0151 (15) 0.0043 (16)
O5 0.0345 (11) 0.0454 (12) 0.0400 (10) 0.0021 (9) 0.0076 (8) 0.0007 (9)
C7 0.0464 (19) 0.059 (2) 0.0395 (16) 0.0137 (16) 0.0123 (14) −0.0012 (15)
C8 0.061 (2) 0.0461 (18) 0.0443 (17) 0.0148 (16) 0.0032 (15) −0.0119 (14)
O6 0.0429 (12) 0.0415 (11) 0.0472 (11) −0.0025 (9) 0.0035 (9) −0.0040 (9)
C9 0.0429 (18) 0.0385 (17) 0.072 (2) −0.0015 (14) 0.0036 (16) −0.0074 (16)
C10 0.0372 (18) 0.0449 (18) 0.078 (2) −0.0054 (15) 0.0016 (16) 0.0192 (17)
C11 0.0353 (18) 0.0441 (17) 0.065 (2) −0.0064 (14) −0.0034 (15) 0.0063 (15)
C12 0.0429 (19) 0.0422 (19) 0.0618 (19) −0.0042 (14) −0.0080 (15) −0.0065 (15)
O7 0.0400 (11) 0.0412 (11) 0.0373 (10) −0.0036 (9) −0.0043 (8) −0.0040 (8)
C13 0.0459 (19) 0.061 (2) 0.0364 (15) −0.0009 (15) −0.0063 (13) −0.0111 (15)
C14 0.0403 (18) 0.063 (2) 0.0344 (15) −0.0039 (15) −0.0097 (13) −0.0002 (14)
O8 0.0368 (12) 0.0596 (13) 0.0406 (11) −0.0091 (9) −0.0085 (9) 0.0089 (10)
C15 0.053 (2) 0.074 (2) 0.0551 (19) −0.0184 (18) −0.0204 (16) 0.0281 (17)
C16 0.053 (2) 0.079 (2) 0.0531 (19) −0.0237 (18) −0.0061 (16) 0.0281 (18)
C17 0.049 (2) 0.0367 (17) 0.067 (2) −0.0009 (14) −0.0008 (16) 0.0014 (15)
C18 0.0392 (18) 0.0495 (19) 0.0630 (19) 0.0065 (15) −0.0036 (15) 0.0050 (16)
O9 0.0327 (12) 0.0509 (12) 0.0559 (12) 0.0042 (9) −0.0032 (9) 0.0025 (10)
C19 0.0298 (16) 0.057 (2) 0.0546 (18) 0.0092 (14) −0.0013 (14) −0.0140 (15)
C20 0.0313 (16) 0.061 (2) 0.0489 (17) 0.0050 (14) 0.0073 (13) −0.0147 (15)
O10 0.0291 (10) 0.0511 (12) 0.0413 (10) 0.0019 (9) 0.0092 (8) −0.0063 (9)
C21 0.0365 (17) 0.065 (2) 0.0501 (18) −0.0096 (15) 0.0127 (14) −0.0038 (16)
C22 0.0329 (17) 0.057 (2) 0.0522 (17) −0.0137 (14) 0.0038 (14) 0.0079 (15)
N2 0.0323 (13) 0.0560 (16) 0.0413 (13) −0.0086 (12) −0.0004 (11) 0.0091 (12)

Geometric parameters (Å, º)

Co1—C4 1.762 (3) C11—H11A 0.9900
Co1—C3 1.763 (4) C11—H11B 0.9900
Co1—C1 1.767 (3) C12—O7 1.420 (3)
Co1—C2 1.770 (4) C12—H12A 0.9900
C1—O1 1.149 (3) C12—H12B 0.9900
C2—O2 1.147 (3) O7—C13 1.422 (3)
C3—O3 1.153 (4) C13—C14 1.490 (4)
C4—O4 1.148 (3) C13—H13A 0.9900
K1—O6 2.7741 (19) C13—H13B 0.9900
K1—O8 2.8137 (18) C14—O8 1.436 (3)
K1—O5 2.8433 (18) C14—H14A 0.9900
K1—O7 2.8481 (19) C14—H14B 0.9900
K1—O10 2.8866 (19) O8—C15 1.418 (3)
K1—O9 2.900 (2) C15—C16 1.508 (4)
K1—N2 2.991 (2) C15—H15A 0.9900
K1—N1 3.003 (2) C15—H15B 0.9900
N1—C17 1.474 (4) C16—N2 1.482 (4)
N1—C11 1.475 (3) C16—H16A 0.9900
N1—C5 1.477 (3) C16—H16B 0.9900
C5—C6 1.505 (4) C17—C18 1.512 (4)
C5—H5A 0.9900 C17—H17A 0.9900
C5—H5B 0.9900 C17—H17B 0.9900
C6—O5 1.424 (3) C18—O9 1.416 (3)
C6—H6A 0.9900 C18—H18A 0.9900
C6—H6B 0.9900 C18—H18B 0.9900
O5—C7 1.427 (3) O9—C19 1.421 (3)
C7—C8 1.478 (4) C19—C20 1.488 (4)
C7—H7A 0.9900 C19—H19A 0.9900
C7—H7B 0.9900 C19—H19B 0.9900
C8—O6 1.421 (3) C20—O10 1.423 (3)
C8—H8A 0.9900 C20—H20A 0.9900
C8—H8B 0.9900 C20—H20B 0.9900
O6—C9 1.417 (3) O10—C21 1.424 (3)
C9—C10 1.499 (4) C21—C22 1.497 (4)
C9—H9A 0.9900 C21—H21A 0.9900
C9—H9B 0.9900 C21—H21B 0.9900
C10—N2 1.464 (4) C22—N2 1.477 (3)
C10—H10A 0.9900 C22—H22A 0.9900
C10—H10B 0.9900 C22—H22B 0.9900
C11—C12 1.503 (4)
C4—Co1—C3 109.24 (13) C12—C11—H11A 109.0
C4—Co1—C1 110.01 (13) N1—C11—H11B 109.0
C3—Co1—C1 108.48 (13) C12—C11—H11B 109.0
C4—Co1—C2 110.86 (13) H11A—C11—H11B 107.8
C3—Co1—C2 110.27 (14) O7—C12—C11 109.4 (2)
C1—Co1—C2 107.94 (13) O7—C12—H12A 109.8
O1—C1—Co1 179.1 (3) C11—C12—H12A 109.8
O2—C2—Co1 179.4 (3) O7—C12—H12B 109.8
O3—C3—Co1 178.9 (3) C11—C12—H12B 109.8
O4—C4—Co1 179.7 (3) H12A—C12—H12B 108.2
O6—K1—O8 99.49 (6) C12—O7—C13 111.5 (2)
O6—K1—O5 59.46 (5) C12—O7—K1 114.18 (15)
O8—K1—O5 137.33 (6) C13—O7—K1 113.37 (15)
O6—K1—O7 123.37 (6) O7—C13—C14 109.0 (2)
O8—K1—O7 60.31 (5) O7—C13—H13A 109.9
O5—K1—O7 98.53 (5) C14—C13—H13A 109.9
O6—K1—O10 96.11 (5) O7—C13—H13B 109.9
O8—K1—O10 97.90 (5) C14—C13—H13B 109.9
O5—K1—O10 119.53 (5) H13A—C13—H13B 108.3
O7—K1—O10 136.07 (5) O8—C14—C13 108.8 (2)
O6—K1—O9 134.08 (6) O8—C14—H14A 109.9
O8—K1—O9 119.90 (6) C13—C14—H14A 109.9
O5—K1—O9 98.15 (5) O8—C14—H14B 109.9
O7—K1—O9 97.71 (6) C13—C14—H14B 109.9
O10—K1—O9 58.33 (5) H14A—C14—H14B 108.3
O6—K1—N2 60.43 (6) C15—O8—C14 111.1 (2)
O8—K1—N2 60.42 (6) C15—O8—K1 118.35 (16)
O5—K1—N2 119.41 (6) C14—O8—K1 114.04 (14)
O7—K1—N2 120.12 (6) O8—C15—C16 108.7 (3)
O10—K1—N2 60.68 (6) O8—C15—H15A 110.0
O9—K1—N2 118.26 (6) C16—C15—H15A 110.0
O6—K1—N1 120.61 (6) O8—C15—H15B 110.0
O8—K1—N1 120.30 (6) C16—C15—H15B 110.0
O5—K1—N1 61.43 (6) H15A—C15—H15B 108.3
O7—K1—N1 60.89 (6) N2—C16—C15 113.5 (2)
O10—K1—N1 117.46 (6) N2—C16—H16A 108.9
O9—K1—N1 59.87 (6) C15—C16—H16A 108.9
N2—K1—N1 178.13 (7) N2—C16—H16B 108.9
C17—N1—C11 109.8 (2) C15—C16—H16B 108.9
C17—N1—C5 109.3 (2) H16A—C16—H16B 107.7
C11—N1—C5 109.4 (2) N1—C17—C18 113.5 (2)
C17—N1—K1 111.16 (16) N1—C17—H17A 108.9
C11—N1—K1 108.83 (16) C18—C17—H17A 108.9
C5—N1—K1 108.26 (16) N1—C17—H17B 108.9
N1—C5—C6 113.6 (2) C18—C17—H17B 108.9
N1—C5—H5A 108.8 H17A—C17—H17B 107.7
C6—C5—H5A 108.8 O9—C18—C17 109.3 (2)
N1—C5—H5B 108.8 O9—C18—H18A 109.8
C6—C5—H5B 108.8 C17—C18—H18A 109.8
H5A—C5—H5B 107.7 O9—C18—H18B 109.8
O5—C6—C5 109.7 (2) C17—C18—H18B 109.8
O5—C6—H6A 109.7 H18A—C18—H18B 108.3
C5—C6—H6A 109.7 C18—O9—C19 111.7 (2)
O5—C6—H6B 109.7 C18—O9—K1 115.11 (15)
C5—C6—H6B 109.7 C19—O9—K1 116.48 (16)
H6A—C6—H6B 108.2 O9—C19—C20 109.4 (2)
C6—O5—C7 110.9 (2) O9—C19—H19A 109.8
C6—O5—K1 113.40 (15) C20—C19—H19A 109.8
C7—O5—K1 112.52 (14) O9—C19—H19B 109.8
O5—C7—C8 109.6 (2) C20—C19—H19B 109.8
O5—C7—H7A 109.8 H19A—C19—H19B 108.2
C8—C7—H7A 109.8 O10—C20—C19 109.4 (2)
O5—C7—H7B 109.8 O10—C20—H20A 109.8
C8—C7—H7B 109.8 C19—C20—H20A 109.8
H7A—C7—H7B 108.2 O10—C20—H20B 109.8
O6—C8—C7 109.3 (2) C19—C20—H20B 109.8
O6—C8—H8A 109.8 H20A—C20—H20B 108.2
C7—C8—H8A 109.8 C20—O10—C21 110.4 (2)
O6—C8—H8B 109.8 C20—O10—K1 114.71 (15)
C7—C8—H8B 109.8 C21—O10—K1 114.61 (15)
H8A—C8—H8B 108.3 O10—C21—C22 109.3 (2)
C9—O6—C8 112.7 (2) O10—C21—H21A 109.8
C9—O6—K1 120.67 (15) C22—C21—H21A 109.8
C8—O6—K1 119.31 (16) O10—C21—H21B 109.8
O6—C9—C10 108.9 (2) C22—C21—H21B 109.8
O6—C9—H9A 109.9 H21A—C21—H21B 108.3
C10—C9—H9A 109.9 N2—C22—C21 113.5 (2)
O6—C9—H9B 109.9 N2—C22—H22A 108.9
C10—C9—H9B 109.9 C21—C22—H22A 108.9
H9A—C9—H9B 108.3 N2—C22—H22B 108.9
N2—C10—C9 114.6 (2) C21—C22—H22B 108.9
N2—C10—H10A 108.6 H22A—C22—H22B 107.7
C9—C10—H10A 108.6 C10—N2—C22 110.3 (2)
N2—C10—H10B 108.6 C10—N2—C16 109.9 (2)
C9—C10—H10B 108.6 C22—N2—C16 110.1 (2)
H10A—C10—H10B 107.6 C10—N2—K1 108.21 (15)
N1—C11—C12 113.0 (2) C22—N2—K1 108.94 (16)
N1—C11—H11A 109.0 C16—N2—K1 109.33 (17)
C17—N1—C5—C6 163.4 (2) K1—O8—C15—C16 49.7 (3)
C11—N1—C5—C6 −76.4 (3) O8—C15—C16—N2 −63.7 (4)
K1—N1—C5—C6 42.1 (3) C11—N1—C17—C18 161.4 (2)
N1—C5—C6—O5 −68.5 (3) C5—N1—C17—C18 −78.5 (3)
C5—C6—O5—C7 −176.8 (2) K1—N1—C17—C18 41.0 (3)
C5—C6—O5—K1 55.4 (3) N1—C17—C18—O9 −65.0 (3)
C6—O5—C7—C8 178.1 (2) C17—C18—O9—C19 −170.7 (2)
K1—O5—C7—C8 −53.7 (3) C17—C18—O9—K1 53.5 (3)
O5—C7—C8—O6 61.3 (3) C18—O9—C19—C20 −179.4 (2)
C7—C8—O6—C9 170.6 (2) K1—O9—C19—C20 −44.3 (3)
C7—C8—O6—K1 −38.9 (3) O9—C19—C20—O10 64.3 (3)
C8—O6—C9—C10 −166.3 (2) C19—C20—O10—C21 176.4 (2)
K1—O6—C9—C10 43.8 (3) C19—C20—O10—K1 −52.4 (3)
O6—C9—C10—N2 −61.4 (3) C20—O10—C21—C22 −177.2 (2)
C17—N1—C11—C12 −78.8 (3) K1—O10—C21—C22 51.4 (3)
C5—N1—C11—C12 161.2 (2) O10—C21—C22—N2 −68.2 (3)
K1—N1—C11—C12 43.0 (3) C9—C10—N2—C22 −72.8 (3)
N1—C11—C12—O7 −68.3 (3) C9—C10—N2—C16 165.6 (2)
C11—C12—O7—C13 −175.0 (2) C9—C10—N2—K1 46.3 (3)
C11—C12—O7—K1 54.9 (3) C21—C22—N2—C10 164.9 (2)
C12—O7—C13—C14 179.8 (2) C21—C22—N2—C16 −73.7 (3)
K1—O7—C13—C14 −49.7 (3) C21—C22—N2—K1 46.2 (3)
O7—C13—C14—O8 67.6 (3) C15—C16—N2—C10 −74.6 (3)
C13—C14—O8—C15 172.7 (2) C15—C16—N2—C22 163.7 (3)
C13—C14—O8—K1 −50.5 (2) C15—C16—N2—K1 44.1 (3)
C14—O8—C15—C16 −175.5 (2)

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: NK2222).

References

  1. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  2. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  3. Brennessel, W. W., Young, V. G. Jr & Ellis, J. E. (2002). Angew. Chem. Int. Ed. 41, 1211–1215. [DOI] [PubMed]
  4. Bruker (2003). SAINT and SMART Bruker AXS, Inc., Madison, WI, USA.
  5. Edgell, W. F. & Lyford IV, J. (1971). J. Am. Chem. Soc. 93, 6407–6414.
  6. Ellis, J. E. (2003). Organometallics, 22, 3322–3338.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Sheldrick, G. M. (2012). SADABS, University of Göttingen, Germany.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536814006758/nk2222sup1.cif

e-70-0m180-sup1.cif (510.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814006758/nk2222Isup2.hkl

e-70-0m180-Isup2.hkl (276.7KB, hkl)

CCDC reference: 993915

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES